脂质体核酸转染试剂 脂质体转染试剂|Hieff Trans™ Liposomal Transfection Reagent

脂质体核酸转染试剂 脂质体转染试剂|Hieff Trans™ Liposomal Transfection Reagent

产品说明书

FAQ

COA

已发表文献

产品描述

Hieff Trans®脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNARNA和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸Hieff Trans®复合物或更换新鲜培养基,也可在46小时后除去。

Hieff Trans®脂质体核酸转染试剂以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5 μL左右,则1 mL 约可做660 次转染;对于6孔板,每次用6 μL左右,则1 mL约可做160 次转染

 

运输与保存方法

冰袋(wet ice)运输。产品2-8ºC保存,一年有效。不可冷冻!

 

注意事项

1. Hieff Trans®脂质体核酸转染试剂要求细胞铺板密度较高,以60%-80%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响具体铺板密度需要预实验摸索;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。

2. Hieff Trans®脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM就不相容。

3. 转染的时候培养基中不能添加抗生素。

4. 使用高纯度的DNARNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。

5. 阳离子脂质体应该在2-8ºC保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。

6. 初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 µg DNA1-1.5 µL 转染试剂。通过调整DNA/Hieff Trans®脂质体核酸转染试剂比例优化转染效率,DNAμg: 试剂μL)比值在1:0.5-1:5

7. 本产品仅作科研用途!

 

操作流程(以24孔板为例,其他培养板加样体积请参考表一) 

【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。

贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为70-95%0.5-2 × 105 cells/well for a 24-well plate)。

悬浮细胞:转染当天,配制DNA复合物之前,24孔板中细胞铺板,每500 µL生长培养基(不含抗生素)中加入4-8 × 105 cells

1. 按照以下体系配制DNA-Hieff Trans®脂质体核酸转染试剂复合物:

1)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.5 μg DNA。混匀。

2)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.6-2.5 μL Hieff Trans®脂质体核酸转染试剂。

 

Hieff Trans®脂质体核酸转染试剂稀释后室温孵育5 min(在30 min内同稀释的DNA 混合,保温时间过长会降低活性)

【注意】:即使脂质体核酸转染试剂使用OPTI-MEM 稀释,细胞也可以使用DMEM培养。如果DMEM作为脂质体核酸转染试剂的稀释液,必须在5 min内同稀释的DNA混合。

2. 混合稀释的DNA和稀释的脂质体核酸转染试剂(总体积100 µL),轻轻混匀,并在室温(15-25)孵育20 min,使得DNA-脂质体复合物形成。此时溶液可能会混浊,但不会影响转染。

【注意】DNA-脂质体复合物室温至少稳定保存5 h

3. 直接将100 µL DNA-Hieff Trans®复合物加入到细胞培养板每个孔中,摇动培养板,轻轻混匀。

【注意】:如果在无血清条件下转染,使用含血清的正常生长培养基进行细胞铺板。在加入复合物前移去生长培养基,替换为500 µL无血清培养基。

4. 375% CO2培养箱培养24-48 h,直至进行转基因表达分析,无需去掉复合物或更换培养基。然而,可能有必要在4-6 h后更换生长培养基,不会降低转染活性。

稳转细胞株:转染24 h后,按照1:10或更高比例在细胞中加入新鲜生长培养基,转染48 h后加入筛选培养基。

悬浮细胞株:在细胞中加入DNA-Hieff Trans®复合物后,如果需要可以4 h后加入PMA/PHA。对于Jurkat细胞,PHAPMA的终浓度分别为1 µg/mL50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

 

转染体系的调整

对于不同的细胞培养板,Hieff Trans®脂质体核酸转染试剂、DNA、细胞和培养基的使用量会有所不同,具体请参考下表(表一)。对于96 孔板培养,不需要提前一天进行细胞铺板,可以直接在平板中制备复合物,然后将细胞悬浮液加入到复合物就可以了,这样进一步减少了转染时间。这种改进步骤已经过293-H293-FCOS-7LCHO细胞的试验,同传统方法相比活性稍低。快捷的步骤和蛋白表达细胞系的高效转染使得脂质体核酸转染试剂非常适用于96 孔板的高通量转染,比如cDNA文库的筛选和蛋白瞬时表达。

表一 在不同的培养容器中转染,脂质体核酸转染试剂,核酸,细胞和培养基的用量

Culture vessel

Surf. area per well1

Shared reagents

DNA transfection

RNAi transfection

Vol. of plating medium

Vol. of dilution medium2

DNA

脂质体核酸转染试剂

RNA

脂质体核酸转染试剂

96-well

0.3 cm2

100 μL

2×25 μL

0.1 μg

0.2-0.5 μL

5 pmol

0.25 μL

24-well

2 cm2

500 μL

2×50 μL

0.5 μg

0.6-2.5 μL

20 pmol

1.0 μL

12-well

4 cm2

1 mL

2×100 μL

1 μg

2-4.5 μL

40 pmol

2.0 μL

6-well

10 cm2

2 mL

2×250 μL

2-4 μg

5-10 μL

100 pmol

5 μL

60-mm

20 cm2

5 mL

2×0.5 mL

4-8 μg

10-20 μL

200 pmol

10 μL

10-cm

60 cm2

15 mL

2×1.5 mL

12-24μg

30-60 μL

600 pmol

30 μL

1 不同厂商提供的细胞培养板表面积可能有所不同;

2 稀释DNARNAi所用的培养基体积。

【注】:该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。使用时DNAμg: Hieff Trans®μL)比值保持在1:0.5-1:5

 

相关产品

名称

货号

规格

价格(元)

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T

625.00

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml

40804ES76

500 μL

180.00

40804ES86

5×500 μL

500.00

Hieff Trans® Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

948.00

40805ES03

1.0 mL

1678.00

40805ES08

5×1 mL

5268.00

Hieff Trans® in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES02

0.5 mL

1472.00

40806ES03

1.0 mL

2572.00

Polyethylenimine Linear(PEI) MW25000 线性PEI转染试剂MW25000

40815ES03

1 g

1855.00

40815ES08

5×1 g

7255.00

Polyethylenimine Linear(PEI) MW40000rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

655.00

40816ES03

1 g

1855.00

HB220930

 

Q:脂质体转染的效率多少,毒性如何?

A:有些细胞如 293T293FT、Hela 等转染效率基本在85%以上;所有阳离子脂质体转染试剂对细胞都会存在一定的毒性,但是我们公司的转染试剂经过配方优化后其毒性大大降低,且转染效率也有进一步提升。

Q:转染试剂转染后需要换液吗?

A:对于换液可以区分两种情况;1、转染之前如果没有换液应在转染 6 小时左右后换液,以保证细胞生长所需营养,2、如果转染之前如果有换液,可以按照平时等到培养基出现营养不足时换液。

Q:转染试剂转单个质粒和多质粒共转的效率如何?

A:单转效率对于验证过的细胞效率都是很好,可以参考FAQ-验证过的细胞系,对于共转由于要涉及到质粒的混合比例和质粒与转染试剂的添加比例问题,因此具体的效率需要做相应的验证。

Q:转染试剂可以冻存吗?

A:不可以冻存,因为转染试剂是一种脂质体阳离子转染试剂,由于脂质体是不能在低温下冻存,因此转染试剂最好是 4 度储存,保持最好的转染效能。

Q:转染实验过程中是否需要更换成无血清培养基?

A:不需要,我们的转染试剂可以在含血清的介质中进行转染的过程。

Q:转染后需要进行终止反应吗?

A:不需要。脂质体复合物可以稳定存在 6 个小时。如果在进行转染前没有进行细胞换液,为了保证细胞正常生长所需的营养,需要在 4~6 小时后换用新的培养基。但如果转染之前已进行过换液则在脂质体转染后不需要进行再次换液。

Q:转染试剂毒性相比之前的批次大?

A:40802产品进行的工艺优化,纯度增高,相应的转染效率也随之变高,建议质粒与转染试剂的比例在1:2进行调整,一旦出现细胞死亡的现象,降低转染试剂比列。或者转染6h后进行换液。

Q: 它的大致成分和脂质体粒径,我们可以提供吗?

A: 提供不了粒径取决于客户的核酸和实验条件的 不是一个绝对值的。

Q:是稳转特制的转染试剂吗?若不是特制的转染试剂,那是特制的质粒才能进行稳转吗?

