akoyabio​ CODEX分析试剂和抗体

 

 

akoyabio​ CODEX分析试剂和抗体

CODEX分析法通过迭代成像循环靶向抗体组的子集,从而克服了传统的多重免疫荧光技术的挑战,从而在单个组织切片中揭示了40多种生物标志物。

我们提供了完整的解决方案,其中包括针对CODEX系统进行了优化和验证的抗体和试剂。经验证和库存的抗体可用于不同类型的组织:小鼠新鲜冷冻,人新鲜冷冻和人FFPE。用户可以使用Akoya的定制偶联试剂盒灵活地创建由市售的,经Akoya验证的抗体或标有CODEX条形码的克隆组成的面板。

试剂盒和试剂

用于组织染色,自定义缀合和执行CODEX实验的缓冲液和试剂

CODEX抗体

CODEX共轭抗体,用于构建抗体面板

CODEX条码

修饰寡核苷酸,易于偶联定制CODEX抗体

CODEX记者

荧光团偶联的寡核苷酸,用于CODEX抗体的可视化

 

试剂盒和试剂

CODEX分析需要专门配制的试剂和缓冲液,以使用CODEX抗体对组织染色并进行迭代成像循环。对于每个成像周期,将三个带有特定光谱染料的CODEX Reporter应用于染色的组织,以可视化相应的CODEX抗体。该CODEX仪器适用轻柔洗涤步骤去除CODEX记者无任何化学修饰,随后施加下一组记者的想象下一组CODEX抗体。

目录 #

名称

尺寸

7000001 10X CODEX缓冲区 10个反应
7000002 CODEX检测试剂 10个反应
7000003 核染色 10个反应
7000008 CODEX染色套件 10个反应
7000009 CODEX偶联试剂盒 10个反应
7000010 CODEX垫片v2 10个垫片
232107 CODEX存储缓冲区 120毫升
7000005 盖玻片 138
7000006 96孔板 10
7000007 96孔板密封 10
7000013 CODEX盖玻片储物盒 1盒

 

CODEX抗体

CODEX抗体是单独提供的,可以混合使用并与设计面板匹配,以同时分析多达40多种生物标志物。

Akoya提供经过充分测试的CODEX抗体和一系列补充抗体。

 

CODEX ®盘点抗体

CODEX清单抗体由Akoya提供,并已通过完整的CODEX抗体验证过程和制造质量控制。我们库存的抗体也得到了我们现场支持团队的全面支持。

 

人类FFPE组织的CODEX®抗体

CODEX抗体已在多种类型的人类FFPE组织中进行了测试。这些CODEX抗体与不同的CODEX条形码(BX000)结合。每个试剂盒包含一管CODEX抗体和一管相应的染料标记的Reporter(RX000),在标准染色条件下有足够的容量用于25 CODEX运行(或测试)。推荐用于FFPE组织的染料是Atto 550,Cy5和Alexa Fluor™750。

目录 #

名称

尺寸

4450036 b-Catenin1-BX020(12F7)-Atto 550-RX020 25项测试
4450030 CD3e-BX045(EP449E)—Cy5-RX045 25项测试
4350018 CD4-BX003(EPR6855)—Cy5-RX003 25项测试
4250012 CD8-BX026(C8 / 144B)-Atto 550-RX026 25项测试
4350020 CD11c-BX024(118 / A5)—Cy5-RX024 25项测试
4150018 CD20-BX007(L26)— Alexa Fluor™488-RX007 25项测试
4450018 CD20-BX007(L26)— Alexa Fluor™750-RX007 25项测试
4450027 CD21-BX032(EP3093)—阿托550-RX032 25项测试
4150017 CD31-BX001(EP3095)— Alexa Fluor™488-RX001 25项测试
4450017 CD31-BX001(EP3095)— Alexa Fluor™750-RX001 25项测试
4250002 CD44-BX005(IM7)-阿托550-RX005 25项测试
4250023 CD45RO-BX017(UCHL1)-Atto 550-RX017 25项测试
4350019 CD68-BX015(KP1)—Cy5-RX015 25项测试
4350001 CD107a-BX006(H4A3)—Cy5-RX006 25项测试
4250021 E-cadherin-BX014(4A2C7)-Atto 550-RX014 25项测试
4350021 组蛋白H3磷酸酯(Ser28)-BX030(HTA28)-Cy5-RX030 25项测试
4450029 HLA-DR-BX033(EPR3692)—Cy5-RX033 25项测试
4450031 角蛋白14-BX002(聚19053)—阿托550-RX002 25项测试
4250019 Ki67-BX047(B56)-Atto 550-RX047 25项测试
4450032 LIF-BX006(M1506B09)—Cy5-RX006 25项测试
4450034 Mac2 / Galectin-3-BX035(M3 / 38)-Atto 550-RX035 25项测试
4150020 泛细胞角蛋白BX019(AE-1 / AE-3)-Alexa Fluor™488-RX019 25项测试
4450020 泛细胞角蛋白BX019(AE-1 / AE-3)-Alexa Fluor™750-RX019 25项测试
4250004 Podoplanin-BX023(NC-08)-Atto 550-RX023 25项测试
4450033 TFAM-BX029(18G102B2E11)-Atto 550-RX029 25项测试

 

用于人类新鲜冷冻组织的CODEX®抗体

已经使用扁桃体组织测试了用于人类新鲜冷冻组织的CODEX抗体。这些CODEX抗体与不同的CODEX条形码(BX000)结合。每个试剂盒包含一管CODEX抗体和一管相应的染料标记的Reporter(RX000),在标准染色条件下有足够的容量用于25 CODEX运行(或测试)。推荐用于人类新鲜冷冻组织的染料是Atto 550,Cy5和Alexa Fluor™488。

目录#

名称

尺寸

4250005 CD2-BX002(RPA-2.10)-Atto 550-RX002 25项测试
4350008 CD3-BX015(UCHT1)—Cy5-RX015 25项测试
4350010 CD4-BX021(SK3)—Cy5-RX021 25项测试
4150004 CD8-BX004(SK1)—Alexa Fluor™488-RX004 25项测试
4450004 CD8-BX004(SK1)— Alexa Fluor™750-RX004 25项测试
4350012 CD11c-BX027(S-HCL-3)—Cy5-RX027 25项测试
4350003 CD19-BX003(HIB19)—Cy5-RX003 25项测试
4150009 CD21-BX013(Bu32)-Alexa Fluor™488-RX013 25项测试
4450009 CD21-BX013(Bu32)-Alexa Fluor™750-RX013 25项测试
4250009 CD31-BX032(WM59)—阿托550-RX032 25项测试
4250020 CD34-BX035(561)-阿托550-RX035 25项测试
4150007 CD38-BX007(HB-7)-Alexa Fluor™488-RX007 25项测试
4450007 CD38-BX007(HB-7)-Alexa Fluor™750-RX007 25项测试
4150003 CD45-BX001(HI30)— Alexa Fluor™488-RX001 25项测试
4450003 CD45-BX001(HI30)— Alexa Fluor™750-RX001 25项测试
4250023 CD45RO-BX017(UCHL1)-Atto 550-RX017 25项测试
4350007 CD49f-BX033(GoH3)—Cy5-RX033 25项测试
4250022 CD69-BX041(FN50)-阿托550-RX041 25项测试
4150021 CD90-BX022(5E10)-Alexa Fluor™488-RX022 25项测试
4450021 CD90-BX022(5E10)-Alexa Fluor™750-RX022 25项测试
4250008 CD104-BX005(58XB4)-Atto 550-RX005 25项测试
4150008 CD138-BX010(MI15)-Alexa Fluor™488-RX010 25项测试
4450008 CD138-BX010(MI15)— Alexa Fluor™750-RX010 25项测试
4250013 CD278-BX017(C398.4A)-Atto 550-RX017 25项测试
4250010 CD279-BX014(EH12.2H7)-Atto 550-RX014 25项测试
4250006 HLA-DR-BX026(L243)—阿托550-RX026 25项测试
4250019 Ki67-BX047(B56)-Atto 550-RX047 25项测试
4150020 泛细胞角蛋白BX019(AE-1 / AE-3)-Alexa Fluor™488-RX019 25项测试
4450020 泛细胞角蛋白BX019(AE-1 / AE-3)-Alexa Fluor™750-RX019 25项测试
4250004 Podoplanin-BX023(NC-08)-Atto 550-RX023 25项测试

下载抗体清单

CODEX®小鼠新鲜冷冻组织抗体

已使用脾脏组织测试了用于小鼠新鲜冷冻组织的CODEX抗体。这些CODEX抗体与不同的CODEX条形码(BX000)结合。每个试剂盒包含一管CODEX抗体和一管相应的染料标记的Reporter(RX000),在标准染色条件下有足够的容量用于25 CODEX运行(或测试)。推荐用于小鼠新鲜冷冻组织的染料是Atto 550,Cy5和Alexa Fluor™488。

目录#

名称

尺寸

4350014 CD3-BX021(17A2)—Cy5-RX021 25项测试
4250016 CD4-BX026(RM4-5)—阿托550-RX026 25项测试
4250007 CD5-BX017(53-7.3)-Atto 550-RX017 25项测试
4250017 CD8a-BX029(53-6.7)-Atto 550-RX029 25项测试
4150015 CD11b-BX025(M1 / 70)—Alexa Fluor™488-RX025 25项测试
4450015 CD11b-BX025(M1 / 70)-Alexa Fluor™750-RX025 25项测试
4350013 CD11c-BX030(N418)—Cy5-RX030 25项测试
4250014 CD19-BX020(6D5)-Atto 550-RX020 25项测试
4250015 CD21 / 35-BX023(7E9)-Atto 550-RX023 25项测试
4150014 CD24-BX022(M1 / 69)—Alexa Fluor™488-RX022 25项测试
4450014 CD24-BX022(M1 / 69)-Alexa Fluor™750-RX022 25项测试
4250001 CD31-BX002(MEC13.3)-Atto 550-RX002 25项测试
4150013 CD38-BX019(90)— Alexa Fluor™488-RX019 25项测试
4450013 CD38-BX019(90)-Alexa Fluor™750-RX019 25项测试
4250002 CD44-BX005(IM7)-阿托550-RX005 25项测试
4150002 CD45-BX007(30-F11)— Alexa Fluor™488-RX007 25项测试
4450002 CD45-BX007(30-F11)— Alexa Fluor™750-RX007 25项测试
4150006 CD45R / B220-BX010(Ra3-6B2)-Alexa Fluor™488-RX010 25项测试
4450006 CD45R / B220-BX010(Ra3-6B2)-Alexa Fluor™750-RX010 25项测试
4350007 CD49f-BX033(GoH3)—Cy5-RX033 25项测试
4350016 CD71-BX027(RI7217)—Cy5-RX027 25项测试
4450001 CD90.2-BX001(30-H12)-Alexa Fluor™750-RX001 25项测试
4150001 CD90.2-BX001(30-H12)-Alexa Fluor™488-RX001 25项测试
4350005 CD169-BX015(3D6.112)—Cy5-RX015 25项测试
4150012 IgD-BX016(11-26c.2a)-Alexa Fluor™488-RX016 25项测试
4450012 IgD-BX016(11-26c.2a)-Alexa Fluor™750-RX016 25项测试
4150011 IgM-BX013(RMM-1)-Alexa Fluor™488-RX013 25项测试
4450011 IgM-BX013(RMM-1)-Alexa Fluor™750-RX013 25项测试
4250019 Ki67-BX047(B56)-Atto 550-RX047 25项测试
4350015 Ly6g-BX024(1A8)—Cy5-RX024 25项测试
4250003 MHC II-BX014(M5 / 114.15.2)-Atto 550-RX014 25项测试
4350006 TCRb-BX003(H57-597)—Cy5-RX003 25项测试
4150005 Ter119-BX004(TER-119)-Alexa Fluor™488-RX004 25项测试
4450005 Ter119-BX004(TER-119)-Alexa Fluor™750-RX004 25项测试

 

CODEX ®屏蔽抗体

Akoya并未列出或提供CODEX筛选的抗体,但包括一系列已纯化并成功与CODEX Barcodes结合并在次级淋巴组织中显示阳性染色信号的克隆。这些克隆可从其他抗体供应商处商购获得,但需要终用户偶联。CODEX条形码和相关的共轭协议可通过Akoya获得。

 

 

CODEX ®社区抗体

CODEX用户群在不断增长,我们鼓励跨客户站点的协作,以共享他们经过CODEX测试的克隆和协议的列表。这些CODEX社区抗体虽然证明与CODEX仪器兼容,但不会通过Akoya出售。终用户需要共轭。CODEX条形码和相关的共轭协议可通过Akoya获得。我们正在继续扩大名单。

氢氧化钠试剂


Medicago 12-9183-5说明书

品牌:瑞典Medicago

Sodium Hydroxide Reagent (NaOH)

氢氧化钠试剂(NaOH)

     

货号

产品名称

包装尺寸

 

价格

12-9183-5

氢氧化钠(NaOH)5M

5个小袋

1000毫升/袋

77欧元

 

特征            

  • 由药用级试剂制备
  • 方便密封的小袋
  • 无忧无虑 – 只需加水即可
  • 消除称重错误                       

 

 

 

产品描述

氢氧化钠广泛用于生物化学。它是一种基本溶液,具有提高化学溶液pH值的能力,例如它可用于中和酸。

Medicago的氢氧化钠试剂纯度为99.99%,在密封袋中以预先称重的粉末形式提供。当溶解在去离子水中时,一个小袋产生1000ml的5M氢氧化钠。

 

应用

  • 生物化学实验室
  • 中和酸

 

使用说明

在放置在磁力搅拌器上的实验室烧瓶或烧杯中倒空一袋NaOH试剂。加入300毫升去离子水并搅拌溶液几分钟。将体积调节至1000毫升,搅拌至*溶解,溶液即可使用。

 

运输和储存

NaOH试剂在室温下运输。将袋子存放在室温下的干燥处。保质期为生产日期后三年。

 

产品规格

化学品:药品级

格式:*预先称重的粉末混合物

浓度:5M NaOH

体积:1000毫升

 

VIAFILL触屏式快速试剂分液器

VIAFILL触屏式快速试剂分液器

品牌 其他品牌

瑞士IBS VIAFILL触屏式快速试剂分液器是一款经济型大容量试剂分液器,具有触摸屏图形用户界面,编程极其简单。用户可以在 8 道和 16 道分液盒间轻松转换,来快速填充 6 到 1536 孔板。附带的堆叠机可帮助完成大量有盖和无盖孔板的填充。
进口
现货

瑞士IBS VIAFILL触屏式快速试剂分液器

易于使用的触屏式快速试剂分液器

  大容量试剂分液器需要高额的投资,或者用户需要购买多个昂贵的模块来构建理想的分液装置。同时,这些分液器只有8通道分液盒,需要2次平移才能完成384孔板的填充。这增加了分液耗时和交叉污染风险。

  VIAFILL是一款经济型大容量试剂分液器,具有触摸屏图形用户界面,编程极其简单。用户可以在 8道和16道分液盒间轻松转换,来快速填充6到1536孔板。附带的堆叠机可帮助完成大量有盖和无盖孔板的填充。

它是如何工作的

VIAFILL试剂分液器具有*的触摸屏图形用户界面,重复分液、变量分液以及自定义编程都极其简单。

用户可以在8道和16道分液盒间轻松转换,来快速填充6到1536孔板。附带的堆叠机可以使用25和50板堆槽,以帮助完成大量有盖和无盖孔板的填充。

快速试剂分液

VIAFILL是拥有彩色触摸屏用户界面的试剂分液器,其直观的仪器导航可有效缩短用户的学习时间

使用者可以通过用户界面快速编辑预先设定的程序,并创建、存储、命名和调用多99个独立的液体处理程序。

孔板堆叠机

附带的孔板堆叠机能够提高效率并进行无人值守操作。堆叠机上专为25块或50块孔板设计的可装卸板槽可以便利地存放孔板。

堆叠机是为标准板或不同高度的深孔板设计的,同时也兼容多种带盖子的孔板。

VIAFILL触屏式快速试剂分液器

技术规格

  1. 量程:0.5µl-9999µl
  2. 尺寸规格 (W×D×H):37.5cm×30.5cm×24.0cm
  3. 操作环境:5°to~35 °C,湿度<80 %
  4. 重量:10.66kg
  5. 兼容规格:6, 12, 24, 48, 96, 384 和 1536孔板(浅底和深底)
  6. 塑料管孔径:小号:0.3 mm,大号:0.5 mm

订货信息:

VIAFILL试剂分液器

描述 货号
主机,含8道塑料分液盒,灭菌,5-9999 µl 5600

分液盒:8道、16道

类型 描述 货号
8道,小孔 塑料分液盒,灭菌,0.5 – 999 µl,5个/箱 5722
8道,标准孔 塑料分液盒,灭菌,0.5 – 9999 µl,5个/箱 5724
16道,小孔 塑料分液盒,灭菌,0.5 – 999 µl,5个/箱 5742

VIAFILL触屏式快速试剂分液器

配件:孔板堆叠机和板槽。

类型 描述 货号
孔板堆叠机 主机 5910
孔板堆叠机板槽 25 板容量(1个) 5915
孔板堆叠机板槽 50 板容量(1个) 5916

VIAFILL触屏式快速试剂分液器 

VIAFILL触屏式快速试剂分液器

VIAFILL触屏式快速试剂分液器

VIAFILL触屏式快速试剂分液器

脂质体核酸转染试剂 脂质体转染试剂|Hieff Trans™ Liposomal Transfection Reagent

脂质体核酸转染试剂 脂质体转染试剂|Hieff Trans™ Liposomal Transfection Reagent

产品说明书

FAQ

COA

已发表文献

产品描述

Hieff Trans®脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNARNA和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸Hieff Trans®复合物或更换新鲜培养基,也可在46小时后除去。

Hieff Trans®脂质体核酸转染试剂以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5 μL左右,则1 mL 约可做660 次转染;对于6孔板,每次用6 μL左右,则1 mL约可做160 次转染

 

运输与保存方法

冰袋(wet ice)运输。产品2-8ºC保存,一年有效。不可冷冻!