A:不是稳转特制的转染试剂,普通的转染试剂。质粒要求:稳转的质粒是普通的质粒,只是需要带有抗性,便于后期的筛选。建议:其中质粒转染受制于质粒大小、转染介质的限制,对很多细胞转染效率低,而且质粒整合入细胞基因组的效率极低,所以构建稳转株的成功率不高,请知悉,若做稳转细胞株,建议进行慢病毒包装(货号:41102)。

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF:54.908)
[2] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x(IF:27.401)
[3] Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14(7):720-728. doi:10.1038/nmeth.4306(IF:25.062)
[4] Zhang Q, He X, Yao S, et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 2021;49(8):4689-4704. doi:10.1093/nar/gkab228(IF:16.971)
[5] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626(IF:16.971)
[6] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Adv Sci (Weinh). 2022;9(8):e2104055. doi:10.1002/advs.202104055(IF:16.806)
[7] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874(IF:16.806)
[8] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817(IF:16.806)
[9] Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599-1612. doi:10.1080/15548627.2021.1994296(IF:16.016)
[10] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19(1):128. Published 2020 Aug 24. doi:10.1186/s12943-020-01246-x(IF:15.302)
[11] Huang K, Chen X, Li C, et al. Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol. 2021;17(12):1289-1295. doi:10.1038/s41589-021-00884-6(IF:15.040)
[12] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[13] Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun. 2022;13(1):597. Published 2022 Feb 1. doi:10.1038/s41467-022-28300-0(IF:14.919)
[14] Wu C, Wang C, Zheng J, et al. Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano. 2015;9(8):7913-7924. doi:10.1021/acsnano.5b01685(IF:12.881)
[15] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[16] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:12.121)
[17] Song L, Liu Z, Hu HH, et al. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020;11(1):5842. Published 2020 Nov 17. doi:10.1038/s41467-020-19694-w(IF:12.121)
[18] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[19] Du L, Xie Y, Zheng K, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication [published online ahead of print, 2021 Nov 26]. Redox Biol. 2021;48:102199. doi:10.1016/j.redox.2021.102199(IF:11.799)
[20] Cen M, Ouyang W, Zhang W, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936. doi:10.1016/j.redox.2021.101936(IF:11.799)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[22] Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-6292. Published 2021 Apr 15. doi:10.7150/thno.57455(IF:11.556)
[23] Hao Q, Li J, Zhang Q, et al. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med. 2021;11(8):e500. doi:10.1002/ctm2.500(IF:11.492)
[24] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[25] Liu Z, Chen S, Xie W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther. 2022;30(1):256-267. doi:10.1016/j.ymthe.2021.06.013(IF:11.454)
[26] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF:11.161)
[27] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1(IF:11.161)
[28] Chen P, Zhou J, Wan Y, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. Published 2020 Mar 25. doi:10.1186/s13059-020-01989-2(IF:10.806)
[29] Wu Y, Zhao Y, Huan L, et al. An LTR Retrotransposon-Derived Long Noncoding RNA lncMER52A Promotes Hepatocellular Carcinoma Progression by Binding p120-Catenin. Cancer Res. 2020;80(5):976-987. doi:10.1158/0008-5472.CAN-19-2115(IF:9.727)
[30] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[31] Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids. 2022;27:1156-1163. Published 2022 Jan 28. doi:10.1016/j.omtn.2022.01.019(IF:8.886)
[32] Jia J, Kang Q, Liu S, et al. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962-1977. doi:10.1111/bph.15769(IF:8.740)
[33] Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162-179. doi:10.1016/j.canlet.2020.08.033(IF:8.679)
[34] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[35] Hao Q, Chen J, Liao J, et al. p53 induces ARTS to promote mitochondrial apoptosis. Cell Death Dis. 2021;12(2):204. Published 2021 Feb 24. doi:10.1038/s41419-021-03463-8(IF:8.469)
[36] Zhu C, Zhang L, Zhao S, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. Published 2021 May 21. doi:10.1038/s41419-021-03798-2(IF:8.469)
[37] Liu J, Zang Y, Ma C, et al. Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis. 2022;13(3):268. Published 2022 Mar 25. doi:10.1038/s41419-022-04696-x(IF:8.469)
[38] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[39] Li W, Yang S, Xu P, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861. doi:10.1016/j.ebiom.2022.103861(IF:8.143)
[40] Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020;30(1):98-111.e5. doi:10.1016/j.celrep.2019.12.017(IF:8.109)
[41] Zhang K, Zhao X, Chen X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018;10(36):30081-30091. doi:10.1021/acsami.8b08449(IF:8.097)
[42] Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981-1997. doi:10.1038/s41418-019-0475-6(IF:8.086)
[43] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096-1114. Published 2019 Jan 30. doi:10.7150/thno.29673(IF:8.063)
[44] Ji P, Wu W, Chen S, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26(12):3444-3460.e5. doi:10.1016/j.celrep.2019.02.078(IF:7.815)
[45] Guo X, Xu X, Li T, et al. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol. 2021;12:749979. Published 2021 Sep 22. doi:10.3389/fimmu.2021.749979(IF:7.561)
[46] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[47] Feng C, Chen T, Mao D, Zhang F, Tian B, Zhu X. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020;5(10):3116-3123. doi:10.1021/acssensors.0c01166(IF:7.333)
[48] Jiang Y, Tong K, Yao R, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci. 2021;11(1):140. Published 2021 Jul 22. doi:10.1186/s13578-021-00644-y(IF:7.133)
[49] He T, Shen H, Wang S, et al. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. Mol Ther Nucleic Acids. 2020;22:572-583. Published 2020 Sep 26. doi:10.1016/j.omtn.2020.09.024(IF:7.032)
[50] Liu J, Xu W, Wang K, et al. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol. 2022;195:475-482. doi:10.1016/j.ijbiomac.2021.12.044(IF:6.953)
[51] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[52] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[53] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[54] Li Y, Zhang J, Li S, et al. Heterogeneous Nuclear Ribonucleoprotein A1 Loads Batched Tumor-Promoting MicroRNAs Into Small Extracellular Vesicles With the Assist of Caveolin-1 in A549 Cells. Front Cell Dev Biol. 2021;9:687912. Published 2021 Jun 17. doi:10.3389/fcell.2021.687912(IF:6.684)
[55] Huang Y, Xie B, Cao M, et al. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol. 2021;9:730538. Published 2021 Sep 21. doi:10.3389/fcell.2021.730538(IF:6.684)
[56] Liu WL, Guan Q, Wen D, et al. PRDM16 Inhibits Cell Proliferation and Migration via Epithelial-to-Mesenchymal Transition by Directly Targeting Pyruvate Carboxylase in Papillary Thyroid Cancer. Front Cell Dev Biol. 2021;9:723777. Published 2021 Nov 2. doi:10.3389/fcell.2021.723777(IF:6.684)
[57] Li F, Zhao H, Su M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine. 2019;45:208-219. doi:10.1016/j.ebiom.2019.06.017(IF:6.680)
[58] Li L, Zhang C, Wang P, et al. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem. 2019;91(6):3869-3876. doi:10.1021/acs.analchem.8b04292(IF:6.350)
[59] Meng J, Liu K, Shao Y, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11(2):137. Published 2020 Feb 20. doi:10.1038/s41419-020-2327-1(IF:6.304)
[60] Hao Q, Wang J, Chen Y, et al. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis. 2020;11(3):197. Published 2020 Mar 20. doi:10.1038/s41419-020-2393-4(IF:6.304)
[61] Han T, Tong J, Wang M, et al. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol. 2022;12:821366. Published 2022 Jun 3. doi:10.3389/fonc.2022.821366(IF:6.244)
[62] Cao G, Li P, He X, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021;11:649029. Published 2021 Jun 4. doi:10.3389/fonc.2021.649029(IF:6.244)
[63] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[64] Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol. 2021;13(2):141-150. doi:10.1093/jmcb/mjaa065(IF:6.216)
[65] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[66] Li J, Zhu D, Hu S, Nie Y. CRISPR-CasRx knock-in mice for RNA degradation [published online ahead of print, 2022 Apr 7]. Sci China Life Sci. 2022;10.1007/s11427-021-2059-5. doi:10.1007/s11427-021-2059-5(IF:6.038)
[67] Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci. 2021;64(8):1355-1367. doi:10.1007/s11427-020-1775-2(IF:6.038)
[68] Tao R, Shi M, Zou Y, et al. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med. 2018;121:26-37. doi:10.1016/j.freeradbiomed.2018.04.562(IF:6.020)
[69] Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019;10(10):737. Published 2019 Sep 30. doi:10.1038/s41419-019-1977-3(IF:5.959)
[70] Lu W, Wang Q, Xu C, et al. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 2021;23(1):129-139. doi:10.1016/j.neo.2020.11.013(IF:5.696)
[71] Zhou X, Jian W, Luo Q, et al. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY). 2022;14(7):3105-3128. doi:10.18632/aging.203996(IF:5.682)
[72] Ji C, Hu J, Wang X, et al. Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY). 2021;13(7):9627-9645. doi:10.18632/aging.202707(IF:5.682)
[73] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[74] Jin R, Gao Q, Yin C, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102(8):794-804. doi:10.1038/s41374-022-00773-z(IF:5.662)
[75] Wang X, Lu X, Wang P, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med. 2022;20(1):198. Published 2022 May 4. doi:10.1186/s12967-022-03399-3(IF:5.531)
[76] Zhang L, Li YM, Zeng XX, et al. Galectin-3- Mediated Transdifferentiation of Pulmonary Artery Endothelial Cells Contributes to Hypoxic Pulmonary Vascular Remodeling. Cell Physiol Biochem. 2018;51(2):763-777. doi:10.1159/000495331(IF:5.500)
[77] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[78] Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol. 2021;18(6):863-874. doi:10.1080/15476286.2020.1827193(IF:5.350)
[79] Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022;101:154133. doi:10.1016/j.phymed.2022.154133(IF:5.340)
[80] Jiang H, Song S, Li J, Yin Q, Hu S, Nie Y. Establishment and characterization of an immortalized epicardial cell line [published online ahead of print, 2021 Apr 6]. J Cell Mol Med. 2021;25(13):6070-6081. doi:10.1111/jcmm.16496(IF:5.310)
[81] Xu P, Tang J, He ZG. Induction of Endoplasmic Reticulum Stress by CdhM Mediates Apoptosis of Macrophage During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol. 2022;12:877265. Published 2022 Apr 4. doi:10.3389/fcimb.2022.877265(IF:5.293)
[82] Xu Y, Chen X, Zhao C, et al. MiR-99b-5p Attenuates Adipogenesis by Targeting SCD1 and Lpin1 in 3T3-L1 Cells. J Agric Food Chem. 2021;69(8):2564-2575. doi:10.1021/acs.jafc.0c07451(IF:5.279)
[83] Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021;384(2):353-366. doi:10.1007/s00441-021-03412-z(IF:5.249)
[84] Song L, Zhang L, Zhou Y, et al. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Discov. 2022;8(1):219. Published 2022 Apr 21. doi:10.1038/s41420-022-01023-3(IF:5.241)
[85] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[86] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[87] Sun H, Xu X, Luo J, et al. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis [published online ahead of print, 2022 Jun 17]. Neurosci Bull. 2022;10.1007/s12264-022-00893-y. doi:10.1007/s12264-022-00893-y(IF:5.203)
[88] Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466. doi:10.1016/j.jbc.2021.100466(IF:5.157)
[89] Ge H, Zhang D, Shi M, Lian X, Zhang Z. Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs. 2021;19(2):79. Published 2021 Jan 31. doi:10.3390/md19020079(IF:5.118)
[90] Zhang Y, Wang Q, Wang Z, et al. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne). 2021;8:739624. Published 2021 Nov 11. doi:10.3389/fmed.2021.739624(IF:5.093)
[91] Li Y, Feng R, Yu X, et al. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma [published correction appears in Life Sci. 2022 Jun 1;298:120493]. Life Sci. 2022;296:120447. doi:10.1016/j.lfs.2022.120447(IF:5.037)
[92] Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690. doi:10.1007/s13402-019-00455-x(IF:5.020)
[93] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[94] Li X, Yu H, Liang L, et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097. doi:10.1016/j.bcp.2020.114097(IF:4.960)
[95] Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. Published 2022 Apr 14. doi:10.3390/biom12040575(IF:4.879)
[96] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[97] Wang Y, Zhao L, Han X, et al. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol. 2020;9:1487. Published 2020 Jan 28. doi:10.3389/fonc.2019.01487(IF:4.848)
[98] Wang X, Lu B, Dai C, et al. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol. 2020;10:46. Published 2020 Feb 3. doi:10.3389/fonc.2020.00046(IF:4.848)
[99] Li P, Cao G, Zhang Y, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020;12(1):53-69. doi:10.18632/aging.102564(IF:4.831)
[100] Wang S, Hao Q, Li J, et al. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis. 2020;9(3):705-716. Published 2020 Nov 21. doi:10.1016/j.gendis.2020.11.007(IF:4.803)
[101] Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. J Immunol. 2019;203(11):3023-3036. doi:10.4049/jimmunol.1900556(IF:4.718)
[102] Zhang D, Liu R, Bao C, et al. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjug Chem. 2019;30(1):184-191. doi:10.1021/acs.bioconjchem.8b00827(IF:4.485)
[103] Zhou Y, Zhang S, Min Z, Yu Z, Zhang H, Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer. 2021;21(1):1085. Published 2021 Oct 7. doi:10.1186/s12885-021-08779-4(IF:4.430)
[104] Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 2019;21(4):e12984. doi:10.1111/cmi.12984(IF:4.410)
[105] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[106] Papadaki S, Wang X, Wang Y, et al. Dual-expression system for blue fluorescent protein optimization. Sci Rep. 2022;12(1):10190. Published 2022 Jun 17. doi:10.1038/s41598-022-13214-0(IF:4.380)
[107] Cai J, Huang H, Hu X, et al. Homoharringtonine Synergized with Gilteritinib Results in the Downregulation of Myeloid Cell Leukemia-1 by Upregulating UBE2L6 in FLT3-ITD-Mutant Acute Myeloid (Leukemia) Cell Lines. J Oncol. 2021;2021:3766428. Published 2021 Sep 21. doi:10.1155/2021/3766428(IF:4.375)
[108] Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett. 2021;351:53-64. doi:10.1016/j.toxlet.2021.08.010(IF:4.374)
[109] Jin YY, Lin H, Cao L, et al. A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery. Virol Sin. 2021;36(5):913-923. doi:10.1007/s12250-021-00385-9(IF:4.327)
[110] Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med. 2018;22(6):3167-3182. doi:10.1111/jcmm.13597(IF:4.302)
[111] Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells [published online ahead of print, 2022 Apr 11]. J Genet Genomics. 2022;S1673-8527(22)00088-1. doi:10.1016/j.jgg.2022.03.007(IF:4.275)
[112] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep. 2017;7(1):17597. Published 2017 Dec 14. doi:10.1038/s41598-017-17604-7(IF:4.259)
[113] Wang XY, Zhu BR, Jia Q, Li YM, Wang T, Wang HY. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J Agric Food Chem. 2020;68(45):12617-12630. doi:10.1021/acs.jafc.0c04898(IF:4.192)
[114] Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther. 2021;15:5135-5150. Published 2021 Dec 24. doi:10.2147/DDDT.S344052(IF:4.162)
[115] Liu J, Zhou J, Zhou J, et al. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology. 2020;444:152581. doi:10.1016/j.tox.2020.152581(IF:4.099)
[116] Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. Published 2021 Feb 15. (IF:4.060)
[117] Wang Q, Zhang Q, Luan S, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315. doi:10.1016/j.bioorg.2019.103315(IF:3.926)
[118] Yang KY, Wu CR, Zheng MZ, et al. Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorg Chem. 2019;92:103186. doi:10.1016/j.bioorg.2019.103186(IF:3.926)