 

注意事项

1. Hieff Trans®脂质体核酸转染试剂要求细胞铺板密度较高,以60%-80%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响具体铺板密度需要预实验摸索;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。

2. Hieff Trans®脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM就不相容。

3. 转染的时候培养基中不能添加抗生素。

4. 使用高纯度的DNARNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。

5. 阳离子脂质体应该在2-8ºC保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。

6. 初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 µg DNA1-1.5 µL 转染试剂。通过调整DNA/Hieff Trans®脂质体核酸转染试剂比例优化转染效率,DNAμg: 试剂μL)比值在1:0.5-1:5

7. 本产品仅作科研用途!

 

操作流程(以24孔板为例,其他培养板加样体积请参考表一) 

【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。

贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为70-95%0.5-2 × 105 cells/well for a 24-well plate)。

悬浮细胞:转染当天,配制DNA复合物之前,24孔板中细胞铺板,每500 µL生长培养基(不含抗生素)中加入4-8 × 105 cells

1. 按照以下体系配制DNA-Hieff Trans®脂质体核酸转染试剂复合物:

1)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.5 μg DNA。混匀。

2)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.6-2.5 μL Hieff Trans®脂质体核酸转染试剂。

 

Hieff Trans®脂质体核酸转染试剂稀释后室温孵育5 min(在30 min内同稀释的DNA 混合,保温时间过长会降低活性)

【注意】:即使脂质体核酸转染试剂使用OPTI-MEM 稀释,细胞也可以使用DMEM培养。如果DMEM作为脂质体核酸转染试剂的稀释液,必须在5 min内同稀释的DNA混合。

2. 混合稀释的DNA和稀释的脂质体核酸转染试剂(总体积100 µL),轻轻混匀,并在室温(15-25)孵育20 min,使得DNA-脂质体复合物形成。此时溶液可能会混浊,但不会影响转染。

【注意】DNA-脂质体复合物室温至少稳定保存5 h

3. 直接将100 µL DNA-Hieff Trans®复合物加入到细胞培养板每个孔中,摇动培养板,轻轻混匀。

【注意】:如果在无血清条件下转染,使用含血清的正常生长培养基进行细胞铺板。在加入复合物前移去生长培养基,替换为500 µL无血清培养基。

4. 375% CO2培养箱培养24-48 h,直至进行转基因表达分析,无需去掉复合物或更换培养基。然而,可能有必要在4-6 h后更换生长培养基,不会降低转染活性。

稳转细胞株:转染24 h后,按照1:10或更高比例在细胞中加入新鲜生长培养基,转染48 h后加入筛选培养基。

悬浮细胞株:在细胞中加入DNA-Hieff Trans®复合物后,如果需要可以4 h后加入PMA/PHA。对于Jurkat细胞,PHAPMA的终浓度分别为1 µg/mL50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

 

转染体系的调整

对于不同的细胞培养板,Hieff Trans®脂质体核酸转染试剂、DNA、细胞和培养基的使用量会有所不同,具体请参考下表(表一)。对于96 孔板培养,不需要提前一天进行细胞铺板,可以直接在平板中制备复合物,然后将细胞悬浮液加入到复合物就可以了,这样进一步减少了转染时间。这种改进步骤已经过293-H293-FCOS-7LCHO细胞的试验,同传统方法相比活性稍低。快捷的步骤和蛋白表达细胞系的高效转染使得脂质体核酸转染试剂非常适用于96 孔板的高通量转染,比如cDNA文库的筛选和蛋白瞬时表达。

表一 在不同的培养容器中转染,脂质体核酸转染试剂,核酸,细胞和培养基的用量

Culture vessel

Surf. area per well1

Shared reagents

DNA transfection

RNAi transfection

Vol. of plating medium

Vol. of dilution medium2

DNA

脂质体核酸转染试剂

RNA

脂质体核酸转染试剂

96-well

0.3 cm2

100 μL

2×25 μL

0.1 μg

0.2-0.5 μL

5 pmol

0.25 μL

24-well

2 cm2

500 μL

2×50 μL

0.5 μg

0.6-2.5 μL

20 pmol

1.0 μL

12-well

4 cm2

1 mL

2×100 μL

1 μg

2-4.5 μL

40 pmol

2.0 μL

6-well

10 cm2

2 mL

2×250 μL

2-4 μg

5-10 μL

100 pmol

5 μL

60-mm

20 cm2

5 mL

2×0.5 mL

4-8 μg

10-20 μL

200 pmol

10 μL

10-cm

60 cm2

15 mL

2×1.5 mL

12-24μg

30-60 μL

600 pmol

30 μL

1 不同厂商提供的细胞培养板表面积可能有所不同;

2 稀释DNARNAi所用的培养基体积。

【注】:该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。使用时DNAμg: Hieff Trans®μL)比值保持在1:0.5-1:5

 

相关产品

名称

货号

规格

价格(元)

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T

625.00

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml

40804ES76

500 μL

180.00

40804ES86

5×500 μL

500.00

Hieff Trans® Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

948.00

40805ES03

1.0 mL

1678.00

40805ES08

5×1 mL

5268.00

Hieff Trans® in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES02

0.5 mL

1472.00

40806ES03

1.0 mL

2572.00

Polyethylenimine Linear(PEI) MW25000 线性PEI转染试剂MW25000

40815ES03

1 g

1855.00

40815ES08

5×1 g

7255.00

Polyethylenimine Linear(PEI) MW40000rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

655.00

40816ES03

1 g

1855.00

HB220930

 

Q:脂质体转染的效率多少,毒性如何?

A:有些细胞如 293T293FT、Hela 等转染效率基本在85%以上;所有阳离子脂质体转染试剂对细胞都会存在一定的毒性,但是我们公司的转染试剂经过配方优化后其毒性大大降低,且转染效率也有进一步提升。

Q:转染试剂转染后需要换液吗?

A:对于换液可以区分两种情况;1、转染之前如果没有换液应在转染 6 小时左右后换液,以保证细胞生长所需营养,2、如果转染之前如果有换液,可以按照平时等到培养基出现营养不足时换液。

Q:转染试剂转单个质粒和多质粒共转的效率如何?

A:单转效率对于验证过的细胞效率都是很好,可以参考FAQ-验证过的细胞系,对于共转由于要涉及到质粒的混合比例和质粒与转染试剂的添加比例问题,因此具体的效率需要做相应的验证。

Q:转染试剂可以冻存吗?

A:不可以冻存,因为转染试剂是一种脂质体阳离子转染试剂,由于脂质体是不能在低温下冻存,因此转染试剂最好是 4 度储存,保持最好的转染效能。

Q:转染实验过程中是否需要更换成无血清培养基?

A:不需要,我们的转染试剂可以在含血清的介质中进行转染的过程。

Q:转染后需要进行终止反应吗?

A:不需要。脂质体复合物可以稳定存在 6 个小时。如果在进行转染前没有进行细胞换液,为了保证细胞正常生长所需的营养,需要在 4~6 小时后换用新的培养基。但如果转染之前已进行过换液则在脂质体转染后不需要进行再次换液。

Q:转染试剂毒性相比之前的批次大?

A:40802产品进行的工艺优化,纯度增高,相应的转染效率也随之变高,建议质粒与转染试剂的比例在1:2进行调整,一旦出现细胞死亡的现象,降低转染试剂比列。或者转染6h后进行换液。

Q: 它的大致成分和脂质体粒径,我们可以提供吗?

A: 提供不了粒径取决于客户的核酸和实验条件的 不是一个绝对值的。

Q:是稳转特制的转染试剂吗?若不是特制的转染试剂,那是特制的质粒才能进行稳转吗?

A:不是稳转特制的转染试剂,普通的转染试剂。质粒要求:稳转的质粒是普通的质粒,只是需要带有抗性,便于后期的筛选。建议:其中质粒转染受制于质粒大小、转染介质的限制,对很多细胞转染效率低,而且质粒整合入细胞基因组的效率极低,所以构建稳转株的成功率不高,请知悉,若做稳转细胞株,建议进行慢病毒包装(货号:41102)。

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF:54.908)
[2] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x(IF:27.401)
[3] Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14(7):720-728. doi:10.1038/nmeth.4306(IF:25.062)
[4] Zhang Q, He X, Yao S, et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 2021;49(8):4689-4704. doi:10.1093/nar/gkab228(IF:16.971)
[5] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626(IF:16.971)
[6] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Adv Sci (Weinh). 2022;9(8):e2104055. doi:10.1002/advs.202104055(IF:16.806)
[7] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874(IF:16.806)
[8] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817(IF:16.806)
[9] Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599-1612. doi:10.1080/15548627.2021.1994296(IF:16.016)
[10] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19(1):128. Published 2020 Aug 24. doi:10.1186/s12943-020-01246-x(IF:15.302)
[11] Huang K, Chen X, Li C, et al. Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol. 2021;17(12):1289-1295. doi:10.1038/s41589-021-00884-6(IF:15.040)
[12] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[13] Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun. 2022;13(1):597. Published 2022 Feb 1. doi:10.1038/s41467-022-28300-0(IF:14.919)
[14] Wu C, Wang C, Zheng J, et al. Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano. 2015;9(8):7913-7924. doi:10.1021/acsnano.5b01685(IF:12.881)
[15] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[16] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:12.121)
[17] Song L, Liu Z, Hu HH, et al. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020;11(1):5842. Published 2020 Nov 17. doi:10.1038/s41467-020-19694-w(IF:12.121)
[18] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[19] Du L, Xie Y, Zheng K, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication [published online ahead of print, 2021 Nov 26]. Redox Biol. 2021;48:102199. doi:10.1016/j.redox.2021.102199(IF:11.799)
[20] Cen M, Ouyang W, Zhang W, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936. doi:10.1016/j.redox.2021.101936(IF:11.799)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[22] Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-6292. Published 2021 Apr 15. doi:10.7150/thno.57455(IF:11.556)
[23] Hao Q, Li J, Zhang Q, et al. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med. 2021;11(8):e500. doi:10.1002/ctm2.500(IF:11.492)
[24] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[25] Liu Z, Chen S, Xie W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther. 2022;30(1):256-267. doi:10.1016/j.ymthe.2021.06.013(IF:11.454)
[26] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF:11.161)
[27] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1(IF:11.161)
[28] Chen P, Zhou J, Wan Y, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. Published 2020 Mar 25. doi:10.1186/s13059-020-01989-2(IF:10.806)
[29] Wu Y, Zhao Y, Huan L, et al. An LTR Retrotransposon-Derived Long Noncoding RNA lncMER52A Promotes Hepatocellular Carcinoma Progression by Binding p120-Catenin. Cancer Res. 2020;80(5):976-987. doi:10.1158/0008-5472.CAN-19-2115(IF:9.727)
[30] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[31] Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids. 2022;27:1156-1163. Published 2022 Jan 28. doi:10.1016/j.omtn.2022.01.019(IF:8.886)
[32] Jia J, Kang Q, Liu S, et al. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962-1977. doi:10.1111/bph.15769(IF:8.740)
[33] Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162-179. doi:10.1016/j.canlet.2020.08.033(IF:8.679)
[34] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[35] Hao Q, Chen J, Liao J, et al. p53 induces ARTS to promote mitochondrial apoptosis. Cell Death Dis. 2021;12(2):204. Published 2021 Feb 24. doi:10.1038/s41419-021-03463-8(IF:8.469)
[36] Zhu C, Zhang L, Zhao S, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. Published 2021 May 21. doi:10.1038/s41419-021-03798-2(IF:8.469)
[37] Liu J, Zang Y, Ma C, et al. Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis. 2022;13(3):268. Published 2022 Mar 25. doi:10.1038/s41419-022-04696-x(IF:8.469)
[38] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[39] Li W, Yang S, Xu P, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861. doi:10.1016/j.ebiom.2022.103861(IF:8.143)
[40] Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020;30(1):98-111.e5. doi:10.1016/j.celrep.2019.12.017(IF:8.109)
[41] Zhang K, Zhao X, Chen X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018;10(36):30081-30091. doi:10.1021/acsami.8b08449(IF:8.097)
[42] Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981-1997. doi:10.1038/s41418-019-0475-6(IF:8.086)
[43] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096-1114. Published 2019 Jan 30. doi:10.7150/thno.29673(IF:8.063)
[44] Ji P, Wu W, Chen S, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26(12):3444-3460.e5. doi:10.1016/j.celrep.2019.02.078(IF:7.815)
[45] Guo X, Xu X, Li T, et al. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol. 2021;12:749979. Published 2021 Sep 22. doi:10.3389/fimmu.2021.749979(IF:7.561)
[46] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[47] Feng C, Chen T, Mao D, Zhang F, Tian B, Zhu X. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020;5(10):3116-3123. doi:10.1021/acssensors.0c01166(IF:7.333)
[48] Jiang Y, Tong K, Yao R, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci. 2021;11(1):140. Published 2021 Jul 22. doi:10.1186/s13578-021-00644-y(IF:7.133)
[49] He T, Shen H, Wang S, et al. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. Mol Ther Nucleic Acids. 2020;22:572-583. Published 2020 Sep 26. doi:10.1016/j.omtn.2020.09.024(IF:7.032)
[50] Liu J, Xu W, Wang K, et al. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol. 2022;195:475-482. doi:10.1016/j.ijbiomac.2021.12.044(IF:6.953)
[51] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[52] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[53] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[54] Li Y, Zhang J, Li S, et al. Heterogeneous Nuclear Ribonucleoprotein A1 Loads Batched Tumor-Promoting MicroRNAs Into Small Extracellular Vesicles With the Assist of Caveolin-1 in A549 Cells. Front Cell Dev Biol. 2021;9:687912. Published 2021 Jun 17. doi:10.3389/fcell.2021.687912(IF:6.684)
[55] Huang Y, Xie B, Cao M, et al. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol. 2021;9:730538. Published 2021 Sep 21. doi:10.3389/fcell.2021.730538(IF:6.684)
[56] Liu WL, Guan Q, Wen D, et al. PRDM16 Inhibits Cell Proliferation and Migration via Epithelial-to-Mesenchymal Transition by Directly Targeting Pyruvate Carboxylase in Papillary Thyroid Cancer. Front Cell Dev Biol. 2021;9:723777. Published 2021 Nov 2. doi:10.3389/fcell.2021.723777(IF:6.684)
[57] Li F, Zhao H, Su M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine. 2019;45:208-219. doi:10.1016/j.ebiom.2019.06.017(IF:6.680)
[58] Li L, Zhang C, Wang P, et al. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem. 2019;91(6):3869-3876. doi:10.1021/acs.analchem.8b04292(IF:6.350)
[59] Meng J, Liu K, Shao Y, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11(2):137. Published 2020 Feb 20. doi:10.1038/s41419-020-2327-1(IF:6.304)
[60] Hao Q, Wang J, Chen Y, et al. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis. 2020;11(3):197. Published 2020 Mar 20. doi:10.1038/s41419-020-2393-4(IF:6.304)
[61] Han T, Tong J, Wang M, et al. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol. 2022;12:821366. Published 2022 Jun 3. doi:10.3389/fonc.2022.821366(IF:6.244)
[62] Cao G, Li P, He X, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021;11:649029. Published 2021 Jun 4. doi:10.3389/fonc.2021.649029(IF:6.244)
[63] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[64] Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol. 2021;13(2):141-150. doi:10.1093/jmcb/mjaa065(IF:6.216)
[65] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[66] Li J, Zhu D, Hu S, Nie Y. CRISPR-CasRx knock-in mice for RNA degradation [published online ahead of print, 2022 Apr 7]. Sci China Life Sci. 2022;10.1007/s11427-021-2059-5. doi:10.1007/s11427-021-2059-5(IF:6.038)
[67] Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci. 2021;64(8):1355-1367. doi:10.1007/s11427-020-1775-2(IF:6.038)
[68] Tao R, Shi M, Zou Y, et al. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med. 2018;121:26-37. doi:10.1016/j.freeradbiomed.2018.04.562(IF:6.020)
[69] Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019;10(10):737. Published 2019 Sep 30. doi:10.1038/s41419-019-1977-3(IF:5.959)
[70] Lu W, Wang Q, Xu C, et al. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 2021;23(1):129-139. doi:10.1016/j.neo.2020.11.013(IF:5.696)
[71] Zhou X, Jian W, Luo Q, et al. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY). 2022;14(7):3105-3128. doi:10.18632/aging.203996(IF:5.682)
[72] Ji C, Hu J, Wang X, et al. Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY). 2021;13(7):9627-9645. doi:10.18632/aging.202707(IF:5.682)
[73] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[74] Jin R, Gao Q, Yin C, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102(8):794-804. doi:10.1038/s41374-022-00773-z(IF:5.662)
[75] Wang X, Lu X, Wang P, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med. 2022;20(1):198. Published 2022 May 4. doi:10.1186/s12967-022-03399-3(IF:5.531)
[76] Zhang L, Li YM, Zeng XX, et al. Galectin-3- Mediated Transdifferentiation of Pulmonary Artery Endothelial Cells Contributes to Hypoxic Pulmonary Vascular Remodeling. Cell Physiol Biochem. 2018;51(2):763-777. doi:10.1159/000495331(IF:5.500)
[77] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[78] Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol. 2021;18(6):863-874. doi:10.1080/15476286.2020.1827193(IF:5.350)
[79] Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022;101:154133. doi:10.1016/j.phymed.2022.154133(IF:5.340)
[80] Jiang H, Song S, Li J, Yin Q, Hu S, Nie Y. Establishment and characterization of an immortalized epicardial cell line [published online ahead of print, 2021 Apr 6]. J Cell Mol Med. 2021;25(13):6070-6081. doi:10.1111/jcmm.16496(IF:5.310)
[81] Xu P, Tang J, He ZG. Induction of Endoplasmic Reticulum Stress by CdhM Mediates Apoptosis of Macrophage During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol. 2022;12:877265. Published 2022 Apr 4. doi:10.3389/fcimb.2022.877265(IF:5.293)
[82] Xu Y, Chen X, Zhao C, et al. MiR-99b-5p Attenuates Adipogenesis by Targeting SCD1 and Lpin1 in 3T3-L1 Cells. J Agric Food Chem. 2021;69(8):2564-2575. doi:10.1021/acs.jafc.0c07451(IF:5.279)
[83] Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021;384(2):353-366. doi:10.1007/s00441-021-03412-z(IF:5.249)
[84] Song L, Zhang L, Zhou Y, et al. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Discov. 2022;8(1):219. Published 2022 Apr 21. doi:10.1038/s41420-022-01023-3(IF:5.241)
[85] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[86] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[87] Sun H, Xu X, Luo J, et al. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis [published online ahead of print, 2022 Jun 17]. Neurosci Bull. 2022;10.1007/s12264-022-00893-y. doi:10.1007/s12264-022-00893-y(IF:5.203)
[88] Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466. doi:10.1016/j.jbc.2021.100466(IF:5.157)
[89] Ge H, Zhang D, Shi M, Lian X, Zhang Z. Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs. 2021;19(2):79. Published 2021 Jan 31. doi:10.3390/md19020079(IF:5.118)
[90] Zhang Y, Wang Q, Wang Z, et al. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne). 2021;8:739624. Published 2021 Nov 11. doi:10.3389/fmed.2021.739624(IF:5.093)
[91] Li Y, Feng R, Yu X, et al. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma [published correction appears in Life Sci. 2022 Jun 1;298:120493]. Life Sci. 2022;296:120447. doi:10.1016/j.lfs.2022.120447(IF:5.037)
[92] Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690. doi:10.1007/s13402-019-00455-x(IF:5.020)
[93] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[94] Li X, Yu H, Liang L, et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097. doi:10.1016/j.bcp.2020.114097(IF:4.960)
[95] Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. Published 2022 Apr 14. doi:10.3390/biom12040575(IF:4.879)
[96] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[97] Wang Y, Zhao L, Han X, et al. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol. 2020;9:1487. Published 2020 Jan 28. doi:10.3389/fonc.2019.01487(IF:4.848)
[98] Wang X, Lu B, Dai C, et al. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol. 2020;10:46. Published 2020 Feb 3. doi:10.3389/fonc.2020.00046(IF:4.848)
[99] Li P, Cao G, Zhang Y, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020;12(1):53-69. doi:10.18632/aging.102564(IF:4.831)
[100] Wang S, Hao Q, Li J, et al. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis. 2020;9(3):705-716. Published 2020 Nov 21. doi:10.1016/j.gendis.2020.11.007(IF:4.803)
[101] Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. J Immunol. 2019;203(11):3023-3036. doi:10.4049/jimmunol.1900556(IF:4.718)
[102] Zhang D, Liu R, Bao C, et al. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjug Chem. 2019;30(1):184-191. doi:10.1021/acs.bioconjchem.8b00827(IF:4.485)
[103] Zhou Y, Zhang S, Min Z, Yu Z, Zhang H, Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer. 2021;21(1):1085. Published 2021 Oct 7. doi:10.1186/s12885-021-08779-4(IF:4.430)
[104] Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 2019;21(4):e12984. doi:10.1111/cmi.12984(IF:4.410)
[105] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[106] Papadaki S, Wang X, Wang Y, et al. Dual-expression system for blue fluorescent protein optimization. Sci Rep. 2022;12(1):10190. Published 2022 Jun 17. doi:10.1038/s41598-022-13214-0(IF:4.380)
[107] Cai J, Huang H, Hu X, et al. Homoharringtonine Synergized with Gilteritinib Results in the Downregulation of Myeloid Cell Leukemia-1 by Upregulating UBE2L6 in FLT3-ITD-Mutant Acute Myeloid (Leukemia) Cell Lines. J Oncol. 2021;2021:3766428. Published 2021 Sep 21. doi:10.1155/2021/3766428(IF:4.375)
[108] Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett. 2021;351:53-64. doi:10.1016/j.toxlet.2021.08.010(IF:4.374)
[109] Jin YY, Lin H, Cao L, et al. A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery. Virol Sin. 2021;36(5):913-923. doi:10.1007/s12250-021-00385-9(IF:4.327)
[110] Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med. 2018;22(6):3167-3182. doi:10.1111/jcmm.13597(IF:4.302)
[111] Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells [published online ahead of print, 2022 Apr 11]. J Genet Genomics. 2022;S1673-8527(22)00088-1. doi:10.1016/j.jgg.2022.03.007(IF:4.275)
[112] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep. 2017;7(1):17597. Published 2017 Dec 14. doi:10.1038/s41598-017-17604-7(IF:4.259)
[113] Wang XY, Zhu BR, Jia Q, Li YM, Wang T, Wang HY. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J Agric Food Chem. 2020;68(45):12617-12630. doi:10.1021/acs.jafc.0c04898(IF:4.192)
[114] Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther. 2021;15:5135-5150. Published 2021 Dec 24. doi:10.2147/DDDT.S344052(IF:4.162)
[115] Liu J, Zhou J, Zhou J, et al. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology. 2020;444:152581. doi:10.1016/j.tox.2020.152581(IF:4.099)
[116] Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. Published 2021 Feb 15. (IF:4.060)
[117] Wang Q, Zhang Q, Luan S, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315. doi:10.1016/j.bioorg.2019.103315(IF:3.926)
[118] Yang KY, Wu CR, Zheng MZ, et al. Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorg Chem. 2019;92:103186. doi:10.1016/j.bioorg.2019.103186(IF:3.926)
[119] Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway [retracted in:  J Cell Physiol. 2022 Apr;237(4):2296]. J Cell Physiol. 2019;234(2):1442-1451. doi:10.1002/jcp.26950(IF:3.923)
[120] Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol. 2019;234(4):4840-4850. doi:10.1002/jcp.27282(IF:3.923)
[121] Chen L, Liu H, Ji Y, et al. Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res. 2022;415(2):113138. doi:10.1016/j.yexcr.2022.113138(IF:3.905)
[122] Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses. 2019;11(2):99. Published 2019 Jan 24. doi:10.3390/v11020099(IF:3.811)
[123] Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther. 2022;36(4):605-618. doi:10.1007/s10557-021-07182-2(IF:3.727)
[124] Yang Y, Xiang K, Sun D, et al. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1 [published correction appears in Bioorg Med Chem. 2022 Mar 15;58:116655]. Bioorg Med Chem. 2021;36:116095. doi:10.1016/j.bmc.2021.116095(IF:3.641)
[125] Wang C, Su L, Shao YM, et al. Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B. Toxicol Appl Pharmacol. 2019;384:114775. doi:10.1016/j.taap.2019.114775(IF:3.585)
[126] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[127] Hu S, Ouyang J, Zheng G, et al. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun. 2022;615:163-171. doi:10.1016/j.bbrc.2022.05.046(IF:3.575)
[128] Meng J, Zhang C, Wang D, Zhu L, Wang L. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2 [published online ahead of print, 2022 Jun 28]. Biochem Biophys Res Commun. 2022;621:1-7. doi:10.1016/j.bbrc.2022.06.092(IF:3.575)
[129] Wang HD, Guo LJ, Feng ZQ, et al. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis. 2020;15(1):240. Published 2020 Sep 9. doi:10.1186/s13023-020-01492-8(IF:3.523)
[130] Li P, Jin Y, Qi F, et al. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol. 2018;8:113. Published 2018 Apr 9. doi:10.3389/fcimb.2018.00113(IF:3.520)
[131] Wang Z, Wu J, Jiang J, et al. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. Allergy Asthma Clin Immunol. 2022;18(1):55. Published 2022 Jun 19. doi:10.1186/s13223-022-00697-9(IF:3.406)
[132] Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice [published correction appears in Neuroscience. 2018 May 9;:]. Neuroscience. 2018;374:61-69. doi:10.1016/j.neuroscience.2018.01.040(IF:3.382)
[133] Yang J, Shen Y, Yang X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350-F1358. doi:10.1152/ajprenal.00254.2019(IF:3.323)
[134] Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi:10.1016/j.virusres.2021.198594(IF:3.303)
[135] Luo L, Zhu D, Huang R, et al. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019;87:62-72. doi:10.1016/j.fsi.2018.12.078(IF:3.298)
[136] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[137] Li F, Su M, Zhao H, et al. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res. 2019;11(11):7035-7048. Published 2019 Nov 15. (IF:3.266)
[138] Sun H, Han L, Zhang X, et al. Case Report: Characterization of a Novel NONO Intronic Mutation in a Fetus With X-Linked Syndromic Mental Retardation-34. Front Genet. 2020;11:593688. Published 2020 Nov 16. doi:10.3389/fgene.2020.593688(IF:3.260)
[139] Li Y, Zhu T, Yang H, et al. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain. 2018;14:1744806918782229. doi:10.1177/1744806918782229(IF:3.205)
[140] Zhu D, Huang R, Chen L, et al. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019;86:335-346. doi:10.1016/j.fsi.2018.11.057(IF:3.185)
[141] Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. Environ Toxicol. 2021;36(2):267-275. doi:10.1002/tox.23032(IF:3.118)
[142] Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett. 2019;17(2):2131-2140. doi:10.3892/ol.2018.9862(IF:2.967)
[143] Zhou XM, Liu J, Wang Y, et al. microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats [published online ahead of print, 2018 Jan 27] [retracted in:  J Cell Biochem. 2021 Nov;122 Suppl 1:S92]. J Cell Biochem. 2018;10.1002/jcb.26704. doi:10.1002/jcb.26704(IF:2.959)
[144] Zhu C, Song Z, Chen Z, et al. MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol (Amst). 2022;2022:4213401. Published 2022 May 19. doi:10.1155/2022/4213401(IF:2.916)
[145] Wang X, Ye M, Wu M, et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol. 2020;22(9):1506-1516. doi:10.1007/s12094-020-02286-x(IF:2.737)
[146] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[147] Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. J Healthc Eng. 2022;2022:2373580. Published 2022 Jan 6. doi:10.1155/2022/2373580(IF:2.682)
[148] Zhe J, Chen S, Chen X, et al. A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. Published 2019 Jul 6. doi:10.1186/s13048-019-0537-x(IF:2.469)
[149] Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42-54.e3. doi:10.1016/j.exphem.2018.10.011(IF:2.436)
[150] Yu T, Ling Q, Xu M, et al. ORF8 protein of SARS-CoV-2 reduces male fertility in mice. J Med Virol. 2022;94(9):4193-4205. doi:10.1002/jmv.27855(IF:2.327)
[151] Dai Y, Nie J, Luo Z, Nie D. Expression profile analysis of a new testis-specifically expressed gene C17ORF64 and its association with cell apoptosis in MCF-7 cells. Mol Biol Rep. 2021;48(2):1521-1529. doi:10.1007/s11033-021-06191-6(IF:2.316)
[152] Jiang T, Zhou B, Li YM, Yang QY, Tu KJ, Li LY. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol Lett. 2020;20(2):1360-1368. doi:10.3892/ol.2020.11641(IF:2.311)
[153] Wei P, Guo J, Xue W, Zhao Y, Yang J, Wang J. RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1038-1046. doi:10.1093/abbs/gmy106(IF:2.224)
[154] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[155] Gao X, Peng S, Mei S, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324. doi:10.1080/10826068.2021.1941106(IF:2.162)
[156] Li H, Dai Y, Luo Z, Nie D. Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells. Mol Biol Rep. 2019;46(2):2029-2038. doi:10.1007/s11033-019-04651-8(IF:2.107)
[157] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi:10.1016/j.leukres.2019.106198(IF:2.066)
[158] Qiu C, Li C, Tong X, et al. A novel TSC1 frameshift mutation c.1550_1551del causes tuberous sclerosis complex by aberrant splicing and nonsense-mediated mRNA degradation (NMD) simultaneously in a Chinese family. Mol Genet Genomic Med. 2020;8(10):e1410. doi:10.1002/mgg3.1410(IF:1.995)
[159] Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit. 2018;24:7499-7507. Published 2018 Oct 21. doi:10.12659/MSM.910265(IF:1.894)
[160] Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit. 2018;24:7451-7458. Published 2018 Oct 19. doi:10.12659/MSM.910229(IF:1.894)
[161] Li B, Zhang J, Su Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep. 2019;20(4):3793-3801. doi:10.3892/mmr.2019.10617(IF:1.851)
[162] Gao X, Liang K, Mei S, Peng S, Vong EG, Zhan J. An efficient system to generate truncated human angiotensin converting enzyme 2 (hACE2) capable of binding RBD and spike protein of SARS-CoV2. Protein Expr Purif. 2021;184:105889. doi:10.1016/j.pep.2021.105889(IF:1.650)
[163] Deng J, Li D, Mei H, Tang L, Wang HF, Hu Y. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency. BMC Med Genet. 2020;21(1):9. Published 2020 Jan 8. doi:10.1186/s12881-019-0944-2(IF:1.585)
[164] Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett. 2016;12(5):4061-4067. doi:10.3892/ol.2016.5127(IF:1.482)
[165] Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol. 2020;155:295-319. doi:10.1016/bs.mcb.2019.11.008(IF:1.441)
[166] Chen X, Lin Z, Hu J, et al. Report of Two Novel Thalassemia Variants, HBB: c.181delG and HBA1: c.121_126delAAGACC, in Chinese Individuals. Hemoglobin. 2021;45(1):52-55. doi:10.1080/03630269.2021.1883646(IF:0.849)
[167] Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. Int J Clin Exp Pathol. 2020;13(12):3083-3091. Published 2020 Dec 1. (IF:0.252)
[168] Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing [published online ahead of print, 2022 Jun 16]. J Clin Endocrinol Metab. 2022;dgac368. doi:10.1210/clinem/dgac368(IF:0.000)
[169] Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep. 2021;9(12):e05166. Published 2021 Dec 9. doi:10.1002/ccr3.5166(IF:0.000)

产品描述

Hieff Trans®脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNARNA和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸Hieff Trans®复合物或更换新鲜培养基,也可在46小时后除去。

Hieff Trans®脂质体核酸转染试剂以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5 μL左右,则1 mL 约可做660 次转染;对于6孔板,每次用6 μL左右,则1 mL约可做160 次转染

 

运输与保存方法

冰袋(wet ice)运输。产品2-8ºC保存,一年有效。不可冷冻!

 

注意事项

1. Hieff Trans®脂质体核酸转染试剂要求细胞铺板密度较高,以60%-80%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响具体铺板密度需要预实验摸索;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。

2. Hieff Trans®脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM就不相容。

3. 转染的时候培养基中不能添加抗生素。

4. 使用高纯度的DNARNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。

5. 阳离子脂质体应该在2-8ºC保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。

6. 初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 µg DNA1-1.5 µL 转染试剂。通过调整DNA/Hieff Trans®脂质体核酸转染试剂比例优化转染效率,DNAμg: 试剂μL)比值在1:0.5-1:5

7. 本产品仅作科研用途!