[119] Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway [retracted in:  J Cell Physiol. 2022 Apr;237(4):2296]. J Cell Physiol. 2019;234(2):1442-1451. doi:10.1002/jcp.26950(IF:3.923)
[120] Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol. 2019;234(4):4840-4850. doi:10.1002/jcp.27282(IF:3.923)
[121] Chen L, Liu H, Ji Y, et al. Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res. 2022;415(2):113138. doi:10.1016/j.yexcr.2022.113138(IF:3.905)
[122] Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses. 2019;11(2):99. Published 2019 Jan 24. doi:10.3390/v11020099(IF:3.811)
[123] Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther. 2022;36(4):605-618. doi:10.1007/s10557-021-07182-2(IF:3.727)
[124] Yang Y, Xiang K, Sun D, et al. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1 [published correction appears in Bioorg Med Chem. 2022 Mar 15;58:116655]. Bioorg Med Chem. 2021;36:116095. doi:10.1016/j.bmc.2021.116095(IF:3.641)
[125] Wang C, Su L, Shao YM, et al. Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B. Toxicol Appl Pharmacol. 2019;384:114775. doi:10.1016/j.taap.2019.114775(IF:3.585)
[126] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[127] Hu S, Ouyang J, Zheng G, et al. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun. 2022;615:163-171. doi:10.1016/j.bbrc.2022.05.046(IF:3.575)
[128] Meng J, Zhang C, Wang D, Zhu L, Wang L. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2 [published online ahead of print, 2022 Jun 28]. Biochem Biophys Res Commun. 2022;621:1-7. doi:10.1016/j.bbrc.2022.06.092(IF:3.575)
[129] Wang HD, Guo LJ, Feng ZQ, et al. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis. 2020;15(1):240. Published 2020 Sep 9. doi:10.1186/s13023-020-01492-8(IF:3.523)
[130] Li P, Jin Y, Qi F, et al. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol. 2018;8:113. Published 2018 Apr 9. doi:10.3389/fcimb.2018.00113(IF:3.520)
[131] Wang Z, Wu J, Jiang J, et al. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. Allergy Asthma Clin Immunol. 2022;18(1):55. Published 2022 Jun 19. doi:10.1186/s13223-022-00697-9(IF:3.406)
[132] Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice [published correction appears in Neuroscience. 2018 May 9;:]. Neuroscience. 2018;374:61-69. doi:10.1016/j.neuroscience.2018.01.040(IF:3.382)
[133] Yang J, Shen Y, Yang X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350-F1358. doi:10.1152/ajprenal.00254.2019(IF:3.323)
[134] Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi:10.1016/j.virusres.2021.198594(IF:3.303)
[135] Luo L, Zhu D, Huang R, et al. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019;87:62-72. doi:10.1016/j.fsi.2018.12.078(IF:3.298)
[136] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[137] Li F, Su M, Zhao H, et al. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res. 2019;11(11):7035-7048. Published 2019 Nov 15. (IF:3.266)
[138] Sun H, Han L, Zhang X, et al. Case Report: Characterization of a Novel NONO Intronic Mutation in a Fetus With X-Linked Syndromic Mental Retardation-34. Front Genet. 2020;11:593688. Published 2020 Nov 16. doi:10.3389/fgene.2020.593688(IF:3.260)
[139] Li Y, Zhu T, Yang H, et al. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain. 2018;14:1744806918782229. doi:10.1177/1744806918782229(IF:3.205)
[140] Zhu D, Huang R, Chen L, et al. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019;86:335-346. doi:10.1016/j.fsi.2018.11.057(IF:3.185)
[141] Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. Environ Toxicol. 2021;36(2):267-275. doi:10.1002/tox.23032(IF:3.118)
[142] Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett. 2019;17(2):2131-2140. doi:10.3892/ol.2018.9862(IF:2.967)
[143] Zhou XM, Liu J, Wang Y, et al. microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats [published online ahead of print, 2018 Jan 27] [retracted in:  J Cell Biochem. 2021 Nov;122 Suppl 1:S92]. J Cell Biochem. 2018;10.1002/jcb.26704. doi:10.1002/jcb.26704(IF:2.959)
[144] Zhu C, Song Z, Chen Z, et al. MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol (Amst). 2022;2022:4213401. Published 2022 May 19. doi:10.1155/2022/4213401(IF:2.916)
[145] Wang X, Ye M, Wu M, et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol. 2020;22(9):1506-1516. doi:10.1007/s12094-020-02286-x(IF:2.737)
[146] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[147] Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. J Healthc Eng. 2022;2022:2373580. Published 2022 Jan 6. doi:10.1155/2022/2373580(IF:2.682)
[148] Zhe J, Chen S, Chen X, et al. A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. Published 2019 Jul 6. doi:10.1186/s13048-019-0537-x(IF:2.469)
[149] Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42-54.e3. doi:10.1016/j.exphem.2018.10.011(IF:2.436)
[150] Yu T, Ling Q, Xu M, et al. ORF8 protein of SARS-CoV-2 reduces male fertility in mice. J Med Virol. 2022;94(9):4193-4205. doi:10.1002/jmv.27855(IF:2.327)
[151] Dai Y, Nie J, Luo Z, Nie D. Expression profile analysis of a new testis-specifically expressed gene C17ORF64 and its association with cell apoptosis in MCF-7 cells. Mol Biol Rep. 2021;48(2):1521-1529. doi:10.1007/s11033-021-06191-6(IF:2.316)
[152] Jiang T, Zhou B, Li YM, Yang QY, Tu KJ, Li LY. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol Lett. 2020;20(2):1360-1368. doi:10.3892/ol.2020.11641(IF:2.311)
[153] Wei P, Guo J, Xue W, Zhao Y, Yang J, Wang J. RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1038-1046. doi:10.1093/abbs/gmy106(IF:2.224)
[154] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[155] Gao X, Peng S, Mei S, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324. doi:10.1080/10826068.2021.1941106(IF:2.162)
[156] Li H, Dai Y, Luo Z, Nie D. Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells. Mol Biol Rep. 2019;46(2):2029-2038. doi:10.1007/s11033-019-04651-8(IF:2.107)
[157] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi:10.1016/j.leukres.2019.106198(IF:2.066)
[158] Qiu C, Li C, Tong X, et al. A novel TSC1 frameshift mutation c.1550_1551del causes tuberous sclerosis complex by aberrant splicing and nonsense-mediated mRNA degradation (NMD) simultaneously in a Chinese family. Mol Genet Genomic Med. 2020;8(10):e1410. doi:10.1002/mgg3.1410(IF:1.995)
[159] Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit. 2018;24:7499-7507. Published 2018 Oct 21. doi:10.12659/MSM.910265(IF:1.894)
[160] Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit. 2018;24:7451-7458. Published 2018 Oct 19. doi:10.12659/MSM.910229(IF:1.894)
[161] Li B, Zhang J, Su Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep. 2019;20(4):3793-3801. doi:10.3892/mmr.2019.10617(IF:1.851)
[162] Gao X, Liang K, Mei S, Peng S, Vong EG, Zhan J. An efficient system to generate truncated human angiotensin converting enzyme 2 (hACE2) capable of binding RBD and spike protein of SARS-CoV2. Protein Expr Purif. 2021;184:105889. doi:10.1016/j.pep.2021.105889(IF:1.650)
[163] Deng J, Li D, Mei H, Tang L, Wang HF, Hu Y. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency. BMC Med Genet. 2020;21(1):9. Published 2020 Jan 8. doi:10.1186/s12881-019-0944-2(IF:1.585)
[164] Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett. 2016;12(5):4061-4067. doi:10.3892/ol.2016.5127(IF:1.482)
[165] Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol. 2020;155:295-319. doi:10.1016/bs.mcb.2019.11.008(IF:1.441)
[166] Chen X, Lin Z, Hu J, et al. Report of Two Novel Thalassemia Variants, HBB: c.181delG and HBA1: c.121_126delAAGACC, in Chinese Individuals. Hemoglobin. 2021;45(1):52-55. doi:10.1080/03630269.2021.1883646(IF:0.849)
[167] Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. Int J Clin Exp Pathol. 2020;13(12):3083-3091. Published 2020 Dec 1. (IF:0.252)
[168] Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing [published online ahead of print, 2022 Jun 16]. J Clin Endocrinol Metab. 2022;dgac368. doi:10.1210/clinem/dgac368(IF:0.000)
[169] Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep. 2021;9(12):e05166. Published 2021 Dec 9. doi:10.1002/ccr3.5166(IF:0.000)