 

操作流程(以24孔板为例,其他培养板加样体积请参考表一) 

【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。

贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为70-95%0.5-2 × 105 cells/well for a 24-well plate)。

悬浮细胞:转染当天,配制DNA复合物之前,24孔板中细胞铺板,每500 µL生长培养基(不含抗生素)中加入4-8 × 105 cells

1. 按照以下体系配制DNA-Hieff Trans®脂质体核酸转染试剂复合物:

1)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.5 μg DNA。混匀。

2)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.6-2.5 μL Hieff Trans®脂质体核酸转染试剂。

 

Hieff Trans®脂质体核酸转染试剂稀释后室温孵育5 min(在30 min内同稀释的DNA 混合,保温时间过长会降低活性)

【注意】:即使脂质体核酸转染试剂使用OPTI-MEM 稀释,细胞也可以使用DMEM培养。如果DMEM作为脂质体核酸转染试剂的稀释液,必须在5 min内同稀释的DNA混合。

2. 混合稀释的DNA和稀释的脂质体核酸转染试剂(总体积100 µL),轻轻混匀,并在室温(15-25)孵育20 min,使得DNA-脂质体复合物形成。此时溶液可能会混浊,但不会影响转染。

【注意】DNA-脂质体复合物室温至少稳定保存5 h

3. 直接将100 µL DNA-Hieff Trans®复合物加入到细胞培养板每个孔中,摇动培养板,轻轻混匀。

【注意】:如果在无血清条件下转染,使用含血清的正常生长培养基进行细胞铺板。在加入复合物前移去生长培养基,替换为500 µL无血清培养基。

4. 375% CO2培养箱培养24-48 h,直至进行转基因表达分析,无需去掉复合物或更换培养基。然而,可能有必要在4-6 h后更换生长培养基,不会降低转染活性。

稳转细胞株:转染24 h后,按照1:10或更高比例在细胞中加入新鲜生长培养基,转染48 h后加入筛选培养基。

悬浮细胞株:在细胞中加入DNA-Hieff Trans®复合物后,如果需要可以4 h后加入PMA/PHA。对于Jurkat细胞,PHAPMA的终浓度分别为1 µg/mL50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

 

转染体系的调整

对于不同的细胞培养板,Hieff Trans®脂质体核酸转染试剂、DNA、细胞和培养基的使用量会有所不同,具体请参考下表(表一)。对于96 孔板培养,不需要提前一天进行细胞铺板,可以直接在平板中制备复合物,然后将细胞悬浮液加入到复合物就可以了,这样进一步减少了转染时间。这种改进步骤已经过293-H293-FCOS-7LCHO细胞的试验,同传统方法相比活性稍低。快捷的步骤和蛋白表达细胞系的高效转染使得脂质体核酸转染试剂非常适用于96 孔板的高通量转染,比如cDNA文库的筛选和蛋白瞬时表达。

表一 在不同的培养容器中转染,脂质体核酸转染试剂,核酸,细胞和培养基的用量

Culture vessel

Surf. area per well1

Shared reagents

DNA transfection

RNAi transfection

Vol. of plating medium

Vol. of dilution medium2

DNA

脂质体核酸转染试剂

RNA

脂质体核酸转染试剂

96-well

0.3 cm2

100 μL

2×25 μL

0.1 μg

0.2-0.5 μL

5 pmol

0.25 μL

24-well

2 cm2

500 μL

2×50 μL

0.5 μg

0.6-2.5 μL

20 pmol

1.0 μL

12-well

4 cm2

1 mL

2×100 μL

1 μg

2-4.5 μL

40 pmol

2.0 μL

6-well

10 cm2

2 mL

2×250 μL

2-4 μg

5-10 μL

100 pmol

5 μL

60-mm

20 cm2

5 mL

2×0.5 mL

4-8 μg

10-20 μL

200 pmol

10 μL

10-cm

60 cm2

15 mL

2×1.5 mL

12-24μg

30-60 μL

600 pmol

30 μL

1 不同厂商提供的细胞培养板表面积可能有所不同;

2 稀释DNARNAi所用的培养基体积。

【注】:该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。使用时DNAμg: Hieff Trans®μL)比值保持在1:0.5-1:5

 

相关产品

名称

货号

规格

价格(元)

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T

625.00

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml

40804ES76

500 μL

180.00

40804ES86

5×500 μL

500.00

Hieff Trans® Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

948.00

40805ES03

1.0 mL

1678.00

40805ES08

5×1 mL

5268.00

Hieff Trans® in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES02

0.5 mL

1472.00

40806ES03

1.0 mL

2572.00

Polyethylenimine Linear(PEI) MW25000 线性PEI转染试剂MW25000

40815ES03

1 g

1855.00

40815ES08

5×1 g

7255.00

Polyethylenimine Linear(PEI) MW40000rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

655.00

40816ES03

1 g

1855.00

HB220930

 

Q:脂质体转染的效率多少,毒性如何?

A:有些细胞如 293T293FT、Hela 等转染效率基本在85%以上;所有阳离子脂质体转染试剂对细胞都会存在一定的毒性,但是我们公司的转染试剂经过配方优化后其毒性大大降低,且转染效率也有进一步提升。

Q:转染试剂转染后需要换液吗?

A:对于换液可以区分两种情况;1、转染之前如果没有换液应在转染 6 小时左右后换液,以保证细胞生长所需营养,2、如果转染之前如果有换液,可以按照平时等到培养基出现营养不足时换液。

Q:转染试剂转单个质粒和多质粒共转的效率如何?

A:单转效率对于验证过的细胞效率都是很好,可以参考FAQ-验证过的细胞系,对于共转由于要涉及到质粒的混合比例和质粒与转染试剂的添加比例问题,因此具体的效率需要做相应的验证。

Q:转染试剂可以冻存吗?

A:不可以冻存,因为转染试剂是一种脂质体阳离子转染试剂,由于脂质体是不能在低温下冻存,因此转染试剂最好是 4 度储存,保持最好的转染效能。

Q:转染实验过程中是否需要更换成无血清培养基?

A:不需要,我们的转染试剂可以在含血清的介质中进行转染的过程。

Q:转染后需要进行终止反应吗?

A:不需要。脂质体复合物可以稳定存在 6 个小时。如果在进行转染前没有进行细胞换液,为了保证细胞正常生长所需的营养,需要在 4~6 小时后换用新的培养基。但如果转染之前已进行过换液则在脂质体转染后不需要进行再次换液。

Q:转染试剂毒性相比之前的批次大?

A:40802产品进行的工艺优化,纯度增高,相应的转染效率也随之变高,建议质粒与转染试剂的比例在1:2进行调整,一旦出现细胞死亡的现象,降低转染试剂比列。或者转染6h后进行换液。

Q: 它的大致成分和脂质体粒径,我们可以提供吗?

A: 提供不了粒径取决于客户的核酸和实验条件的 不是一个绝对值的。

Q:是稳转特制的转染试剂吗?若不是特制的转染试剂,那是特制的质粒才能进行稳转吗?

A:不是稳转特制的转染试剂,普通的转染试剂。质粒要求:稳转的质粒是普通的质粒,只是需要带有抗性,便于后期的筛选。建议:其中质粒转染受制于质粒大小、转染介质的限制,对很多细胞转染效率低,而且质粒整合入细胞基因组的效率极低,所以构建稳转株的成功率不高,请知悉,若做稳转细胞株,建议进行慢病毒包装(货号:41102)。

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF:54.908)
[2] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x(IF:27.401)
[3] Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14(7):720-728. doi:10.1038/nmeth.4306(IF:25.062)
[4] Zhang Q, He X, Yao S, et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 2021;49(8):4689-4704. doi:10.1093/nar/gkab228(IF:16.971)
[5] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626(IF:16.971)
[6] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Adv Sci (Weinh). 2022;9(8):e2104055. doi:10.1002/advs.202104055(IF:16.806)
[7] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874(IF:16.806)
[8] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817(IF:16.806)
[9] Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599-1612. doi:10.1080/15548627.2021.1994296(IF:16.016)
[10] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19(1):128. Published 2020 Aug 24. doi:10.1186/s12943-020-01246-x(IF:15.302)
[11] Huang K, Chen X, Li C, et al. Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol. 2021;17(12):1289-1295. doi:10.1038/s41589-021-00884-6(IF:15.040)
[12] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[13] Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun. 2022;13(1):597. Published 2022 Feb 1. doi:10.1038/s41467-022-28300-0(IF:14.919)
[14] Wu C, Wang C, Zheng J, et al. Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano. 2015;9(8):7913-7924. doi:10.1021/acsnano.5b01685(IF:12.881)
[15] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[16] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:12.121)
[17] Song L, Liu Z, Hu HH, et al. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020;11(1):5842. Published 2020 Nov 17. doi:10.1038/s41467-020-19694-w(IF:12.121)
[18] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[19] Du L, Xie Y, Zheng K, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication [published online ahead of print, 2021 Nov 26]. Redox Biol. 2021;48:102199. doi:10.1016/j.redox.2021.102199(IF:11.799)
[20] Cen M, Ouyang W, Zhang W, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936. doi:10.1016/j.redox.2021.101936(IF:11.799)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[22] Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-6292. Published 2021 Apr 15. doi:10.7150/thno.57455(IF:11.556)
[23] Hao Q, Li J, Zhang Q, et al. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med. 2021;11(8):e500. doi:10.1002/ctm2.500(IF:11.492)
[24] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[25] Liu Z, Chen S, Xie W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther. 2022;30(1):256-267. doi:10.1016/j.ymthe.2021.06.013(IF:11.454)
[26] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF:11.161)
[27] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1(IF:11.161)
[28] Chen P, Zhou J, Wan Y, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. Published 2020 Mar 25. doi:10.1186/s13059-020-01989-2(IF:10.806)
[29] Wu Y, Zhao Y, Huan L, et al. An LTR Retrotransposon-Derived Long Noncoding RNA lncMER52A Promotes Hepatocellular Carcinoma Progression by Binding p120-Catenin. Cancer Res. 2020;80(5):976-987. doi:10.1158/0008-5472.CAN-19-2115(IF:9.727)
[30] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[31] Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids. 2022;27:1156-1163. Published 2022 Jan 28. doi:10.1016/j.omtn.2022.01.019(IF:8.886)
[32] Jia J, Kang Q, Liu S, et al. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962-1977. doi:10.1111/bph.15769(IF:8.740)
[33] Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162-179. doi:10.1016/j.canlet.2020.08.033(IF:8.679)
[34] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[35] Hao Q, Chen J, Liao J, et al. p53 induces ARTS to promote mitochondrial apoptosis. Cell Death Dis. 2021;12(2):204. Published 2021 Feb 24. doi:10.1038/s41419-021-03463-8(IF:8.469)
[36] Zhu C, Zhang L, Zhao S, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. Published 2021 May 21. doi:10.1038/s41419-021-03798-2(IF:8.469)
[37] Liu J, Zang Y, Ma C, et al. Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis. 2022;13(3):268. Published 2022 Mar 25. doi:10.1038/s41419-022-04696-x(IF:8.469)
[38] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[39] Li W, Yang S, Xu P, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861. doi:10.1016/j.ebiom.2022.103861(IF:8.143)
[40] Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020;30(1):98-111.e5. doi:10.1016/j.celrep.2019.12.017(IF:8.109)
[41] Zhang K, Zhao X, Chen X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018;10(36):30081-30091. doi:10.1021/acsami.8b08449(IF:8.097)
[42] Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981-1997. doi:10.1038/s41418-019-0475-6(IF:8.086)
[43] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096-1114. Published 2019 Jan 30. doi:10.7150/thno.29673(IF:8.063)
[44] Ji P, Wu W, Chen S, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26(12):3444-3460.e5. doi:10.1016/j.celrep.2019.02.078(IF:7.815)
[45] Guo X, Xu X, Li T, et al. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol. 2021;12:749979. Published 2021 Sep 22. doi:10.3389/fimmu.2021.749979(IF:7.561)
[46] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[47] Feng C, Chen T, Mao D, Zhang F, Tian B, Zhu X. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020;5(10):3116-3123. doi:10.1021/acssensors.0c01166(IF:7.333)
[48] Jiang Y, Tong K, Yao R, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci. 2021;11(1):140. Published 2021 Jul 22. doi:10.1186/s13578-021-00644-y(IF:7.133)
[49] He T, Shen H, Wang S, et al. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. Mol Ther Nucleic Acids. 2020;22:572-583. Published 2020 Sep 26. doi:10.1016/j.omtn.2020.09.024(IF:7.032)
[50] Liu J, Xu W, Wang K, et al. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol. 2022;195:475-482. doi:10.1016/j.ijbiomac.2021.12.044(IF:6.953)
[51] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[52] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[53] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[54] Li Y, Zhang J, Li S, et al. Heterogeneous Nuclear Ribonucleoprotein A1 Loads Batched Tumor-Promoting MicroRNAs Into Small Extracellular Vesicles With the Assist of Caveolin-1 in A549 Cells. Front Cell Dev Biol. 2021;9:687912. Published 2021 Jun 17. doi:10.3389/fcell.2021.687912(IF:6.684)
[55] Huang Y, Xie B, Cao M, et al. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol. 2021;9:730538. Published 2021 Sep 21. doi:10.3389/fcell.2021.730538(IF:6.684)
[56] Liu WL, Guan Q, Wen D, et al. PRDM16 Inhibits Cell Proliferation and Migration via Epithelial-to-Mesenchymal Transition by Directly Targeting Pyruvate Carboxylase in Papillary Thyroid Cancer. Front Cell Dev Biol. 2021;9:723777. Published 2021 Nov 2. doi:10.3389/fcell.2021.723777(IF:6.684)
[57] Li F, Zhao H, Su M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine. 2019;45:208-219. doi:10.1016/j.ebiom.2019.06.017(IF:6.680)
[58] Li L, Zhang C, Wang P, et al. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem. 2019;91(6):3869-3876. doi:10.1021/acs.analchem.8b04292(IF:6.350)
[59] Meng J, Liu K, Shao Y, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11(2):137. Published 2020 Feb 20. doi:10.1038/s41419-020-2327-1(IF:6.304)
[60] Hao Q, Wang J, Chen Y, et al. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis. 2020;11(3):197. Published 2020 Mar 20. doi:10.1038/s41419-020-2393-4(IF:6.304)
[61] Han T, Tong J, Wang M, et al. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol. 2022;12:821366. Published 2022 Jun 3. doi:10.3389/fonc.2022.821366(IF:6.244)
[62] Cao G, Li P, He X, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021;11:649029. Published 2021 Jun 4. doi:10.3389/fonc.2021.649029(IF:6.244)
[63] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[64] Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol. 2021;13(2):141-150. doi:10.1093/jmcb/mjaa065(IF:6.216)
[65] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[66] Li J, Zhu D, Hu S, Nie Y. CRISPR-CasRx knock-in mice for RNA degradation [published online ahead of print, 2022 Apr 7]. Sci China Life Sci. 2022;10.1007/s11427-021-2059-5. doi:10.1007/s11427-021-2059-5(IF:6.038)
[67] Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci. 2021;64(8):1355-1367. doi:10.1007/s11427-020-1775-2(IF:6.038)
[68] Tao R, Shi M, Zou Y, et al. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med. 2018;121:26-37. doi:10.1016/j.freeradbiomed.2018.04.562(IF:6.020)
[69] Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019;10(10):737. Published 2019 Sep 30. doi:10.1038/s41419-019-1977-3(IF:5.959)
[70] Lu W, Wang Q, Xu C, et al. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 2021;23(1):129-139. doi:10.1016/j.neo.2020.11.013(IF:5.696)
[71] Zhou X, Jian W, Luo Q, et al. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY). 2022;14(7):3105-3128. doi:10.18632/aging.203996(IF:5.682)
[72] Ji C, Hu J, Wang X, et al. Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY). 2021;13(7):9627-9645. doi:10.18632/aging.202707(IF:5.682)
[73] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[74] Jin R, Gao Q, Yin C, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102(8):794-804. doi:10.1038/s41374-022-00773-z(IF:5.662)
[75] Wang X, Lu X, Wang P, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med. 2022;20(1):198. Published 2022 May 4. doi:10.1186/s12967-022-03399-3(IF:5.531)
[76] Zhang L, Li YM, Zeng XX, et al. Galectin-3- Mediated Transdifferentiation of Pulmonary Artery Endothelial Cells Contributes to Hypoxic Pulmonary Vascular Remodeling. Cell Physiol Biochem. 2018;51(2):763-777. doi:10.1159/000495331(IF:5.500)
[77] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[78] Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol. 2021;18(6):863-874. doi:10.1080/15476286.2020.1827193(IF:5.350)
[79] Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022;101:154133. doi:10.1016/j.phymed.2022.154133(IF:5.340)
[80] Jiang H, Song S, Li J, Yin Q, Hu S, Nie Y. Establishment and characterization of an immortalized epicardial cell line [published online ahead of print, 2021 Apr 6]. J Cell Mol Med. 2021;25(13):6070-6081. doi:10.1111/jcmm.16496(IF:5.310)
[81] Xu P, Tang J, He ZG. Induction of Endoplasmic Reticulum Stress by CdhM Mediates Apoptosis of Macrophage During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol. 2022;12:877265. Published 2022 Apr 4. doi:10.3389/fcimb.2022.877265(IF:5.293)
[82] Xu Y, Chen X, Zhao C, et al. MiR-99b-5p Attenuates Adipogenesis by Targeting SCD1 and Lpin1 in 3T3-L1 Cells. J Agric Food Chem. 2021;69(8):2564-2575. doi:10.1021/acs.jafc.0c07451(IF:5.279)
[83] Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021;384(2):353-366. doi:10.1007/s00441-021-03412-z(IF:5.249)
[84] Song L, Zhang L, Zhou Y, et al. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Discov. 2022;8(1):219. Published 2022 Apr 21. doi:10.1038/s41420-022-01023-3(IF:5.241)
[85] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[86] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[87] Sun H, Xu X, Luo J, et al. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis [published online ahead of print, 2022 Jun 17]. Neurosci Bull. 2022;10.1007/s12264-022-00893-y. doi:10.1007/s12264-022-00893-y(IF:5.203)
[88] Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466. doi:10.1016/j.jbc.2021.100466(IF:5.157)
[89] Ge H, Zhang D, Shi M, Lian X, Zhang Z. Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs. 2021;19(2):79. Published 2021 Jan 31. doi:10.3390/md19020079(IF:5.118)
[90] Zhang Y, Wang Q, Wang Z, et al. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne). 2021;8:739624. Published 2021 Nov 11. doi:10.3389/fmed.2021.739624(IF:5.093)
[91] Li Y, Feng R, Yu X, et al. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma [published correction appears in Life Sci. 2022 Jun 1;298:120493]. Life Sci. 2022;296:120447. doi:10.1016/j.lfs.2022.120447(IF:5.037)
[92] Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690. doi:10.1007/s13402-019-00455-x(IF:5.020)
[93] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[94] Li X, Yu H, Liang L, et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097. doi:10.1016/j.bcp.2020.114097(IF:4.960)
[95] Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. Published 2022 Apr 14. doi:10.3390/biom12040575(IF:4.879)
[96] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[97] Wang Y, Zhao L, Han X, et al. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol. 2020;9:1487. Published 2020 Jan 28. doi:10.3389/fonc.2019.01487(IF:4.848)
[98] Wang X, Lu B, Dai C, et al. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol. 2020;10:46. Published 2020 Feb 3. doi:10.3389/fonc.2020.00046(IF:4.848)
[99] Li P, Cao G, Zhang Y, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020;12(1):53-69. doi:10.18632/aging.102564(IF:4.831)
[100] Wang S, Hao Q, Li J, et al. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis. 2020;9(3):705-716. Published 2020 Nov 21. doi:10.1016/j.gendis.2020.11.007(IF:4.803)
[101] Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. J Immunol. 2019;203(11):3023-3036. doi:10.4049/jimmunol.1900556(IF:4.718)
[102] Zhang D, Liu R, Bao C, et al. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjug Chem. 2019;30(1):184-191. doi:10.1021/acs.bioconjchem.8b00827(IF:4.485)
[103] Zhou Y, Zhang S, Min Z, Yu Z, Zhang H, Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer. 2021;21(1):1085. Published 2021 Oct 7. doi:10.1186/s12885-021-08779-4(IF:4.430)
[104] Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 2019;21(4):e12984. doi:10.1111/cmi.12984(IF:4.410)
[105] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[106] Papadaki S, Wang X, Wang Y, et al. Dual-expression system for blue fluorescent protein optimization. Sci Rep. 2022;12(1):10190. Published 2022 Jun 17. doi:10.1038/s41598-022-13214-0(IF:4.380)
[107] Cai J, Huang H, Hu X, et al. Homoharringtonine Synergized with Gilteritinib Results in the Downregulation of Myeloid Cell Leukemia-1 by Upregulating UBE2L6 in FLT3-ITD-Mutant Acute Myeloid (Leukemia) Cell Lines. J Oncol. 2021;2021:3766428. Published 2021 Sep 21. doi:10.1155/2021/3766428(IF:4.375)
[108] Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett. 2021;351:53-64. doi:10.1016/j.toxlet.2021.08.010(IF:4.374)
[109] Jin YY, Lin H, Cao L, et al. A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery. Virol Sin. 2021;36(5):913-923. doi:10.1007/s12250-021-00385-9(IF:4.327)
[110] Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med. 2018;22(6):3167-3182. doi:10.1111/jcmm.13597(IF:4.302)
[111] Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells [published online ahead of print, 2022 Apr 11]. J Genet Genomics. 2022;S1673-8527(22)00088-1. doi:10.1016/j.jgg.2022.03.007(IF:4.275)
[112] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep. 2017;7(1):17597. Published 2017 Dec 14. doi:10.1038/s41598-017-17604-7(IF:4.259)
[113] Wang XY, Zhu BR, Jia Q, Li YM, Wang T, Wang HY. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J Agric Food Chem. 2020;68(45):12617-12630. doi:10.1021/acs.jafc.0c04898(IF:4.192)
[114] Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther. 2021;15:5135-5150. Published 2021 Dec 24. doi:10.2147/DDDT.S344052(IF:4.162)
[115] Liu J, Zhou J, Zhou J, et al. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology. 2020;444:152581. doi:10.1016/j.tox.2020.152581(IF:4.099)
[116] Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. Published 2021 Feb 15. (IF:4.060)
[117] Wang Q, Zhang Q, Luan S, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315. doi:10.1016/j.bioorg.2019.103315(IF:3.926)
[118] Yang KY, Wu CR, Zheng MZ, et al. Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorg Chem. 2019;92:103186. doi:10.1016/j.bioorg.2019.103186(IF:3.926)
[119] Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway [retracted in:  J Cell Physiol. 2022 Apr;237(4):2296]. J Cell Physiol. 2019;234(2):1442-1451. doi:10.1002/jcp.26950(IF:3.923)
[120] Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol. 2019;234(4):4840-4850. doi:10.1002/jcp.27282(IF:3.923)
[121] Chen L, Liu H, Ji Y, et al. Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res. 2022;415(2):113138. doi:10.1016/j.yexcr.2022.113138(IF:3.905)
[122] Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses. 2019;11(2):99. Published 2019 Jan 24. doi:10.3390/v11020099(IF:3.811)
[123] Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther. 2022;36(4):605-618. doi:10.1007/s10557-021-07182-2(IF:3.727)
[124] Yang Y, Xiang K, Sun D, et al. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1 [published correction appears in Bioorg Med Chem. 2022 Mar 15;58:116655]. Bioorg Med Chem. 2021;36:116095. doi:10.1016/j.bmc.2021.116095(IF:3.641)
[125] Wang C, Su L, Shao YM, et al. Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B. Toxicol Appl Pharmacol. 2019;384:114775. doi:10.1016/j.taap.2019.114775(IF:3.585)
[126] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[127] Hu S, Ouyang J, Zheng G, et al. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun. 2022;615:163-171. doi:10.1016/j.bbrc.2022.05.046(IF:3.575)
[128] Meng J, Zhang C, Wang D, Zhu L, Wang L. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2 [published online ahead of print, 2022 Jun 28]. Biochem Biophys Res Commun. 2022;621:1-7. doi:10.1016/j.bbrc.2022.06.092(IF:3.575)
[129] Wang HD, Guo LJ, Feng ZQ, et al. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis. 2020;15(1):240. Published 2020 Sep 9. doi:10.1186/s13023-020-01492-8(IF:3.523)
[130] Li P, Jin Y, Qi F, et al. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol. 2018;8:113. Published 2018 Apr 9. doi:10.3389/fcimb.2018.00113(IF:3.520)
[131] Wang Z, Wu J, Jiang J, et al. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. Allergy Asthma Clin Immunol. 2022;18(1):55. Published 2022 Jun 19. doi:10.1186/s13223-022-00697-9(IF:3.406)
[132] Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice [published correction appears in Neuroscience. 2018 May 9;:]. Neuroscience. 2018;374:61-69. doi:10.1016/j.neuroscience.2018.01.040(IF:3.382)
[133] Yang J, Shen Y, Yang X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350-F1358. doi:10.1152/ajprenal.00254.2019(IF:3.323)
[134] Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi:10.1016/j.virusres.2021.198594(IF:3.303)
[135] Luo L, Zhu D, Huang R, et al. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019;87:62-72. doi:10.1016/j.fsi.2018.12.078(IF:3.298)
[136] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[137] Li F, Su M, Zhao H, et al. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res. 2019;11(11):7035-7048. Published 2019 Nov 15. (IF:3.266)
[138] Sun H, Han L, Zhang X, et al. Case Report: Characterization of a Novel NONO Intronic Mutation in a Fetus With X-Linked Syndromic Mental Retardation-34. Front Genet. 2020;11:593688. Published 2020 Nov 16. doi:10.3389/fgene.2020.593688(IF:3.260)
[139] Li Y, Zhu T, Yang H, et al. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain. 2018;14:1744806918782229. doi:10.1177/1744806918782229(IF:3.205)
[140] Zhu D, Huang R, Chen L, et al. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019;86:335-346. doi:10.1016/j.fsi.2018.11.057(IF:3.185)
[141] Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. Environ Toxicol. 2021;36(2):267-275. doi:10.1002/tox.23032(IF:3.118)
[142] Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett. 2019;17(2):2131-2140. doi:10.3892/ol.2018.9862(IF:2.967)
[143] Zhou XM, Liu J, Wang Y, et al. microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats [published online ahead of print, 2018 Jan 27] [retracted in:  J Cell Biochem. 2021 Nov;122 Suppl 1:S92]. J Cell Biochem. 2018;10.1002/jcb.26704. doi:10.1002/jcb.26704(IF:2.959)
[144] Zhu C, Song Z, Chen Z, et al. MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol (Amst). 2022;2022:4213401. Published 2022 May 19. doi:10.1155/2022/4213401(IF:2.916)
[145] Wang X, Ye M, Wu M, et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol. 2020;22(9):1506-1516. doi:10.1007/s12094-020-02286-x(IF:2.737)
[146] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[147] Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. J Healthc Eng. 2022;2022:2373580. Published 2022 Jan 6. doi:10.1155/2022/2373580(IF:2.682)
[148] Zhe J, Chen S, Chen X, et al. A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. Published 2019 Jul 6. doi:10.1186/s13048-019-0537-x(IF:2.469)
[149] Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42-54.e3. doi:10.1016/j.exphem.2018.10.011(IF:2.436)
[150] Yu T, Ling Q, Xu M, et al. ORF8 protein of SARS-CoV-2 reduces male fertility in mice. J Med Virol. 2022;94(9):4193-4205. doi:10.1002/jmv.27855(IF:2.327)
[151] Dai Y, Nie J, Luo Z, Nie D. Expression profile analysis of a new testis-specifically expressed gene C17ORF64 and its association with cell apoptosis in MCF-7 cells. Mol Biol Rep. 2021;48(2):1521-1529. doi:10.1007/s11033-021-06191-6(IF:2.316)
[152] Jiang T, Zhou B, Li YM, Yang QY, Tu KJ, Li LY. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol Lett. 2020;20(2):1360-1368. doi:10.3892/ol.2020.11641(IF:2.311)
[153] Wei P, Guo J, Xue W, Zhao Y, Yang J, Wang J. RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1038-1046. doi:10.1093/abbs/gmy106(IF:2.224)
[154] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[155] Gao X, Peng S, Mei S, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324. doi:10.1080/10826068.2021.1941106(IF:2.162)
[156] Li H, Dai Y, Luo Z, Nie D. Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells. Mol Biol Rep. 2019;46(2):2029-2038. doi:10.1007/s11033-019-04651-8(IF:2.107)
[157] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi:10.1016/j.leukres.2019.106198(IF:2.066)
[158] Qiu C, Li C, Tong X, et al. A novel TSC1 frameshift mutation c.1550_1551del causes tuberous sclerosis complex by aberrant splicing and nonsense-mediated mRNA degradation (NMD) simultaneously in a Chinese family. Mol Genet Genomic Med. 2020;8(10):e1410. doi:10.1002/mgg3.1410(IF:1.995)
[159] Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit. 2018;24:7499-7507. Published 2018 Oct 21. doi:10.12659/MSM.910265(IF:1.894)
[160] Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit. 2018;24:7451-7458. Published 2018 Oct 19. doi:10.12659/MSM.910229(IF:1.894)
[161] Li B, Zhang J, Su Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep. 2019;20(4):3793-3801. doi:10.3892/mmr.2019.10617(IF:1.851)
[162] Gao X, Liang K, Mei S, Peng S, Vong EG, Zhan J. An efficient system to generate truncated human angiotensin converting enzyme 2 (hACE2) capable of binding RBD and spike protein of SARS-CoV2. Protein Expr Purif. 2021;184:105889. doi:10.1016/j.pep.2021.105889(IF:1.650)
[163] Deng J, Li D, Mei H, Tang L, Wang HF, Hu Y. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency. BMC Med Genet. 2020;21(1):9. Published 2020 Jan 8. doi:10.1186/s12881-019-0944-2(IF:1.585)
[164] Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett. 2016;12(5):4061-4067. doi:10.3892/ol.2016.5127(IF:1.482)
[165] Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol. 2020;155:295-319. doi:10.1016/bs.mcb.2019.11.008(IF:1.441)
[166] Chen X, Lin Z, Hu J, et al. Report of Two Novel Thalassemia Variants, HBB: c.181delG and HBA1: c.121_126delAAGACC, in Chinese Individuals. Hemoglobin. 2021;45(1):52-55. doi:10.1080/03630269.2021.1883646(IF:0.849)
[167] Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. Int J Clin Exp Pathol. 2020;13(12):3083-3091. Published 2020 Dec 1. (IF:0.252)
[168] Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing [published online ahead of print, 2022 Jun 16]. J Clin Endocrinol Metab. 2022;dgac368. doi:10.1210/clinem/dgac368(IF:0.000)
[169] Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep. 2021;9(12):e05166. Published 2021 Dec 9. doi:10.1002/ccr3.5166(IF:0.000)

gelcompany试剂产品列表

 

Gel Company, Inc. 成立于 1995 年,是一家位于旧金山的小型公司,为生命科学研究界开发、制造和供应低成本产品。我们的目标是以具有竞争力的价格提供创新的、高质量的产品和高效、友好的服务。

Gel Company 为世界各地的科学家开发、制造和提供用于蛋白质组学、基因组学、细胞生物学、液体处理和微阵列的创新工具。我们提供使用简单、使用安全且环保的产品。在本网站中,您将找到 Gel Company 如何汇集 900 多种产品以创建更好的工作流程解决方案的示例。我们公司拥有一支经验丰富的科学家团队,致力于开发新技术和产品,并提供高水平的客户支持。

 

Gel Company 的电泳试剂、PCR 和预混液支持您完成蛋白质印迹所需的一切。

PCR 预混液

  • 超级混音

DNA释放

  • 裂解酶

  • 微裂解

  • 清洁旋转

蛋白质化学发光

  • 化学 CL 和 FP HRP

gelcompany试剂产品列表

 

microLYSIS®-PLUS (250 Preps) 2MLP-250

Regular price$350.00

MegaMIX Double, PCR Master Mix, 5 x 0.5 ml 2MMD-05

Regular price$118.00

MegaMIX Blue, PCR Master Mix w/Blue Dye, 5 x 1 ml 2MMB-05

Regular price$139.00

microLYSIS®-PLUS (100 Preps) 2MLP-100

Regular price$150.00

CleanSpin, Spin Column, 50 preps DRK-50

Regular price$79.00

MegaMIX Blue, PCR Master Mix w/Blue Dye, 25 x 1 ml 2MMB-25

Regular price$614.00

CleanSpin, Spin Column, 200 preps DRK-200

Regular price$319.00

CeraLysis, 5 x 15 ml tubes LMD15-5

Regular price$28.00

AMBER DNA Fluorescent DNA Stain AMD-1000

Regular price$41.00

microLYSIS®-PLUS (1000 Preps) 2MLP-1000

Regular price$1,262.00

microLYSIS® (1000 Preps) 2ML-1000, 20 X 1 ML

Regular price$1,262.00

MegaMix-Royal – Hot-Start TAQ PCR Mix w/ Blue Dye, 5 x 0.5 ml 2MMR-05

Regular price$431.00

MegaMix-Royal – Hot-Start TAQ PCR Mix w/ Blue Dye 2MMR-10

Regular price$846.00

MegaMix-Gold – w/ROX Reference Dye, 5 x 0.5 ml 2RMMG-05

Regular price$444.00

MegaMix-Gold – w/ROX Reference Dye, 10 x 1 ml 2RMMG-10

Regular price$846.00

MegaMix-Gold – Hot-Start TAQ PCR Mix, 5 x 0.5 ml 2MMG-05

Regular price$433.00

MegaMix-Gold – Hot-Start TAQ PCR Mix, 10 x 1 ml 2MMG-10

Regular price$846.00

MegaMIX Double, PCR Master Mix, 25 x 0.5 ml 2MMD-25

Regular price$559.00

 

 

inovadx QUANTA Flash试剂


 

inovadx塑造自身免疫测试的未来

我们是自身免疫诊断的,为*的实验室提供高精度的试剂和高效的自动化。

 

inovadx QUANTA Flash试剂

 

QUANTA Flash®

QUANTA闪光化学发光(CIA)技术可提供令人信服的结果。半定量测定提供定量,宽泛的分析测量范围和快速的周转时间。

 

Inflammatory Bowel Disease (IBD)

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

Fecal Extraction Device

100 Devices

504837

     — Select —       504837_Decision_Summary (English)       504837_Directional_Insert (English)       504837_Safety_Data_Sheet (English)       Certificate of Analysis      

 

QUANTA Flash(R) Calprotectin

100 Determinations

701350

     — Select —       701350_Directional_Insert (English)       701350_Decision_Summary (English)       701350_Safety_Data_Sheet (English)       701350_CLSI (English)       Certificate of Analysis       QUANTA Flash® Calprotectin Brochure US       QUANTA Flash® Calprotectin Brochure A4      

Download >

QUANTA Flash® Intrinsic Factor*

50 Determinations

701358

     — Select —       701358_Directional_Insert (English)       701358_Safety_Data_Sheet (English)       Certificate of Analysis      

 

*Only available outside of the US

Rheumatoid Arthritis (RA)

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash® RF IgA

100 Determinations

701345

     — Select —       701345_Decision_Summary (English)       701345_Directional_Insert (English)       701345_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash(R) CCP3

100 Determinations

701125

     — Select —       701125_Directional_Insert (English)       701125_Decision_Summary (English)       701125_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® CCP3 Brochure US       QUANTA Flash® CCP3 Brochure A4      

Download >

QUANTA Flash(R) RF IgM

100 Determinations

701340

     — Select —       701340_Decision_Summary (English)       701340_Directional_Insert (English)       701340_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

*Only available outside of the US

Antiphospholipid Syndrome (APS)

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash® aCL IgA

100 Determinations

701225

     — Select —       701225_Directional_Insert (English)       701225_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® aCL IgG

100 Determinations

701230

     — Select —       701230_Directional_Insert (English)       701230_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® aCL IgM

100 Determinations

701235

     — Select —       701235_Directional_Insert (English)       701235_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® aCL IgA

50 Determinations

701228

     — Select —       701228_Directional_Insert (English)       701228_Decision_Summary (English)       701228_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) APS Brochure US       QUANTA Flash(R) APS Brochure A4      

Download >

QUANTA Flash® aCL IgG

50 Determinations

701233

     — Select —       701233_Directional_Insert (English)       701233_Decision_Summary (English)       701233_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) APS Brochure US       QUANTA Flash(R) APS Brochure A4      

Download >

QUANTA Flash® aCL IgM

50 Determinations

701238

     — Select —       701238_Directional_Insert (English)       701238_Decision_Summary (English)       701238_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) APS Brochure US       QUANTA Flash(R) APS Brochure A4      

Download >

QUANTA Flash(R) (B2)GP1 Domain 1

50 Determinations

701188

     — Select —       701188_Directional_Insert (English)       701188_Decision_Summary (English)       701188_Safety_Data_Sheet (English)       701188_CLSI (English)       Certificate of Analysis       QUANTA Flash® β2GPI-Domain 1 Brochure US       QUANTA Flash® β2GPI-Domain 1 Brochure A4      