产品描述

Hieff Trans®脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNARNA和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸Hieff Trans®复合物或更换新鲜培养基,也可在46小时后除去。

Hieff Trans®脂质体核酸转染试剂以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5 μL左右,则1 mL 约可做660 次转染;对于6孔板,每次用6 μL左右,则1 mL约可做160 次转染

 

运输与保存方法

冰袋(wet ice)运输。产品2-8ºC保存,一年有效。不可冷冻!

 

注意事项

1. Hieff Trans®脂质体核酸转染试剂要求细胞铺板密度较高,以60%-80%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响具体铺板密度需要预实验摸索;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。

2. Hieff Trans®脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM就不相容。

3. 转染的时候培养基中不能添加抗生素。

4. 使用高纯度的DNARNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。

5. 阳离子脂质体应该在2-8ºC保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。

6. 初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 µg DNA1-1.5 µL 转染试剂。通过调整DNA/Hieff Trans®脂质体核酸转染试剂比例优化转染效率,DNAμg: 试剂μL)比值在1:0.5-1:5

7. 本产品仅作科研用途!

 

操作流程(以24孔板为例,其他培养板加样体积请参考表一) 

【注】:转染试剂使用量受细胞类型及其他实验条件影响,建议初次使用时设置梯度进行优化最佳使用量。

贴壁细胞:转染前一天(20-24小时),胰酶消化细胞并计数,细胞铺板(不含抗生素),使其在转染时密度为70-95%0.5-2 × 105 cells/well for a 24-well plate)。

悬浮细胞:转染当天,配制DNA复合物之前,24孔板中细胞铺板,每500 µL生长培养基(不含抗生素)中加入4-8 × 105 cells

1. 按照以下体系配制DNA-Hieff Trans®脂质体核酸转染试剂复合物:

1)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.5 μg DNA。混匀。

2)对于每孔细胞,使用50 μL无血清培养基(如OPTI-MEM 培养基)稀释0.6-2.5 μL Hieff Trans®脂质体核酸转染试剂。

 

Hieff Trans®脂质体核酸转染试剂稀释后室温孵育5 min(在30 min内同稀释的DNA 混合,保温时间过长会降低活性)

【注意】:即使脂质体核酸转染试剂使用OPTI-MEM 稀释,细胞也可以使用DMEM培养。如果DMEM作为脂质体核酸转染试剂的稀释液,必须在5 min内同稀释的DNA混合。

2. 混合稀释的DNA和稀释的脂质体核酸转染试剂(总体积100 µL),轻轻混匀,并在室温(15-25)孵育20 min,使得DNA-脂质体复合物形成。此时溶液可能会混浊,但不会影响转染。

【注意】DNA-脂质体复合物室温至少稳定保存5 h

3. 直接将100 µL DNA-Hieff Trans®复合物加入到细胞培养板每个孔中,摇动培养板,轻轻混匀。

【注意】:如果在无血清条件下转染,使用含血清的正常生长培养基进行细胞铺板。在加入复合物前移去生长培养基,替换为500 µL无血清培养基。

4. 375% CO2培养箱培养24-48 h,直至进行转基因表达分析,无需去掉复合物或更换培养基。然而,可能有必要在4-6 h后更换生长培养基,不会降低转染活性。

稳转细胞株:转染24 h后,按照1:10或更高比例在细胞中加入新鲜生长培养基,转染48 h后加入筛选培养基。

悬浮细胞株:在细胞中加入DNA-Hieff Trans®复合物后,如果需要可以4 h后加入PMA/PHA。对于Jurkat细胞,PHAPMA的终浓度分别为1 µg/mL50 ng/mL,可以提高CMV启动子活性和基因表达。对于K562细胞,只加入PMA足以提高启动子活性。

 

转染体系的调整

对于不同的细胞培养板,Hieff Trans®脂质体核酸转染试剂、DNA、细胞和培养基的使用量会有所不同,具体请参考下表(表一)。对于96 孔板培养,不需要提前一天进行细胞铺板,可以直接在平板中制备复合物,然后将细胞悬浮液加入到复合物就可以了,这样进一步减少了转染时间。这种改进步骤已经过293-H293-FCOS-7LCHO细胞的试验,同传统方法相比活性稍低。快捷的步骤和蛋白表达细胞系的高效转染使得脂质体核酸转染试剂非常适用于96 孔板的高通量转染,比如cDNA文库的筛选和蛋白瞬时表达。

表一 在不同的培养容器中转染,脂质体核酸转染试剂,核酸,细胞和培养基的用量

Culture vessel

Surf. area per well1

Shared reagents

DNA transfection

RNAi transfection

Vol. of plating medium

Vol. of dilution medium2

DNA

脂质体核酸转染试剂

RNA

脂质体核酸转染试剂

96-well

0.3 cm2

100 μL

2×25 μL

0.1 μg

0.2-0.5 μL

5 pmol

0.25 μL

24-well

2 cm2

500 μL

2×50 μL

0.5 μg

0.6-2.5 μL

20 pmol

1.0 μL

12-well

4 cm2

1 mL

2×100 μL

1 μg

2-4.5 μL

40 pmol

2.0 μL

6-well

10 cm2

2 mL

2×250 μL

2-4 μg

5-10 μL

100 pmol

5 μL

60-mm

20 cm2

5 mL

2×0.5 mL

4-8 μg

10-20 μL

200 pmol

10 μL

10-cm

60 cm2

15 mL

2×1.5 mL

12-24μg

30-60 μL

600 pmol

30 μL

1 不同厂商提供的细胞培养板表面积可能有所不同;

2 稀释DNARNAi所用的培养基体积。

【注】:该表使用量仅供参考,具体使用量还需根据细胞类型及其他实验条件进行优化。使用时DNAμg: Hieff Trans®μL)比值保持在1:0.5-1:5

 

相关产品

名称

货号

规格

价格(元)

Calcium Phosphate Cell Transfection Kit 磷酸钙法细胞转染试剂

40803ES70

200 T

625.00

Polybrene (hexadimethrine bromide) 聚凝胺(10 mg/ml

40804ES76

500 μL

180.00

40804ES86

5×500 μL

500.00

Hieff Trans® Suspension Cell-Free Liposomal Transfection Reagent 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

948.00

40805ES03

1.0 mL

1678.00

40805ES08

5×1 mL

5268.00

Hieff Trans® in vitro siRNA/miRNA Transfection Reagent siRNA/miRNA体外转染试剂

40806ES02

0.5 mL

1472.00

40806ES03

1.0 mL

2572.00

Polyethylenimine Linear(PEI) MW25000 线性PEI转染试剂MW25000

40815ES03

1 g

1855.00

40815ES08

5×1 g

7255.00

Polyethylenimine Linear(PEI) MW40000rapid lysis)线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

655.00

40816ES03

1 g

1855.00

HB220930

 

Q:脂质体转染的效率多少,毒性如何?

A:有些细胞如 293T293FT、Hela 等转染效率基本在85%以上;所有阳离子脂质体转染试剂对细胞都会存在一定的毒性,但是我们公司的转染试剂经过配方优化后其毒性大大降低,且转染效率也有进一步提升。

Q:转染试剂转染后需要换液吗?

A:对于换液可以区分两种情况;1、转染之前如果没有换液应在转染 6 小时左右后换液,以保证细胞生长所需营养,2、如果转染之前如果有换液,可以按照平时等到培养基出现营养不足时换液。

Q:转染试剂转单个质粒和多质粒共转的效率如何?

A:单转效率对于验证过的细胞效率都是很好,可以参考FAQ-验证过的细胞系,对于共转由于要涉及到质粒的混合比例和质粒与转染试剂的添加比例问题,因此具体的效率需要做相应的验证。

Q:转染试剂可以冻存吗?

A:不可以冻存,因为转染试剂是一种脂质体阳离子转染试剂,由于脂质体是不能在低温下冻存,因此转染试剂最好是 4 度储存,保持最好的转染效能。

Q:转染实验过程中是否需要更换成无血清培养基?

A:不需要,我们的转染试剂可以在含血清的介质中进行转染的过程。

Q:转染后需要进行终止反应吗?

A:不需要。脂质体复合物可以稳定存在 6 个小时。如果在进行转染前没有进行细胞换液,为了保证细胞正常生长所需的营养,需要在 4~6 小时后换用新的培养基。但如果转染之前已进行过换液则在脂质体转染后不需要进行再次换液。

Q:转染试剂毒性相比之前的批次大?

A:40802产品进行的工艺优化,纯度增高,相应的转染效率也随之变高,建议质粒与转染试剂的比例在1:2进行调整,一旦出现细胞死亡的现象,降低转染试剂比列。或者转染6h后进行换液。

Q: 它的大致成分和脂质体粒径,我们可以提供吗?

A: 提供不了粒径取决于客户的核酸和实验条件的 不是一个绝对值的。

Q:是稳转特制的转染试剂吗?若不是特制的转染试剂,那是特制的质粒才能进行稳转吗?