Download >

QUANTA Flash(R) (B2) GP1 IgA

50 Determinations

701243

     — Select —       701243_Directional_Insert (English)       701243_Decision_Summary (English)       701243_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) APS Brochure US       QUANTA Flash(R) APS Brochure A4      

Download >

QUANTA Flash(R) (B2) GP1 IgA

100 Determinations

701240

     — Select —       701240_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash(R) (B2) GP1 IgG

50 Determinations

701248

     — Select —       701248_Directional_Insert (English)       701248_Decision_Summary (English)       701248_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) APS Brochure US       QUANTA Flash(R) APS Brochure A4      

Download >

QUANTA Flash(R) (B2) GP1 IgG

100 Determinations

701245

     — Select —       701245_Directional_Insert (English)       701245_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash(R) (B2) GP1 IgM

50 Determinations

701253

     — Select —       701253_Directional_Insert (English)       701253_Decision_Summary (English)       701253_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) APS Brochure US       QUANTA Flash(R) APS Brochure A4      

Download >

QUANTA Flash(R) (B2) GP1 IgM

100 Determinations

701250

     — Select —       701250_Directional_Insert (English)       701250_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

*Only available outside of the US

Connective Tissue Disease (CTD)

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash(R) Centromere

50 Determinations

701198

     — Select —       701198_Directional_Insert (English)       701198_Decision_Summary (English)       701198_Safety_Data_Sheet (English)       701198_CLSI (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) CTD Screen Plus*

100 Determinations

701220

     — Select —       701220_Directional_Insert (English)       701220_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash(R) DFS70*

50 Determinations

701268

     — Select —       701268_Directional_Insert (English)       701268_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) DFS70 Brochure US       QUANTA Flash(R) DFS70 Brochure A4      

Download >

QUANTA Flash(R) dsDNA

50 Determinations

701178

     — Select —       701178_Directional_Insert (English)       701178_Decision_Summary (English)       701178_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® dsDNA Brochure US       QUANTA Flash® dsDNA Brochure A4       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) dsDNA

100 Determinations

701175

     — Select —       701175_Decision_Summary (English)       701175_Directional_Insert (English)       701175_Safety_Data_Sheet (English)       701175_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash(R) ENA7

50 Determinations

701258

     — Select —       701258_Directional_Insert (English)       701258_Decision_Summary (English)       701258_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) HMGCR

50 Determinations

701333

     — Select —       701333_Directional_Insert (English)       701333_Decision_Summary (English)       701333_Safety_Data_Sheet (English)       701333_CLSI (English)       Certificate of Analysis       QUANTA Flash® HMGCR Brochure US       QUANTA Flash® HMGCR Brochure A4      

Download >

QUANTA Flash(R) Jo-1

50 Determinations

701163

     — Select —       701163_Directional_Insert (English)       701163_Decision_Summary (English)       701163_Safety_Data_Sheet (English)       701163_CLSI (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) Ribosomal P*

50 Determinations

701193

     — Select —       701193_Directional_Insert (English)       701193_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash(R) RNP

50 Determinations

701118

     — Select —       701118_Directional_Insert (English)       701118_Decision_Summary (English)       701118_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) Ro52

50 Determinations

701263

     — Select —       701263_Directional_Insert (English)       701263_Decision_Summary (English)       701263_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) Ro60

50 Determinations

701148

     — Select —       701148_Directional_Insert (English)       701148_Decision_Summary (English)       701148_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) Scl-70

50 Determinations

701328

     — Select —       701328_Directional_Insert (English)       701328_Decision_Summary (English)       701328_Safety_Data_Sheet (English)       701328_CLSI (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) Sm

50 Determinations

701123

     — Select —       701123_Directional_Insert (English)       701123_Safety_Data_Sheet (English)       701123_CLSI (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

QUANTA Flash(R) SS-B

50 Determinations

701153

     — Select —       701153_Directional_Insert (English)       701153_Decision_Summary (English)       701153_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® CTD Brochure US       QUANTA Flash® CTD Brochure A4      

Download >

*Only available outside of the US

Celiac Disease

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash(R) DGP IgA

50 Determinations

701168

     — Select —       701168_Directional_Insert (English)       701168_Decision_Summary (English)       701168_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) Celiac Brochure US       QUANTA Flash(R) Celiac Brochure A4       Celiac Disease_QUANTA Flash_2011 AMLI Poster       Celiac Disease_QUANTA Flash_2011 Lubliana Poster       The QUANTA Flash(TM) Chemiluminescent Immunoassays for Celiac D       Utility of the New ESPGHAN Criteria for the Diagnosis of Cel      

Download >

QUANTA Flash(R) DGP IgG

50 Determinations

701173

     — Select —       701173_Directional_Insert (English)       701173_Decision_Summary (English)       701173_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) Celiac Brochure US       QUANTA Flash(R) Celiac Brochure A4       Celiac Disease_QUANTA Flash_2011 AMLI Poster       Celiac Disease_QUANTA Flash_2011 Lubliana Poster       The QUANTA Flash(TM) Chemiluminescent Immunoassays for Celiac D       Utility of the New ESPGHAN Criteria for the Diagnosis of Cel      

Download >

QUANTA Flash(R) DGP IgG

100 Determinations

701170

     — Select —       701170_Decision_Summary (English)       701170_Directional_Insert (English)       701170_Safety_Data_Sheet (English)       701170_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash(R) DGP Screen

50 Determinations

701113

     — Select —       701113_Directional_Insert (English)       701113_Decision_Summary (English)       701113_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) Celiac Brochure US       QUANTA Flash(R) Celiac Brochure A4       Celiac Disease_QUANTA Flash_2011 AMLI Poster       Celiac Disease_QUANTA Flash_2011 Lubliana Poster       The QUANTA Flash(TM) Chemiluminescent Immunoassays for Celiac D       Utility of the New ESPGHAN Criteria for the Diagnosis of Cel      

Download >

QUANTA Flash(R) tTG IgA

50 Determinations

701103

     — Select —       701103_Directional_Insert (English)       701103_Decision_Summary (English)       701103_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) Celiac Brochure US       QUANTA Flash(R) Celiac Brochure A4       Celiac Disease_QUANTA Flash_2011 AMLI Poster       Celiac Disease_QUANTA Flash_2011 Lubliana Poster       The QUANTA Flash(TM) Chemiluminescent Immunoassays for Celiac D       Utility of the New ESPGHAN Criteria for the Diagnosis of Cel      

Download >

QUANTA Flash(R) tTG IgA

100 Determinations

701100

     — Select —       701100_Directional_Insert (English)       701100_Safety_Data_Sheet (English)       701100_CLSI (English)       Certificate of Analysis       QUANTA Flash(R) Celiac Brochure US       QUANTA Flash(R) Celiac Brochure A4       Celiac Disease_QUANTA Flash_2011 AMLI Poster       Celiac Disease_QUANTA Flash_2011 Lubliana Poster       The QUANTA Flash(TM) Chemiluminescent Immunoassays for Celiac D       Utility of the New ESPGHAN Criteria for the Diagnosis of Cel      

Download >

QUANTA Flash(R) tTG IgG

50 Determinations

701108

     — Select —       701108_Directional_Insert (English)       701108_Decision_Summary (English)       701108_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) Celiac Brochure US       QUANTA Flash(R) Celiac Brochure A4       Celiac Disease_QUANTA Flash_2011 AMLI Poster       Celiac Disease_QUANTA Flash_2011 Lubliana Poster       The QUANTA Flash(TM) Chemiluminescent Immunoassays for Celiac D       Utility of the New ESPGHAN Criteria for the Diagnosis of Cel      

Download >

*Only available outside of the US

Vasculitis

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash(R) GBM

50 Determinations

701143

     — Select —       701143_Directional_Insert (English)       701143_Decision_Summary (English)       701143_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) Vasculitis Brochure US       QUANTA Flash(R) Vasculitis Brochure A4      

Download >

QUANTA Flash(R) MPO

50 Determinations

701133

     — Select —       701133_Directional_Insert (English)       701133_Decision_Summary (English)       701133_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) Vasculitis Brochure US       QUANTA Flash(R) Vasculitis Brochure A4      

Download >

QUANTA Flash(R) PR3

50 Determinations

701138

     — Select —       701138_Directional_Insert (English)       701138_Decision_Summary (English)       701138_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash(R) Vasculitis Brochure A4       QUANTA Flash(R) Vasculitis Brochure US       2011 AMLI Poster-PR3 for IBD      

Download >

*Only available outside of the US

Autoimmune Liver Disease

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash(R) LKM-1

50 Determinations

701298

     — Select —       701298_Directional_Insert (English)       701298_Decision_Summary (English)       701298_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® Liver Disease Brochure US       QUANTA Flash® Liver Disease Brochure A4      

Download >

QUANTA Flash(R) M2 (MIT3)

50 Determinations

701303

     — Select —       701303_Directional_Insert (English)       701303_Decision_Summary (English)       701303_Safety_Data_Sheet (English)       Certificate of Analysis       QUANTA Flash® Liver Disease Brochure US       QUANTA Flash® Liver Disease Brochure A4      

Download >

*Only available outside of the US

 

Controls

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash® B2GP1 Domain1 Controls

 

701187

     — Select —       701187_Decision_Summary (English)       701187_Directional_Insert (English)       701187_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Calprotectin Controls

 

701352

     — Select —       701352_Decision_Summary (English)       701352_Directional_Insert (English)       701352_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Centromere Controls

2 X 2 vials (0.5 mL each)

701197

     — Select —       701197_Decision_Summary (English)       701197_Directional_Insert (English)       701197_Safety_Data_Sheet (English)       701197_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® CTD Screen Plus Controls

 

701222

     — Select —       701222_Directional_Insert (English)       701222_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® DGP IgA Controls*

2 X 2 vials (0.5 mL each)

701167

     — Select —       701167_Decision_Summary (English)       701167_Directional_Insert (English)       701167_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® DGP IgG Controls*

2 X 2 vials (0.5 mL each)

701172

     — Select —       701172_Decision_Summary (English)       701172_Directional_Insert (English)       701172_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® DGP Screen Controls

2 X 2 vials (0.5 mL each)

701112

     — Select —       701112_Decision_Summary (English)       701112_Directional_Insert (English)       701112_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® dsDNA Controls

 

701177

     — Select —       701177_Decision_Summary (English)       701177_Directional_Insert (English)       701177_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® ENA7 Controls

2 X 2 vials (0.5 mL each)

701257

     — Select —       701257_Decision_Summary (English)       701257_Directional_Insert (English)       701257_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® GBM Controls

2 X 2 vials (0.5 mL each)

701142

     — Select —       701142_Decision_Summary (English)       701142_Directional_Insert (English)       701142_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Jo-1 Controls

2 X 2 vials (0.5 mL each)

701162

     — Select —       701162_Decision_Summary (English)       701162_Directional_Insert (English)       701162_Safety_Data_Sheet (English)       701162_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® LKM-1 Controls

 

701297

     — Select —       701297_Decision_Summary (English)       701297_Directional_Insert (English)       701297_Safety_Data_Sheet (English)       701297_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® M2 (MIT3) Controls

 

701302

     — Select —       701302_Decision_Summary (English)       701302_Directional_Insert (English)       701302_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® MPO Controls

2 X 2 vials (0.5 mL each)

701132

     — Select —       701132_Decision_Summary (English)       701132_Directional_Insert (English)       701132_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® PR3 Controls

2 X 2 vials (0.5 mL each)

701137

     — Select —       701137_Decision_Summary (English)       701137_Directional_Insert (English)       701137_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Ribosomal P Controls*

2 X 2 vials (0.5 mL each)

701192

     — Select —       701192_Directional_Insert (English)       701192_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® RNP Controls

2 X 2 vials (0.5 mL each)

701117

     — Select —       701117_Decision_Summary (English)       701117_Directional_Insert (English)       701117_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Ro52 Controls

2 X 2 vials (0.5 mL each)

701262

     — Select —       701262_Decision_Summary (English)       701262_Directional_Insert (English)       701262_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Ro60 Controls

2 X 2 vials (0.5 mL each)

701147

     — Select —       701147_Decision_Summary (English)       701147_Directional_Insert (English)       701147_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Scl-70 Controls

 

701327

     — Select —       701327_Decision_Summary (English)       701327_Directional_Insert (English)       701327_Safety_Data_Sheet (English)       701327_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® Sm Controls

2 X 2 vials (0.5 mL each)

701122

     — Select —       701122_Directional_Insert (English)       701122_Safety_Data_Sheet (English)       701122_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® SS-B Controls

2 X 2 vials (0.5 mL each)

701152

     — Select —       701152_Decision_Summary (English)       701152_Directional_Insert (English)       701152_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® tTG IgA Controls

2 X 2 vials (0.5 mL each)

701102

     — Select —       701102_Decision_Summary (English)       701102_Directional_Insert (English)       701102_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® tTG IgG Controls

2 X 2 vials (0.5 mL each)

701107

     — Select —       701107_Decision_Summary (English)       701107_Directional_Insert (English)       701107_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Intrinsic Factor Control*

2 x 2 vials (0.5mL each)

701357

     — Select —       701357_Directional_Insert (English)       701357_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

*Only available outside of the US

 

Calibrators

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash® Centromere Calibrators

2 X 2 vials (0.3 mL each)

701196

     — Select —       701196_Decision_Summary (English)       701196_Directional_Insert (English)       701196_Safety_Data_Sheet (English)       701196_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® DGP IgA Calibrators*

2 X 2 vials (0.3 mL each)

701166

     — Select —       701166_Decision_Summary (English)       701166_Directional_Insert (English)       701166_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® DGP IgG Calibrators*

2 X 2 vials (0.3 mL each)

701171

     — Select —       701171_Decision_Summary (English)       701171_Directional_Insert (English)       701171_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® DGP Screen Calibrators

2 X 2 vials (0.3 mL each)

701111

     — Select —       701111_Decision_Summary (English)       701111_Directional_Insert (English)       701111_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® ENA7 Calibrators

2 X 2 vials (0.3 mL each)

701256

     — Select —       701256_Decision_Summary (English)       701256_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® GBM Calibrators

2 X 2 vials (0.7 mL each)

701141

     — Select —       701141_Decision_Summary (English)       701141_Directional_Insert (English)       701141_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Jo-1 Calibrators

2 X 2 vials (0.3 mL each)

701161

     — Select —       701161_Decision_Summary (English)       701161_Directional_Insert (English)       701161_Safety_Data_Sheet (English)       701161_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® MPO Calibrators

2 X 2 vials (0.7 mL each)

701131

     — Select —       701131_Decision_Summary (English)       701131_Directional_Insert (English)       701131_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® PR3 Calibrators

2 X 2 vials (0.3 mL each)

701136

     — Select —       701136_Decision_Summary (English)       701136_Directional_Insert (English)       701136_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® RNP Calibrators

2 X 2 vials (0.3 mL each)

701116

     — Select —       701116_Decision_Summary (English)       701116_Directional_Insert (English)       701116_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Ro52 Calibrators

2 X 2 vials (0.3 mL each)

701261

     — Select —       701261_Decision_Summary (English)       701261_Directional_Insert (English)       701261_Safety_Data_Sheet (English)       701261_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® Ro60 Calibrators

2 X 2 vials (0.3 mL each)

701146

     — Select —       701146_Decision_Summary (English)       701146_Directional_Insert (English)       701146_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Sm Calibrators

2 X 2 vials (0.3 mL each)

701121

     — Select —       701121_Directional_Insert (English)       701121_Safety_Data_Sheet (English)       701121_CLSI (English)       Certificate of Analysis      

Download >

QUANTA Flash® SS-B Calibrators

2 X 2 vials (0.3 mL each)

701151

     — Select —       701151_Decision_Summary (English)       701151_Directional_Insert (English)       701151_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® tTG IgA Calibrators

2 X 2 vials (0.3 mL each)

701101

     — Select —       701101_Decision_Summary (English)       701101_Directional_Insert (English)       701101_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® tTG IgG Calibrators

2 X 2 vials (0.3 mL each)

701106

     — Select —       701106_Decision_Summary (English)       701106_Directional_Insert (English)       701106_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Ribosomal P Calibrators*

2 X 2 vials (0.3 mL each)

701191

     — Select —       701191_Directional_Insert (English)       701191_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® Intrinsic Factor Calibrator*

2 x 2 vials (0.3mL each)

701356

     — Select —       701356_Directional_Insert (English)       701356_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

*Only available outside of the US

 

SARS CoV-2

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

QUANTA Flash® SARS-CoV-2 IgG Calibrators

2 X 2 vials (0.3 mL each)

701371

     — Select —       701371_Directional_Insert (English)       701371_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® SARS-CoV-2 IgG Controls 

2 X 2 vials (0.5 mL each)

701372

     — Select —       701372_Directional_Insert (English)       701372_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

QUANTA Flash® SARS-CoV-2 IgG Reagents

100 Determinations

701370

     — Select —       701370_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

*Only available outside of the US

 

BIO-FLASH® Common Components

DESCRIPTION

PACKAGE SIZE

PART NUMBER

LOT NUMBER

DOWNLOAD

Trigger 1&2

2 x 250mL

T3000-8204

     — Select —       T3000-8204_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

BIO-FLASH® System Rinse

1 x 5L

T3000-8205

     — Select —       T3000-8205_Safety_Data_Sheet (English)       Certificate of Analysis      

Download >

Cuvettes

1,400 per box

T3000-8206

     — Select —       Certificate of Analysis      

Download >

Low Volume Caps

500 Caps

T3000-8210

     — Select —       Certificate of Analysis      

Download >

Low Volume Cups

500 Cups

T3000-8209

     — Select —       Certificate of Analysis      

Download >

System Cleaning Solution

6 x 4mL

T3000-8211

     — Select —       T3000-8211_Safety_Data_Sheet (English)       Certificate of Analysis      

 

*Only available outside of the US

 

 

线性化聚乙烯亚胺PEI 25000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW25000

线性化聚乙烯亚胺PEI 25000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW25000

产品说明书

FAQ

COA

已发表文献

线性化聚乙烯亚胺PEI 25000转染试剂是一种高电荷阳离子聚合物非常容易结合带负电荷的核酸分子,形成复合物,并使该复合物进入细胞中。该转染试剂是一种瞬时转染试剂,细胞毒性低,转染效率高,在HEK293和CHO等细胞中基因表达效率较高。目前已经验证线性PEI转染试剂广泛适用于多种细胞系包括HEK-293、HEK293T、CHO-K1、COS-1、COS-7、NIH/3T3、Sf9、HepG2和Hela细胞等。该试剂与含血清的培养基兼容,能高效的将核酸导入细胞。

产品性质

中文名(Chinese Name

线性聚乙烯亚胺PEI 25000

英文名(English Name

Polyethylenimine Linear (PEI) MW25000 

CAS号(CAS No.)