A:不是稳转特制的转染试剂,普通的转染试剂。质粒要求:稳转的质粒是普通的质粒,只是需要带有抗性,便于后期的筛选。建议:其中质粒转染受制于质粒大小、转染介质的限制,对很多细胞转染效率低,而且质粒整合入细胞基因组的效率极低,所以构建稳转株的成功率不高,请知悉,若做稳转细胞株,建议进行慢病毒包装(货号:41102)。

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF:54.908)
[2] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x(IF:27.401)
[3] Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14(7):720-728. doi:10.1038/nmeth.4306(IF:25.062)
[4] Zhang Q, He X, Yao S, et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 2021;49(8):4689-4704. doi:10.1093/nar/gkab228(IF:16.971)
[5] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626(IF:16.971)
[6] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Adv Sci (Weinh). 2022;9(8):e2104055. doi:10.1002/advs.202104055(IF:16.806)
[7] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874(IF:16.806)
[8] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817(IF:16.806)
[9] Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599-1612. doi:10.1080/15548627.2021.1994296(IF:16.016)
[10] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19(1):128. Published 2020 Aug 24. doi:10.1186/s12943-020-01246-x(IF:15.302)
[11] Huang K, Chen X, Li C, et al. Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol. 2021;17(12):1289-1295. doi:10.1038/s41589-021-00884-6(IF:15.040)
[12] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[13] Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun. 2022;13(1):597. Published 2022 Feb 1. doi:10.1038/s41467-022-28300-0(IF:14.919)
[14] Wu C, Wang C, Zheng J, et al. Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano. 2015;9(8):7913-7924. doi:10.1021/acsnano.5b01685(IF:12.881)
[15] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[16] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:12.121)
[17] Song L, Liu Z, Hu HH, et al. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020;11(1):5842. Published 2020 Nov 17. doi:10.1038/s41467-020-19694-w(IF:12.121)
[18] Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056(IF:11.799)
[19] Du L, Xie Y, Zheng K, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication [published online ahead of print, 2021 Nov 26]. Redox Biol. 2021;48:102199. doi:10.1016/j.redox.2021.102199(IF:11.799)
[20] Cen M, Ouyang W, Zhang W, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 2021;41:101936. doi:10.1016/j.redox.2021.101936(IF:11.799)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[22] Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11(13):6278-6292. Published 2021 Apr 15. doi:10.7150/thno.57455(IF:11.556)
[23] Hao Q, Li J, Zhang Q, et al. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med. 2021;11(8):e500. doi:10.1002/ctm2.500(IF:11.492)
[24] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[25] Liu Z, Chen S, Xie W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther. 2022;30(1):256-267. doi:10.1016/j.ymthe.2021.06.013(IF:11.454)
[26] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF:11.161)
[27] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1(IF:11.161)
[28] Chen P, Zhou J, Wan Y, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020;21(1):78. Published 2020 Mar 25. doi:10.1186/s13059-020-01989-2(IF:10.806)
[29] Wu Y, Zhao Y, Huan L, et al. An LTR Retrotransposon-Derived Long Noncoding RNA lncMER52A Promotes Hepatocellular Carcinoma Progression by Binding p120-Catenin. Cancer Res. 2020;80(5):976-987. doi:10.1158/0008-5472.CAN-19-2115(IF:9.727)
[30] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids. 2021;26:122-134. Published 2021 Jul 16. doi:10.1016/j.omtn.2021.07.003(IF:8.886)
[31] Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. Mol Ther Nucleic Acids. 2022;27:1156-1163. Published 2022 Jan 28. doi:10.1016/j.omtn.2022.01.019(IF:8.886)
[32] Jia J, Kang Q, Liu S, et al. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962-1977. doi:10.1111/bph.15769(IF:8.740)
[33] Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162-179. doi:10.1016/j.canlet.2020.08.033(IF:8.679)
[34] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[35] Hao Q, Chen J, Liao J, et al. p53 induces ARTS to promote mitochondrial apoptosis. Cell Death Dis. 2021;12(2):204. Published 2021 Feb 24. doi:10.1038/s41419-021-03463-8(IF:8.469)
[36] Zhu C, Zhang L, Zhao S, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. Published 2021 May 21. doi:10.1038/s41419-021-03798-2(IF:8.469)
[37] Liu J, Zang Y, Ma C, et al. Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis. 2022;13(3):268. Published 2022 Mar 25. doi:10.1038/s41419-022-04696-x(IF:8.469)
[38] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[39] Li W, Yang S, Xu P, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861. doi:10.1016/j.ebiom.2022.103861(IF:8.143)
[40] Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020;30(1):98-111.e5. doi:10.1016/j.celrep.2019.12.017(IF:8.109)
[41] Zhang K, Zhao X, Chen X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018;10(36):30081-30091. doi:10.1021/acsami.8b08449(IF:8.097)
[42] Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020;27(6):1981-1997. doi:10.1038/s41418-019-0475-6(IF:8.086)
[43] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096-1114. Published 2019 Jan 30. doi:10.7150/thno.29673(IF:8.063)
[44] Ji P, Wu W, Chen S, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26(12):3444-3460.e5. doi:10.1016/j.celrep.2019.02.078(IF:7.815)
[45] Guo X, Xu X, Li T, et al. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol. 2021;12:749979. Published 2021 Sep 22. doi:10.3389/fimmu.2021.749979(IF:7.561)
[46] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[47] Feng C, Chen T, Mao D, Zhang F, Tian B, Zhu X. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020;5(10):3116-3123. doi:10.1021/acssensors.0c01166(IF:7.333)
[48] Jiang Y, Tong K, Yao R, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci. 2021;11(1):140. Published 2021 Jul 22. doi:10.1186/s13578-021-00644-y(IF:7.133)
[49] He T, Shen H, Wang S, et al. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. Mol Ther Nucleic Acids. 2020;22:572-583. Published 2020 Sep 26. doi:10.1016/j.omtn.2020.09.024(IF:7.032)
[50] Liu J, Xu W, Wang K, et al. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol. 2022;195:475-482. doi:10.1016/j.ijbiomac.2021.12.044(IF:6.953)
[51] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[52] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[53] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[54] Li Y, Zhang J, Li S, et al. Heterogeneous Nuclear Ribonucleoprotein A1 Loads Batched Tumor-Promoting MicroRNAs Into Small Extracellular Vesicles With the Assist of Caveolin-1 in A549 Cells. Front Cell Dev Biol. 2021;9:687912. Published 2021 Jun 17. doi:10.3389/fcell.2021.687912(IF:6.684)
[55] Huang Y, Xie B, Cao M, et al. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol. 2021;9:730538. Published 2021 Sep 21. doi:10.3389/fcell.2021.730538(IF:6.684)
[56] Liu WL, Guan Q, Wen D, et al. PRDM16 Inhibits Cell Proliferation and Migration via Epithelial-to-Mesenchymal Transition by Directly Targeting Pyruvate Carboxylase in Papillary Thyroid Cancer. Front Cell Dev Biol. 2021;9:723777. Published 2021 Nov 2. doi:10.3389/fcell.2021.723777(IF:6.684)
[57] Li F, Zhao H, Su M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR. EBioMedicine. 2019;45:208-219. doi:10.1016/j.ebiom.2019.06.017(IF:6.680)
[58] Li L, Zhang C, Wang P, et al. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem. 2019;91(6):3869-3876. doi:10.1021/acs.analchem.8b04292(IF:6.350)
[59] Meng J, Liu K, Shao Y, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11(2):137. Published 2020 Feb 20. doi:10.1038/s41419-020-2327-1(IF:6.304)
[60] Hao Q, Wang J, Chen Y, et al. Dual regulation of p53 by the ribosome maturation factor SBDS. Cell Death Dis. 2020;11(3):197. Published 2020 Mar 20. doi:10.1038/s41419-020-2393-4(IF:6.304)
[61] Han T, Tong J, Wang M, et al. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol. 2022;12:821366. Published 2022 Jun 3. doi:10.3389/fonc.2022.821366(IF:6.244)
[62] Cao G, Li P, He X, et al. FHL3 Contributes to EMT and Chemotherapy Resistance Through Up-Regulation of Slug and Activation of TGFβ/Smad-Independent Pathways in Gastric Cancer. Front Oncol. 2021;11:649029. Published 2021 Jun 4. doi:10.3389/fonc.2021.649029(IF:6.244)
[63] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[64] Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol. 2021;13(2):141-150. doi:10.1093/jmcb/mjaa065(IF:6.216)