9002-98-6, 26913-06-4

分子式(Molecular formula)

(CH2CH2NH)n

分子量(Molecular weight)

25,000

外观(Appearance)

白色至黄色固体

熔点(Melting Point)

73~75 ℃

溶解性(Solubility)

溶于热水,低pH冷水,甲醇和乙醇。不溶于苯,乙醚和丙酮

结构式(Structure)

线性化聚乙烯亚胺PEI 25000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW25000
 

运输与保存方法

运输方式:室温运输。
保存方式:粉末在室温或4 ºC保存有效期2年。储存液20 °C保存,有效期1年;4 °C保存,有效期2周。不可重新冻存。

注意事项

1)配置好的PEI溶液从-20 ºC拿出融化后,可放在4 ºC冰箱保存,绝不可重新冻存。

2)对大多数细胞来而言,每1 μg DNA 使用 3.0 μL PEI转染试剂都能获得较高转染效率。也可尝试每1 μg DNA使用1.5~4 μL体积线性PEI转染试剂进行优化。

3)为了您的安全和健康,请穿实验服并戴一次性手套及通风橱操作。

4)本产品仅用于科研用途,不可用于人体。

储存液配置(1 mg/mL)

1.材料

PEI 25000、Milli-Q® 水/注射用水(WFI)或类似的生物级水、12 mol/L盐酸(HCl)、10 mol/L氢氧化钠(NaOH)、一次性0.1~0.2 μm PES真空无菌过滤器、无菌HDPE或聚丙烯储存瓶。

2. 配置储存液(1 mg/mL)

1)于1 L玻璃烧杯,将1g PEI 25000粉末加入900 mL Milli-Q®超纯水或其他相当级别的生物用水中,在磁子搅拌器上搅拌均匀,产生小涡。

2)边搅拌边滴加入盐酸(12 mol/L)调节pH,直至pH<2.0。

3)盖上烧杯顶部并搅拌3小时至完全溶解;整个过程要保持pH<2.0。

【注】:可能会存在一些小纤维状颗粒不能溶解,这是正常现象。

4)边搅拌边滴加入NaOH(10 mol/L)调节pH,直至到6.9 ~7.1。

5)将溶液转入量筒内,并加水定容到1 L。

6)用一次性0.1~0.2 µm PES真空过滤器过滤除菌,即得到1 mg/mL的储存液。

7)根据需要分装并储存在-20 °C,1年稳定。

【注】:储存液再次融化后,可置于4 °C保存,2周稳定,但绝不可重新冻存。

转染操作流程(以6孔板为例)

1.接种细胞:为了提高转染效率,建议在转染前一天接种细胞,以转染时细胞密度在 70%~80%为宜

2.准备DNA-PEI复合物:按照以下体系配制DNA-PEI核酸转染试剂复合物: 

1)对于每孔细胞,使用100 μL无血清培养基稀释2 μg目的DNA ,充分混匀 DNA稀释液

【注】:无血清稀释液建议采用 Opti-MEM或ddH2O

2)立刻向100 μL的DNA稀释液中加入5 μL的PEI 25000转染试剂,旋涡10秒,充分混匀。

3)在室温下孵育10~25 min,使得形成DNA-PEI阳离子核酸转染试剂复合物。

3.转染细胞:

1)在形成复合物过程中,移除细胞生长培养基,每孔中加入2 mL新鲜预热的完全培养基。

2)直接将100 μL DNA-PEI核酸-PEI复合物加入细胞中,摇动培养板,轻轻混匀。

3)37 ℃,5% CO2培养箱培养,转染后最快7 h即可检测到转入基因的表达。请自行确定适合检测时间。

4.稳转筛选(可选)

转染 24 h 后,将细胞传代至新鲜的生长培养基中(将细胞稀释10倍以上),37 ℃,5% CO2培养箱孵育过夜。第二天加入与转染抗性基因相匹配的筛选药物。约1~2周可筛选到耐药性克隆,在这期间需经常更换含筛选药物的生长培养基。
不同细胞培养容器转染用量(仅供参考):

培养皿

表面积(cm2

DNA的量(μg)

转染试剂的量μL

稀释液体积μL

培养基总量

96孔板

0.3

0.1

0.1

10

100 μL

48孔板

0.7

0.2

0.3

20

200 μL

24孔板

1.9

0.5

1

50

500 μL

12孔板

3.8

1

2

50

1mL

6孔板

10

2

4

100

2 mL

25cm2培养瓶

21

4

8

200

4 mL

75cm2培养瓶

58

10

20

500

10 mL

相关产品

名称

货号

规格

Hieff TransTM Liposomal Transfection Reagent 脂质体核酸转染试剂

40802ES01

100 μL

40802ES02

0.5 mL

40802ES03

1.0 mL

40802ES08

5×1mL

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T  

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml)

40804ES76

500 μL

40804ES86

5×500 μL

Hieff TransTM Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES01

100 μL

40805ES02

0.5 mL

40805ES03

1.0 mL

40805ES08

5×1 mL

Hieff TransTM in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES01

0.1 mL

40806ES02

0.5 mL

40806ES03

1.0 mL

Polyethylenimine Linear (PEI) MW25000  线性PEI转染试剂MW25000

40815ES03

1 g

40815ES08

1 g

Polyethylenimine Linear (PEI) MW40000(rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES03

1 g

40816ES08

1 g

 

HB210813

线性化聚乙烯亚胺PEI 25000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW25000

暂无内容

[1] Qin J, Cai Y, Xu Z, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun. 2022;13(1):300. Published 2022 Jan 13. doi:10.1038/s41467-022-27975-9(IF:14.919)
[2] Wang Y, Chen J, Gao WQ, Yang R. METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism. Cell Death Discov. 2022;8(1):143. Published 2022 Mar 30. doi:10.1038/s41420-022-00939-0(IF:5.241)

线性化聚乙烯亚胺PEI 25000转染试剂是一种高电荷阳离子聚合物非常容易结合带负电荷的核酸分子,形成复合物,并使该复合物进入细胞中。该转染试剂是一种瞬时转染试剂,细胞毒性低,转染效率高,在HEK293和CHO等细胞中基因表达效率较高。目前已经验证线性PEI转染试剂广泛适用于多种细胞系包括HEK-293、HEK293T、CHO-K1、COS-1、COS-7、NIH/3T3、Sf9、HepG2和Hela细胞等。该试剂与含血清的培养基兼容,能高效的将核酸导入细胞。

产品性质

中文名(Chinese Name

线性聚乙烯亚胺PEI 25000

英文名(English Name

Polyethylenimine Linear (PEI) MW25000 

CAS号(CAS No.)

9002-98-6, 26913-06-4

分子式(Molecular formula)

(CH2CH2NH)n

分子量(Molecular weight)

25,000

外观(Appearance)

白色至黄色固体

熔点(Melting Point)

73~75 ℃

溶解性(Solubility)

溶于热水,低pH冷水,甲醇和乙醇。不溶于苯,乙醚和丙酮

结构式(Structure)

线性化聚乙烯亚胺PEI 25000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW25000
 

运输与保存方法

运输方式:室温运输。
保存方式:粉末在室温或4 ºC保存有效期2年。储存液20 °C保存,有效期1年;4 °C保存,有效期2周。不可重新冻存。

注意事项

1)配置好的PEI溶液从-20 ºC拿出融化后,可放在4 ºC冰箱保存,绝不可重新冻存。

2)对大多数细胞来而言,每1 μg DNA 使用 3.0 μL PEI转染试剂都能获得较高转染效率。也可尝试每1 μg DNA使用1.5~4 μL体积线性PEI转染试剂进行优化。

3)为了您的安全和健康,请穿实验服并戴一次性手套及通风橱操作。

4)本产品仅用于科研用途,不可用于人体。

储存液配置(1 mg/mL)

1.材料

PEI 25000、Milli-Q® 水/注射用水(WFI)或类似的生物级水、12 mol/L盐酸(HCl)、10 mol/L氢氧化钠(NaOH)、一次性0.1~0.2 μm PES真空无菌过滤器、无菌HDPE或聚丙烯储存瓶。

2. 配置储存液(1 mg/mL)

1)于1 L玻璃烧杯,将1g PEI 25000粉末加入900 mL Milli-Q®超纯水或其他相当级别的生物用水中,在磁子搅拌器上搅拌均匀,产生小涡。

2)边搅拌边滴加入盐酸(12 mol/L)调节pH,直至pH<2.0。

3)盖上烧杯顶部并搅拌3小时至完全溶解;整个过程要保持pH<2.0。

【注】:可能会存在一些小纤维状颗粒不能溶解,这是正常现象。

4)边搅拌边滴加入NaOH(10 mol/L)调节pH,直至到6.9 ~7.1。

5)将溶液转入量筒内,并加水定容到1 L。

6)用一次性0.1~0.2 µm PES真空过滤器过滤除菌,即得到1 mg/mL的储存液。

7)根据需要分装并储存在-20 °C,1年稳定。

【注】:储存液再次融化后,可置于4 °C保存,2周稳定,但绝不可重新冻存。

转染操作流程(以6孔板为例)

1.接种细胞:为了提高转染效率,建议在转染前一天接种细胞,以转染时细胞密度在 70%~80%为宜

2.准备DNA-PEI复合物:按照以下体系配制DNA-PEI核酸转染试剂复合物: 

1)对于每孔细胞,使用100 μL无血清培养基稀释2 μg目的DNA ,充分混匀 DNA稀释液

【注】:无血清稀释液建议采用 Opti-MEM或ddH2O

2)立刻向100 μL的DNA稀释液中加入5 μL的PEI 25000转染试剂,旋涡10秒,充分混匀。

3)在室温下孵育10~25 min,使得形成DNA-PEI阳离子核酸转染试剂复合物。

3.转染细胞:

1)在形成复合物过程中,移除细胞生长培养基,每孔中加入2 mL新鲜预热的完全培养基。

2)直接将100 μL DNA-PEI核酸-PEI复合物加入细胞中,摇动培养板,轻轻混匀。

3)37 ℃,5% CO2培养箱培养,转染后最快7 h即可检测到转入基因的表达。请自行确定适合检测时间。

4.稳转筛选(可选)

转染 24 h 后,将细胞传代至新鲜的生长培养基中(将细胞稀释10倍以上),37 ℃,5% CO2培养箱孵育过夜。第二天加入与转染抗性基因相匹配的筛选药物。约1~2周可筛选到耐药性克隆,在这期间需经常更换含筛选药物的生长培养基。
不同细胞培养容器转染用量(仅供参考):

培养皿

表面积(cm2

DNA的量(μg)

转染试剂的量μL

稀释液体积μL

培养基总量

96孔板

0.3

0.1

0.1

10

100 μL

48孔板

0.7

0.2

0.3

20

200 μL

24孔板

1.9

0.5

1

50

500 μL

12孔板

3.8

1

2

50

1mL

6孔板

10

2

4

100

2 mL

25cm2培养瓶

21

4

8

200

4 mL

75cm2培养瓶

58

10

20

500

10 mL

相关产品

名称

货号

规格

Hieff TransTM Liposomal Transfection Reagent 脂质体核酸转染试剂

40802ES01

100 μL

40802ES02

0.5 mL

40802ES03

1.0 mL

40802ES08

5×1mL

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T  

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml)

40804ES76

500 μL

40804ES86

5×500 μL

Hieff TransTM Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES01

100 μL

40805ES02

0.5 mL

40805ES03

1.0 mL

40805ES08

5×1 mL

Hieff TransTM in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES01

0.1 mL

40806ES02

0.5 mL

40806ES03

1.0 mL

Polyethylenimine Linear (PEI) MW25000  线性PEI转染试剂MW25000

40815ES03

1 g

40815ES08

1 g

Polyethylenimine Linear (PEI) MW40000(rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES03

1 g

40816ES08

1 g

 

HB210813

线性化聚乙烯亚胺PEI 25000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW25000

暂无内容

[1] Qin J, Cai Y, Xu Z, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun. 2022;13(1):300. Published 2022 Jan 13. doi:10.1038/s41467-022-27975-9(IF:14.919)
[2] Wang Y, Chen J, Gao WQ, Yang R. METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism. Cell Death Discov. 2022;8(1):143. Published 2022 Mar 30. doi:10.1038/s41420-022-00939-0(IF:5.241)

Worthington 细胞分离试剂的种类

     Worthington Biochemical——细胞分离酶专业供应商,上海金畔生物为其中国代理。 Worthington 在一直是行业的*,一直为广大科研客户提供zui为的产品和服务,上海金畔生物一直秉承为中国科研客户带来更好的产品,更优的服务, Worthington 就是为了给广大科研客户带来更加完善的产品和服务,您的满意将是我们zui大的收获

 Worthington 中国代理,Worthington 上海代理, Worthington 北京代理, Worthington 广东代理,Worthington 江苏代理, Worthington  湖北代理, Worthington 天津代理, Worthington  黑龙江代理, Worthington 内蒙古代理, Worthington 吉林代理, Worthington 福建代理,Worthington 江苏代理, Worthington 浙江代理,  Worthington  四川代理,

 

        Worthington Biochemical是一家始于1947年,位于美国新泽西州的生产高纯度酶类及相关生化药剂的世界*公司,公司致力于为客户提供zui的产品及服务。Worthington供应的生物药剂主要纯化于牛胰腺、植物、发酵产物及其他自然资源,公司专长的蛋白提取与纯化技术保证了其所提供酶类拥有与其提取来源物中同等的生物活性,从而保证了研究结果的可靠性和稳定性。目前Worthington提供的产品覆盖细胞分离消化酶、DNA酶、RNA酶等几乎所有生命科学研究领域。

Worthington经典细胞分离试剂有以下几种:

1、细胞分离优化系统

Worthington Biochemical 公司提供一系列经典的组织/细胞分离用酶的解决方案,包括多种酶类及相应的使用说明、参考文献与操作手册,致力于使客户利用酶促消化分离获得zui大产量及活度的细胞。Worthington Biochemical 提供的产品种类繁多,适应于不同类型组织细胞的分离,价格合理。主要产品包括胶原蛋白酶1/2/3/4,胰蛋白酶及其抑制剂,透明质酸酶,弹性蛋白酶,木瓜蛋白酶以及DNA酶,中性蛋白酶等。

2、肝细胞分离系统

通常分离肝细胞的酶都是初制的或部分纯化的酶类,里面除了胶原酶外还含有多种杂蛋白酶,不利于肝细胞的分离纯化,实验可重复率低。Worthington 推出的精制1/4型胶原酶成分明确,特别适宜于肝细胞的分离纯化,性能可靠,实验可重复率高,实验方案及参数固定,所分离的肝细胞纯度与活性均较高。

3、新生鼠心肌细胞分离系统

Worthington供应的新生鼠心肌细胞分离系统使用纯化的分离酶,使心肌细胞分离批次间差异大为减小,而且细胞产量、纯度及活性均得以提高。分离操作方便,方案可靠,实验可重复率高。

4、木瓜蛋白酶分离系统

Worthington供应的木瓜蛋白酶适宜于消化分离形态完整、单个分散的细胞,适用于细胞培养、流式细胞术等多个研究领域。 该产品还可适用于温和消化分离中枢神经系统组织(对胎鼠及新生鼠脑神经元分离尤为适宜),获得的细胞产量与活性优于胰蛋白酶。

 

Immunoreagents品牌代理

Immunoreagents

简要描述:

免疫试剂是美国用于研究和研究的质量抗体和试剂的直接制造商

免疫试剂是美国用于研究和研究的质量抗体和试剂的直接制造商。我们的产品包括广泛的次级抗体,涵盖广泛的免疫球蛋白从不同种类和交叉吸收,以提供高度的特异性。抗激素、肿瘤标志物、心脏标志物和血清蛋白的主要多克隆抗体也是可用的。


ImmunoReagents is the direct US manufacturer of quality antibodies and reagents used in research and in vitro diagnostics. Our products include a wide range of secondary antibodies covering a broad spectrum of immunoglobulins from various species and cross absorbed to provide high specificity. Primary polyclonal antibodies to hormones, cancer markers, cardiac markers and serum proteins are also available. Our knowledgeable and experienced staff can provide custom absorptions and purifications to meet specific requirements, including bulk manufacturing. All products are manufactured within cGMP guidelines and ISO quality system standards.