[65] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[66] Li J, Zhu D, Hu S, Nie Y. CRISPR-CasRx knock-in mice for RNA degradation [published online ahead of print, 2022 Apr 7]. Sci China Life Sci. 2022;10.1007/s11427-021-2059-5. doi:10.1007/s11427-021-2059-5(IF:6.038)
[67] Liu Z, Chen S, Jia Y, et al. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci. 2021;64(8):1355-1367. doi:10.1007/s11427-020-1775-2(IF:6.038)
[68] Tao R, Shi M, Zou Y, et al. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med. 2018;121:26-37. doi:10.1016/j.freeradbiomed.2018.04.562(IF:6.020)
[69] Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019;10(10):737. Published 2019 Sep 30. doi:10.1038/s41419-019-1977-3(IF:5.959)
[70] Lu W, Wang Q, Xu C, et al. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 2021;23(1):129-139. doi:10.1016/j.neo.2020.11.013(IF:5.696)
[71] Zhou X, Jian W, Luo Q, et al. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY). 2022;14(7):3105-3128. doi:10.18632/aging.203996(IF:5.682)
[72] Ji C, Hu J, Wang X, et al. Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY). 2021;13(7):9627-9645. doi:10.18632/aging.202707(IF:5.682)
[73] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[74] Jin R, Gao Q, Yin C, et al. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. Lab Invest. 2022;102(8):794-804. doi:10.1038/s41374-022-00773-z(IF:5.662)
[75] Wang X, Lu X, Wang P, et al. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med. 2022;20(1):198. Published 2022 May 4. doi:10.1186/s12967-022-03399-3(IF:5.531)
[76] Zhang L, Li YM, Zeng XX, et al. Galectin-3- Mediated Transdifferentiation of Pulmonary Artery Endothelial Cells Contributes to Hypoxic Pulmonary Vascular Remodeling. Cell Physiol Biochem. 2018;51(2):763-777. doi:10.1159/000495331(IF:5.500)
[77] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[78] Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol. 2021;18(6):863-874. doi:10.1080/15476286.2020.1827193(IF:5.350)
[79] Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022;101:154133. doi:10.1016/j.phymed.2022.154133(IF:5.340)
[80] Jiang H, Song S, Li J, Yin Q, Hu S, Nie Y. Establishment and characterization of an immortalized epicardial cell line [published online ahead of print, 2021 Apr 6]. J Cell Mol Med. 2021;25(13):6070-6081. doi:10.1111/jcmm.16496(IF:5.310)
[81] Xu P, Tang J, He ZG. Induction of Endoplasmic Reticulum Stress by CdhM Mediates Apoptosis of Macrophage During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol. 2022;12:877265. Published 2022 Apr 4. doi:10.3389/fcimb.2022.877265(IF:5.293)
[82] Xu Y, Chen X, Zhao C, et al. MiR-99b-5p Attenuates Adipogenesis by Targeting SCD1 and Lpin1 in 3T3-L1 Cells. J Agric Food Chem. 2021;69(8):2564-2575. doi:10.1021/acs.jafc.0c07451(IF:5.279)
[83] Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021;384(2):353-366. doi:10.1007/s00441-021-03412-z(IF:5.249)
[84] Song L, Zhang L, Zhou Y, et al. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Discov. 2022;8(1):219. Published 2022 Apr 21. doi:10.1038/s41420-022-01023-3(IF:5.241)
[85] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[86] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[87] Sun H, Xu X, Luo J, et al. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis [published online ahead of print, 2022 Jun 17]. Neurosci Bull. 2022;10.1007/s12264-022-00893-y. doi:10.1007/s12264-022-00893-y(IF:5.203)
[88] Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466. doi:10.1016/j.jbc.2021.100466(IF:5.157)
[89] Ge H, Zhang D, Shi M, Lian X, Zhang Z. Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs. 2021;19(2):79. Published 2021 Jan 31. doi:10.3390/md19020079(IF:5.118)
[90] Zhang Y, Wang Q, Wang Z, et al. Comprehensive Analysis of REST/NRSF Gene in Glioma and Its ceRNA Network Identification. Front Med (Lausanne). 2021;8:739624. Published 2021 Nov 11. doi:10.3389/fmed.2021.739624(IF:5.093)
[91] Li Y, Feng R, Yu X, et al. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma [published correction appears in Life Sci. 2022 Jun 1;298:120493]. Life Sci. 2022;296:120447. doi:10.1016/j.lfs.2022.120447(IF:5.037)
[92] Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690. doi:10.1007/s13402-019-00455-x(IF:5.020)
[93] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[94] Li X, Yu H, Liang L, et al. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097. doi:10.1016/j.bcp.2020.114097(IF:4.960)
[95] Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. Published 2022 Apr 14. doi:10.3390/biom12040575(IF:4.879)
[96] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[97] Wang Y, Zhao L, Han X, et al. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol. 2020;9:1487. Published 2020 Jan 28. doi:10.3389/fonc.2019.01487(IF:4.848)
[98] Wang X, Lu B, Dai C, et al. Caveolin-1 Promotes Chemoresistance of Gastric Cancer Cells to Cisplatin by Activating WNT/β-Catenin Pathway. Front Oncol. 2020;10:46. Published 2020 Feb 3. doi:10.3389/fonc.2020.00046(IF:4.848)
[99] Li P, Cao G, Zhang Y, et al. FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY). 2020;12(1):53-69. doi:10.18632/aging.102564(IF:4.831)
[100] Wang S, Hao Q, Li J, et al. Ubiquitin ligase DTX3 empowers mutant p53 to promote ovarian cancer development. Genes Dis. 2020;9(3):705-716. Published 2020 Nov 21. doi:10.1016/j.gendis.2020.11.007(IF:4.803)
[101] Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. J Immunol. 2019;203(11):3023-3036. doi:10.4049/jimmunol.1900556(IF:4.718)
[102] Zhang D, Liu R, Bao C, et al. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjug Chem. 2019;30(1):184-191. doi:10.1021/acs.bioconjchem.8b00827(IF:4.485)
[103] Zhou Y, Zhang S, Min Z, Yu Z, Zhang H, Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer. 2021;21(1):1085. Published 2021 Oct 7. doi:10.1186/s12885-021-08779-4(IF:4.430)
[104] Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 2019;21(4):e12984. doi:10.1111/cmi.12984(IF:4.410)
[105] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[106] Papadaki S, Wang X, Wang Y, et al. Dual-expression system for blue fluorescent protein optimization. Sci Rep. 2022;12(1):10190. Published 2022 Jun 17. doi:10.1038/s41598-022-13214-0(IF:4.380)
[107] Cai J, Huang H, Hu X, et al. Homoharringtonine Synergized with Gilteritinib Results in the Downregulation of Myeloid Cell Leukemia-1 by Upregulating UBE2L6 in FLT3-ITD-Mutant Acute Myeloid (Leukemia) Cell Lines. J Oncol. 2021;2021:3766428. Published 2021 Sep 21. doi:10.1155/2021/3766428(IF:4.375)
[108] Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett. 2021;351:53-64. doi:10.1016/j.toxlet.2021.08.010(IF:4.374)
[109] Jin YY, Lin H, Cao L, et al. A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery. Virol Sin. 2021;36(5):913-923. doi:10.1007/s12250-021-00385-9(IF:4.327)
[110] Han XR, Wen X, Wang YJ, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med. 2018;22(6):3167-3182. doi:10.1111/jcmm.13597(IF:4.302)
[111] Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells [published online ahead of print, 2022 Apr 11]. J Genet Genomics. 2022;S1673-8527(22)00088-1. doi:10.1016/j.jgg.2022.03.007(IF:4.275)
[112] Huang Y, Wang J, Cao F, et al. SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep. 2017;7(1):17597. Published 2017 Dec 14. doi:10.1038/s41598-017-17604-7(IF:4.259)
[113] Wang XY, Zhu BR, Jia Q, Li YM, Wang T, Wang HY. Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo. J Agric Food Chem. 2020;68(45):12617-12630. doi:10.1021/acs.jafc.0c04898(IF:4.192)
[114] Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther. 2021;15:5135-5150. Published 2021 Dec 24. doi:10.2147/DDDT.S344052(IF:4.162)
[115] Liu J, Zhou J, Zhou J, et al. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology. 2020;444:152581. doi:10.1016/j.tox.2020.152581(IF:4.099)
[116] Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. Published 2021 Feb 15. (IF:4.060)
[117] Wang Q, Zhang Q, Luan S, et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem. 2019;93:103315. doi:10.1016/j.bioorg.2019.103315(IF:3.926)
[118] Yang KY, Wu CR, Zheng MZ, et al. Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorg Chem. 2019;92:103186. doi:10.1016/j.bioorg.2019.103186(IF:3.926)
[119] Yu D, Zhao X, Cheng JZ, Wang D, Zhang HH, Han GH. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway [retracted in:  J Cell Physiol. 2022 Apr;237(4):2296]. J Cell Physiol. 2019;234(2):1442-1451. doi:10.1002/jcp.26950(IF:3.923)