品牌

货号

名称

规格

Immunoreagents

SP-007-VX2

Normal Bovine Serum

2ml

Immunoreagents

SP-007-VX10

Normal Bovine Serum

10ml

Immunoreagents

SP-128-VX2

Normal Bovine Serum

2ml

线性化聚乙烯亚胺PEI 40000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW40000(rapid lysis)

线性化聚乙烯亚胺PEI 40000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW40000(rapid lysis)

产品说明书

FAQ

COA

已发表文献

PEI 40000是一种分子量为40000的高电荷阳离子聚合物,非常容易结合带负电荷的核酸分子,形成复合物,并使该复合物进入细胞中。PEI 40000是一种瞬时转染试剂,细胞毒性低,转染效率高,在HEK293和CHO等细胞中基因表达效率较高。目前已经验证线性PEI转染试剂广泛适用于多种细胞系包括HEK-293、HEK293T、CHO-K1、COS-1、COS-7、NIH/3T3、Sf9、HepG2和Hela细胞等,转染效率高达80%~90%。

PEI 40000与PEI 25000转染试剂相比,具有很多优点。包括:1. PEI 40000较易溶解,可直接在水中溶解,PEI 25000需要先把水调成弱酸性助其溶解,溶解后再用NaOH把pH调至中性;2. PEI 40000操作简便,更易于使用,且比PEI 25000的转染效果好;3. PEI 25000含有4-11%的丙酰基残留,其能阻止聚合物主链与DNA结合。相较于PEI 25000,PEI 40000是完全脱落的结构,因此其性能始终高效如一。

本产品为速溶型,溶解迅速,配制方便。

 

产品信息

货号

40816ES02 / 40816ES03

规格

100mg / 1g

CAS No.

49553-93-7

分子式

(CH2CH2NH)n

分子量

40,000

外观

白色至灰白色固体

溶解性

溶于水,不溶于有机溶剂:苯,乙醚和丙酮

结构式

 

 

 

线性化聚乙烯亚胺PEI 40000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW40000(rapid lysis)

 

组分信息

组分编码

组分名称

40816ES02

40816ES03

40816

Polyethylenimine Linear(PEI) MW40000(rapid lysis)

线性PEI转染试剂(速溶型)MW40000

100 mg

1 g

 

储存条件

室温密封保存,有效期2年。储存液2-8 ºC保存,有效期3个月。

 

使用说明

1.储存液配置

1)材料

PEI 40000、Milli-Q® 水/注射用水(WFI)或类似的生物级水、1 mol/L氢氧化钠(NaOH)、一次性0.1~0.2 μm PES真空无菌过滤器、无菌HDPE或聚丙烯储存瓶。

2)配置储存液(1 mg/mL)

a. 于1 L玻璃烧杯,将1 g PEI 40000粉末加入900 mL Milli-Q®超纯水或其他相当级别的生物用水中,在磁子搅拌器上搅拌均匀。

b. 待PEI 40000完全溶解(通常不到5 min)。

c. 用1 mol/L氢氧化钠 (NaOH)溶液调节pH为6.80 – 6.90。

d. 将溶液转入量筒内,并加水定容到1 L。

e. 用一次性0.1~0.2 µm PES真空过滤器过滤除菌,即得到1 mg/mL的储存液。

f. 根据需要分装并储存在4 °C,3个月稳定。

2. 转染操作流程(以6孔板为例)

1)接种细胞

为了提高转染效率,建议在转染前一天接种细胞,以转染时细胞密度在70%~80%为宜。

2)配制DNA-PEI核酸-转染试剂复合物

a. 对于每孔细胞,使用100 μL无血清培养基稀释2 μg目的DNA,充分混匀成DNA稀释液。

*无血清稀释液建议采用Opti-MEM或ddH2O

b. 立刻向100 μL的DNA稀释液中加入4 μL的PEI 40000转染试剂,轻轻混匀。

c. 在室温下孵育10~15 min,使得形成DNA-PEI阳离子核酸转染试剂复合物。

3)转染细胞

a. 在形成复合物过程中,移除细胞生长培养基,每孔中加入2 mL新鲜预热的完全培养基。

b. 直接将100 μL DNA-PEI核酸-PEI复合物加入细胞中,摇动培养板,轻轻混匀。

c. 37 ℃,5% CO2培养箱培养,转染后最快5 h即可检测到转入基因的表达。请自行确定适合检测时间。

4)稳转筛选(可选)

转染24 h后,将细胞传代至新鲜的生长培养基中(将细胞稀释10倍以上),37 ℃,5% CO2培养箱孵育过夜。第二天加入与转染抗性基因相匹配的筛选药物。约1~2周可筛选到耐药性克隆,在这期间需经常更换含筛选药物的生长培养基。

不同细胞培养容器转染用量(仅供参考):

培养皿

表面积(cm2

DNA的量(μg)

转染试剂的量(μL)

稀释液体积(μL)

培养基总量

96孔板

0.3

0.1

0.1

10

100 μL

48孔板

0.7

0.2

0.3

20

200 μL

24孔板

1.9

0.5

1

50

500 μL

12孔板

3.8

1

2

50

1mL

6孔板

10

2

4

100

2 mL

25cm2培养瓶

21

4

8

200

4 mL

75cm2培养瓶

58

10

20

500

10 mL

 

注意事项

1.本品为盐酸盐形式的聚乙烯亚胺,具有易结块倾向。

2.对大多数细胞来而言,每1 μg DNA 使用3.0 μL PEI 40000转染试剂都能获得较高转染效率。也可尝试每1 μg DNA使用 1.5~4 μL体积线性PEI 40000转染试剂进行优化。

3.为了您的安全和健康,请穿实验服并戴一次性手套及通风橱操作。

4.本产品仅用于科研用途,不可用于人体。

 

Ver.CN20230828

 

Q:配置PEI溶液的时候,不调PH是否可以?

A:不可以,PH值对转染效率核细胞状态影响比较大,必须调PH

Q:多配置一点母液冻存起来是否会延长效期?

A:不建议冻存,储存液4℃保存3个月

Q:转染后是否需要换液?

A:若转染前进行了换液,可不进行换液,若需要换液可在转染后6-8h可以进行换液。

Q:转染的时候是否需要无血清培养基培养?

A:制备复合物的时候需要使用无血清培养基,加入细胞中的时候不要求无血清培养

Q:使用氢氧化钠调节之后溶液变浑浊了?怎么办?

A:建议调PH的时候慢慢调节,变浑浊了会引起化合物的变化。若出现浑浊建议先可以用盐酸调到PH2-3左右,溶液变为澄清液体,然后再用氢氧化钠调节PH=6.8左右即可。

Q:转染形成复合物的时候过量加入的DNA和转染试剂的量比较多的时候有沉淀絮状物析出,为什么呢?

A:可能是DNA的纯度不是很纯,有杂质,某种物质引起的PEI析出浑浊,如果把DNA的量降下来会减少这种现象。不建议转染的时候加入过多的质粒和转染试剂,转染试剂效率较高不需要额外提高。

Q:10ml的PEI溶液大概用了多少氢氧化钠溶液呢?

A:客户提供的数据可参考,10ml大概需要400ul的氢氧化钠溶液。建议慢慢调,根据自己的配置情况而定,建议用10ul的墙头调PH,如果PH值过大,溶液浑浊了再调回6.8,可能会影响转染效率。

[1] Luo J, Yang Q, Zhang X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022;185(6):980-994.e15. doi:10.1016/j.cell.2022.02.010(IF:41.584)
[2] Chen Y, Luo R, Li J, et al. Intrinsic Radical Species Scavenging Activities of Tea Polyphenols Nanoparticles Block Pyroptosis in Endotoxin-Induced Sepsis [published correction appears in ACS Nano. 2022 Mar 3;:]. ACS Nano. 2022;16(2):2429-2441. doi:10.1021/acsnano.1c08913(IF:15.881)
[3] Chen ZH, Yan SM, Chen XX, et al. The genomic architecture of EBV and infected gastric tissue from precursor lesions to carcinoma. Genome Med. 2021;13(1):146. Published 2021 Sep 7. doi:10.1186/s13073-021-00963-2(IF:11.117)
[4] Huang G, Liu D, Wang W, et al. High-resolution structures of human Nav1.7 reveal gating modulation through α-π helical transition of S6IV. Cell Rep. 2022;39(4):110735. doi:10.1016/j.celrep.2022.110735(IF:9.423)
[5] Tian X, Liu L, Jiang W, Zhang H, Liu W, Li J. Potent and Persistent Antibody Response in COVID-19 Recovered Patients. Front Immunol. 2021;12:659041. Published 2021 May 28. doi:10.3389/fimmu.2021.659041(IF:7.561)
[6] Lin J, Chen Z, Yang L, et al. Cas9/AAV9-Mediated Somatic Mutagenesis Uncovered the Cell-Autonomous Role of Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2 in Murine Cardiomyocyte Maturation. Front Cell Dev Biol. 2022;10:864516. Published 2022 Apr 1. doi:10.3389/fcell.2022.864516(IF:6.684)
[7] Nian F, Qian Y, Xu F, Yang M, Wang H, Zhang Z. LDHA promotes osteoblast differentiation through histone lactylation. Biochem Biophys Res Commun. 2022;615:31-35. doi:10.1016/j.bbrc.2022.05.028(IF:3.575)

PEI 40000是一种分子量为40000的高电荷阳离子聚合物,非常容易结合带负电荷的核酸分子,形成复合物,并使该复合物进入细胞中。PEI 40000是一种瞬时转染试剂,细胞毒性低,转染效率高,在HEK293和CHO等细胞中基因表达效率较高。目前已经验证线性PEI转染试剂广泛适用于多种细胞系包括HEK-293、HEK293T、CHO-K1、COS-1、COS-7、NIH/3T3、Sf9、HepG2和Hela细胞等,转染效率高达80%~90%。

PEI 40000与PEI 25000转染试剂相比,具有很多优点。包括:1. PEI 40000较易溶解,可直接在水中溶解,PEI 25000需要先把水调成弱酸性助其溶解,溶解后再用NaOH把pH调至中性;2. PEI 40000操作简便,更易于使用,且比PEI 25000的转染效果好;3. PEI 25000含有4-11%的丙酰基残留,其能阻止聚合物主链与DNA结合。相较于PEI 25000,PEI 40000是完全脱落的结构,因此其性能始终高效如一。

本产品为速溶型,溶解迅速,配制方便。

 

产品信息

货号

40816ES02 / 40816ES03

规格

100mg / 1g

CAS No.

49553-93-7

分子式

(CH2CH2NH)n

分子量

40,000

外观

白色至灰白色固体

溶解性

溶于水,不溶于有机溶剂:苯,乙醚和丙酮

结构式

 

 

 

线性化聚乙烯亚胺PEI 40000转染试剂 线性PEI转染试剂|Polyethylenimine Linear(PEI) MW40000(rapid lysis)

 

组分信息

组分编码

组分名称

40816ES02

40816ES03

40816

Polyethylenimine Linear(PEI) MW40000(rapid lysis)

线性PEI转染试剂(速溶型)MW40000

100 mg

1 g

 

储存条件

室温密封保存,有效期2年。储存液2-8 ºC保存,有效期3个月。

 

使用说明

1.储存液配置

1)材料

PEI 40000、Milli-Q® 水/注射用水(WFI)或类似的生物级水、1 mol/L氢氧化钠(NaOH)、一次性0.1~0.2 μm PES真空无菌过滤器、无菌HDPE或聚丙烯储存瓶。

2)配置储存液(1 mg/mL)

a. 于1 L玻璃烧杯,将1 g PEI 40000粉末加入900 mL Milli-Q®超纯水或其他相当级别的生物用水中,在磁子搅拌器上搅拌均匀。

b. 待PEI 40000完全溶解(通常不到5 min)。

c. 用1 mol/L氢氧化钠 (NaOH)溶液调节pH为6.80 – 6.90。

d. 将溶液转入量筒内,并加水定容到1 L。

e. 用一次性0.1~0.2 µm PES真空过滤器过滤除菌,即得到1 mg/mL的储存液。

f. 根据需要分装并储存在4 °C,3个月稳定。

2. 转染操作流程(以6孔板为例)

1)接种细胞

为了提高转染效率,建议在转染前一天接种细胞,以转染时细胞密度在70%~80%为宜。

2)配制DNA-PEI核酸-转染试剂复合物

a. 对于每孔细胞,使用100 μL无血清培养基稀释2 μg目的DNA,充分混匀成DNA稀释液。

*无血清稀释液建议采用Opti-MEM或ddH2O

b. 立刻向100 μL的DNA稀释液中加入4 μL的PEI 40000转染试剂,轻轻混匀。

c. 在室温下孵育10~15 min,使得形成DNA-PEI阳离子核酸转染试剂复合物。

3)转染细胞

a. 在形成复合物过程中,移除细胞生长培养基,每孔中加入2 mL新鲜预热的完全培养基。

b. 直接将100 μL DNA-PEI核酸-PEI复合物加入细胞中,摇动培养板,轻轻混匀。

c. 37 ℃,5% CO2培养箱培养,转染后最快5 h即可检测到转入基因的表达。请自行确定适合检测时间。

4)稳转筛选(可选)

转染24 h后,将细胞传代至新鲜的生长培养基中(将细胞稀释10倍以上),37 ℃,5% CO2培养箱孵育过夜。第二天加入与转染抗性基因相匹配的筛选药物。约1~2周可筛选到耐药性克隆,在这期间需经常更换含筛选药物的生长培养基。

不同细胞培养容器转染用量(仅供参考):

培养皿

表面积(cm2

DNA的量(μg)

转染试剂的量(μL)

稀释液体积(μL)

培养基总量

96孔板

0.3

0.1

0.1

10

100 μL

48孔板

0.7

0.2

0.3

20

200 μL

24孔板

1.9

0.5

1

50

500 μL

12孔板

3.8

1

2

50

1mL

6孔板

10

2

4

100

2 mL

25cm2培养瓶

21

4

8

200

4 mL

75cm2培养瓶

58

10

20

500

10 mL

 

注意事项

1.本品为盐酸盐形式的聚乙烯亚胺,具有易结块倾向。

2.对大多数细胞来而言,每1 μg DNA 使用3.0 μL PEI 40000转染试剂都能获得较高转染效率。也可尝试每1 μg DNA使用 1.5~4 μL体积线性PEI 40000转染试剂进行优化。

3.为了您的安全和健康,请穿实验服并戴一次性手套及通风橱操作。

4.本产品仅用于科研用途,不可用于人体。

 

Ver.CN20230828

 

Q:配置PEI溶液的时候,不调PH是否可以?

A:不可以,PH值对转染效率核细胞状态影响比较大,必须调PH

Q:多配置一点母液冻存起来是否会延长效期?

A:不建议冻存,储存液4℃保存3个月

Q:转染后是否需要换液?

A:若转染前进行了换液,可不进行换液,若需要换液可在转染后6-8h可以进行换液。

Q:转染的时候是否需要无血清培养基培养?

A:制备复合物的时候需要使用无血清培养基,加入细胞中的时候不要求无血清培养

Q:使用氢氧化钠调节之后溶液变浑浊了?怎么办?

A:建议调PH的时候慢慢调节,变浑浊了会引起化合物的变化。若出现浑浊建议先可以用盐酸调到PH2-3左右,溶液变为澄清液体,然后再用氢氧化钠调节PH=6.8左右即可。

Q:转染形成复合物的时候过量加入的DNA和转染试剂的量比较多的时候有沉淀絮状物析出,为什么呢?

A:可能是DNA的纯度不是很纯,有杂质,某种物质引起的PEI析出浑浊,如果把DNA的量降下来会减少这种现象。不建议转染的时候加入过多的质粒和转染试剂,转染试剂效率较高不需要额外提高。

Q:10ml的PEI溶液大概用了多少氢氧化钠溶液呢?

A:客户提供的数据可参考,10ml大概需要400ul的氢氧化钠溶液。建议慢慢调,根据自己的配置情况而定,建议用10ul的墙头调PH,如果PH值过大,溶液浑浊了再调回6.8,可能会影响转染效率。

[1] Luo J, Yang Q, Zhang X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022;185(6):980-994.e15. doi:10.1016/j.cell.2022.02.010(IF:41.584)
[2] Chen Y, Luo R, Li J, et al. Intrinsic Radical Species Scavenging Activities of Tea Polyphenols Nanoparticles Block Pyroptosis in Endotoxin-Induced Sepsis [published correction appears in ACS Nano. 2022 Mar 3;:]. ACS Nano. 2022;16(2):2429-2441. doi:10.1021/acsnano.1c08913(IF:15.881)
[3] Chen ZH, Yan SM, Chen XX, et al. The genomic architecture of EBV and infected gastric tissue from precursor lesions to carcinoma. Genome Med. 2021;13(1):146. Published 2021 Sep 7. doi:10.1186/s13073-021-00963-2(IF:11.117)
[4] Huang G, Liu D, Wang W, et al. High-resolution structures of human Nav1.7 reveal gating modulation through α-π helical transition of S6IV. Cell Rep. 2022;39(4):110735. doi:10.1016/j.celrep.2022.110735(IF:9.423)
[5] Tian X, Liu L, Jiang W, Zhang H, Liu W, Li J. Potent and Persistent Antibody Response in COVID-19 Recovered Patients. Front Immunol. 2021;12:659041. Published 2021 May 28. doi:10.3389/fimmu.2021.659041(IF:7.561)
[6] Lin J, Chen Z, Yang L, et al. Cas9/AAV9-Mediated Somatic Mutagenesis Uncovered the Cell-Autonomous Role of Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2 in Murine Cardiomyocyte Maturation. Front Cell Dev Biol. 2022;10:864516. Published 2022 Apr 1. doi:10.3389/fcell.2022.864516(IF:6.684)
[7] Nian F, Qian Y, Xu F, Yang M, Wang H, Zhang Z. LDHA promotes osteoblast differentiation through histone lactylation. Biochem Biophys Res Commun. 2022;615:31-35. doi:10.1016/j.bbrc.2022.05.028(IF:3.575)