[120] Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol. 2019;234(4):4840-4850. doi:10.1002/jcp.27282(IF:3.923)
[121] Chen L, Liu H, Ji Y, et al. Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res. 2022;415(2):113138. doi:10.1016/j.yexcr.2022.113138(IF:3.905)
[122] Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses. 2019;11(2):99. Published 2019 Jan 24. doi:10.3390/v11020099(IF:3.811)
[123] Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther. 2022;36(4):605-618. doi:10.1007/s10557-021-07182-2(IF:3.727)
[124] Yang Y, Xiang K, Sun D, et al. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1 [published correction appears in Bioorg Med Chem. 2022 Mar 15;58:116655]. Bioorg Med Chem. 2021;36:116095. doi:10.1016/j.bmc.2021.116095(IF:3.641)
[125] Wang C, Su L, Shao YM, et al. Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B. Toxicol Appl Pharmacol. 2019;384:114775. doi:10.1016/j.taap.2019.114775(IF:3.585)
[126] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[127] Hu S, Ouyang J, Zheng G, et al. Identification of mutant p53-specific proteins interaction network using TurboID-based proximity labeling. Biochem Biophys Res Commun. 2022;615:163-171. doi:10.1016/j.bbrc.2022.05.046(IF:3.575)
[128] Meng J, Zhang C, Wang D, Zhu L, Wang L. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2 [published online ahead of print, 2022 Jun 28]. Biochem Biophys Res Commun. 2022;621:1-7. doi:10.1016/j.bbrc.2022.06.092(IF:3.575)
[129] Wang HD, Guo LJ, Feng ZQ, et al. Cloning, expression and enzyme activity delineation of two novel CANT1 mutations: the disappearance of dimerization may indicate the change of protein conformation and even function. Orphanet J Rare Dis. 2020;15(1):240. Published 2020 Sep 9. doi:10.1186/s13023-020-01492-8(IF:3.523)
[130] Li P, Jin Y, Qi F, et al. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol. 2018;8:113. Published 2018 Apr 9. doi:10.3389/fcimb.2018.00113(IF:3.520)
[131] Wang Z, Wu J, Jiang J, et al. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. Allergy Asthma Clin Immunol. 2022;18(1):55. Published 2022 Jun 19. doi:10.1186/s13223-022-00697-9(IF:3.406)
[132] Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice [published correction appears in Neuroscience. 2018 May 9;:]. Neuroscience. 2018;374:61-69. doi:10.1016/j.neuroscience.2018.01.040(IF:3.382)
[133] Yang J, Shen Y, Yang X, et al. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol. 2019;317(5):F1350-F1358. doi:10.1152/ajprenal.00254.2019(IF:3.323)
[134] Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi:10.1016/j.virusres.2021.198594(IF:3.303)
[135] Luo L, Zhu D, Huang R, et al. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019;87:62-72. doi:10.1016/j.fsi.2018.12.078(IF:3.298)
[136] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[137] Li F, Su M, Zhao H, et al. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res. 2019;11(11):7035-7048. Published 2019 Nov 15. (IF:3.266)
[138] Sun H, Han L, Zhang X, et al. Case Report: Characterization of a Novel NONO Intronic Mutation in a Fetus With X-Linked Syndromic Mental Retardation-34. Front Genet. 2020;11:593688. Published 2020 Nov 16. doi:10.3389/fgene.2020.593688(IF:3.260)
[139] Li Y, Zhu T, Yang H, et al. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain. 2018;14:1744806918782229. doi:10.1177/1744806918782229(IF:3.205)
[140] Zhu D, Huang R, Chen L, et al. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019;86:335-346. doi:10.1016/j.fsi.2018.11.057(IF:3.185)
[141] Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. Environ Toxicol. 2021;36(2):267-275. doi:10.1002/tox.23032(IF:3.118)
[142] Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett. 2019;17(2):2131-2140. doi:10.3892/ol.2018.9862(IF:2.967)
[143] Zhou XM, Liu J, Wang Y, et al. microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats [published online ahead of print, 2018 Jan 27] [retracted in:  J Cell Biochem. 2021 Nov;122 Suppl 1:S92]. J Cell Biochem. 2018;10.1002/jcb.26704. doi:10.1002/jcb.26704(IF:2.959)
[144] Zhu C, Song Z, Chen Z, et al. MicroRNA-4735-3p Facilitates Ferroptosis in Clear Cell Renal Cell Carcinoma by Targeting SLC40A1. Anal Cell Pathol (Amst). 2022;2022:4213401. Published 2022 May 19. doi:10.1155/2022/4213401(IF:2.916)
[145] Wang X, Ye M, Wu M, et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol. 2020;22(9):1506-1516. doi:10.1007/s12094-020-02286-x(IF:2.737)
[146] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[147] Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. J Healthc Eng. 2022;2022:2373580. Published 2022 Jan 6. doi:10.1155/2022/2373580(IF:2.682)
[148] Zhe J, Chen S, Chen X, et al. A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. Published 2019 Jul 6. doi:10.1186/s13048-019-0537-x(IF:2.469)
[149] Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42-54.e3. doi:10.1016/j.exphem.2018.10.011(IF:2.436)
[150] Yu T, Ling Q, Xu M, et al. ORF8 protein of SARS-CoV-2 reduces male fertility in mice. J Med Virol. 2022;94(9):4193-4205. doi:10.1002/jmv.27855(IF:2.327)
[151] Dai Y, Nie J, Luo Z, Nie D. Expression profile analysis of a new testis-specifically expressed gene C17ORF64 and its association with cell apoptosis in MCF-7 cells. Mol Biol Rep. 2021;48(2):1521-1529. doi:10.1007/s11033-021-06191-6(IF:2.316)
[152] Jiang T, Zhou B, Li YM, Yang QY, Tu KJ, Li LY. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol Lett. 2020;20(2):1360-1368. doi:10.3892/ol.2020.11641(IF:2.311)
[153] Wei P, Guo J, Xue W, Zhao Y, Yang J, Wang J. RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1038-1046. doi:10.1093/abbs/gmy106(IF:2.224)
[154] He L, Fan X, Li Y, et al. Aberrant methylation status of SPG20 promoter in hepatocellular carcinoma: A potential tumor metastasis biomarker. Cancer Genet. 2019;233-234:48-55. doi:10.1016/j.cancergen.2019.04.003(IF:2.183)
[155] Gao X, Peng S, Mei S, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain (RBD) from E. coli system. Prep Biochem Biotechnol. 2022;52(3):318-324. doi:10.1080/10826068.2021.1941106(IF:2.162)
[156] Li H, Dai Y, Luo Z, Nie D. Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells. Mol Biol Rep. 2019;46(2):2029-2038. doi:10.1007/s11033-019-04651-8(IF:2.107)
[157] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi:10.1016/j.leukres.2019.106198(IF:2.066)
[158] Qiu C, Li C, Tong X, et al. A novel TSC1 frameshift mutation c.1550_1551del causes tuberous sclerosis complex by aberrant splicing and nonsense-mediated mRNA degradation (NMD) simultaneously in a Chinese family. Mol Genet Genomic Med. 2020;8(10):e1410. doi:10.1002/mgg3.1410(IF:1.995)
[159] Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit. 2018;24:7499-7507. Published 2018 Oct 21. doi:10.12659/MSM.910265(IF:1.894)
[160] Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit. 2018;24:7451-7458. Published 2018 Oct 19. doi:10.12659/MSM.910229(IF:1.894)
[161] Li B, Zhang J, Su Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep. 2019;20(4):3793-3801. doi:10.3892/mmr.2019.10617(IF:1.851)
[162] Gao X, Liang K, Mei S, Peng S, Vong EG, Zhan J. An efficient system to generate truncated human angiotensin converting enzyme 2 (hACE2) capable of binding RBD and spike protein of SARS-CoV2. Protein Expr Purif. 2021;184:105889. doi:10.1016/j.pep.2021.105889(IF:1.650)
[163] Deng J, Li D, Mei H, Tang L, Wang HF, Hu Y. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency. BMC Med Genet. 2020;21(1):9. Published 2020 Jan 8. doi:10.1186/s12881-019-0944-2(IF:1.585)
[164] Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett. 2016;12(5):4061-4067. doi:10.3892/ol.2016.5127(IF:1.482)
[165] Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol. 2020;155:295-319. doi:10.1016/bs.mcb.2019.11.008(IF:1.441)
[166] Chen X, Lin Z, Hu J, et al. Report of Two Novel Thalassemia Variants, HBB: c.181delG and HBA1: c.121_126delAAGACC, in Chinese Individuals. Hemoglobin. 2021;45(1):52-55. doi:10.1080/03630269.2021.1883646(IF:0.849)
[167] Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. Int J Clin Exp Pathol. 2020;13(12):3083-3091. Published 2020 Dec 1. (IF:0.252)
[168] Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing [published online ahead of print, 2022 Jun 16]. J Clin Endocrinol Metab. 2022;dgac368. doi:10.1210/clinem/dgac368(IF:0.000)
[169] Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep. 2021;9(12):e05166. Published 2021 Dec 9. doi:10.1002/ccr3.5166(IF:0.000)