Grant PCR离心/漩涡混合一体机CVP-2

Grant PCR离心/漩涡混合一体机CVP-2

品牌 其他品牌 加工定制

Grant PCR离心/漩涡混合一体机CVP-2,可同时制备多个样品,能够容纳2块无-/半-/全-裙边微孔板,无需其他配件。该仪器集合离心/涡旋混合、PCR板离心、PCR板混合,三大功能于一体,性价比高,是PCR实验的理想选择。

Grant PCR离心/漩涡混合一体机CVP-2

产品简述

  CVP-2 PCR离心/涡旋混合一体机可同时制备多个样品,能够容纳2块无-/半-/全-裙边微孔板,无需其他配件。该仪器集合离心/涡旋混合、PCR板离心、PCR板混合,三大功能于一体,性价比高,是PCR实验的理想选择。常用于生命科学——多种应用,包括提取DNA/RNA,沉淀生物成分,对微样本进行生物药学和化学分析。

技术特点

1、离心/涡旋混合模式,极大节省操作时间

2、转速:300-1500rpm

3、离心和涡旋混合单独计时,最大循环次数可达999次

4、可调转速或4个程序预设值

5、持续地同时准备多达192个样品

6、视窗设计,适用于观察样品状态

7、2行LCD屏,实时清晰显示实际和设定时间,按钮式操作

8、提供384孔PCR板适配器(可单独购买)

9、外形小巧,非常节省操作空间

技术参数

产品型号               CVP-2

离心混合转速        300~1500rpm

漩涡混合转速        300~1200rpm

转速增量               100rpm

RCF                       245

离心计时器(带声音警报)  0到30分钟

漩涡计时器(带声音警报)  0到60秒

循环次数(离心/漩涡)        1至999次

容量                       2 无/半/全裙边微孔板

输入电源             AC 100~240V,50/60HZ,DC 24 V

外形尺寸              190×350×285mm

净重                       ≤6.5kg

Grant PCR离心/漩涡混合一体机CVP-2

Grant PCR离心/漩涡混合一体机CVP-2

2×实时荧光定量PCR扩增预混液|qPCR SYBR Green Master Mix(Rox Provided Seperately)

2×实时荧光定量PCR扩增预混液|qPCR SYBR Green Master Mix(Rox Provided Seperately)

产品说明书

FAQ

COA

已发表文献

产品描述

Hieff® qPCR SYBR Green Master Mix2×实时定量PCR扩增的预混合溶液Mix中含有热启动Hieff® DNA PolymeraseSYBR Green IdNTPs、Mg2+使用时,仅需在扩增体系中加入模板和引物即可进行实时荧光定量PCR,大大简化操作过程,降低污染几率本产品针对不同型号的实时荧光定量PCR仪,分别提供不同浓度的 Rox 参比液(High Rox/Low Rox),用于校正孔与孔之间的荧光信号误差。

本品采用的DNA聚合酶配体可以随温度变化实时调节DNA聚合酶活性。配方添加了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,使定量PCR可以在宽广的定量区域内获得良好的线性关系。

 

产品组分

组分编号

组分名称

产品编号/规格

11204ES03

1 mL)

11204ES08

(5×1 mL)

11204ES50

(50×1 mL)

11204ES60

100×1 mL)

11204-A

Hieff® qPCR SYBR Green Master Mix

1 mL

5 ×1 mL

50 ×1 mL

100 ×1 mL

11204-B

50×Low Rox

40 μL

200 μL

4 ×500 μL

8 ×500 μL

11204-C

50×High Rox

40 μL

200 μL

4 ×500 μL

8 ×500 μL

 

运输与保存方式

冰袋运输。-20避光储存,有效期18个月

本品避免反复冻融产品中含有荧光染料SYBR® Green I,保存或配制反应体系时需避免强光照射。

 

注意事项

1. 推荐使用本公司cDNA合成试剂盒(货号11123ES),以有效去除RNA样品中残留的基因组。

2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

3. 本产品仅作科研用途!

 

反应体系(推荐冰上配制)

组分

体积(μL)

体积(μL)

终浓度

Hieff® qPCR SYBR Green Master Mix

25

10

Forward Primer (10 μM)

1

0.4

0.2 μM

Reverse Primer (10 μM)

1

0.4

0.2 μM

50×High or Low Rox

1

0.4

模板DNA

X

X

无菌超纯水

to 50

to 20

【注】 使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a) 参比染料Rox的添加,可根据不同仪器型号进行选择,具体可参考【适用机型】。

b) 引物浓度:通常引物终浓度为0.2 μM,也可以根据情况0.1-1.0 μM之间进行调整。

c) 模板浓度:如模板类型为未稀释cDNA原液,使用体积不应超过qPCR反应总体积的1/10

d) 模板稀释cDNA原液建议5-10倍稀释,最佳模板加入量以扩增得到的CT值在20-30个循环为好。

e) 反应体系推荐使用20 μL或50 μL以保证目的基因扩增的有效性和重复性。

f) 体系配制请于超净工作台内配制,使用无核酸酶残留的枪头、反应管推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染

 

扩增程序

三步法程序                                                                                                 两步法程序

循环步骤

温度

时间

循环数

 

循环步骤

温度

时间

循环数

预变性

95

5 min

1

 

预变性

95

5 min

1

变性

95

10 sec

40

 

变性

95

10 sec

 

退火

55-60

20 sec

 

退火、延伸

60

30 sec

40

延伸

72

20 sec

         

熔解曲线

  仪器默认设置

1

 

熔解曲线

仪器默认设置

1

【注】:高特异性可选择两步法高效率扩增可选择三步法

a) 预变性时间:根据不同模板和引物的具体情况可适当缩短至2 min。

b) 退火温度和时间:请根据引物和目的基因的长度进行调整。

c) 荧光信号采集():请参考仪器说明书设置。 

d) 解曲线通常情况下可以使用仪器默认程序。

 

结果分析

定量实验至少需要三个生物学重复反应结束后需要确认扩增曲线及解曲线。

1) 扩增曲线标准扩增曲线为S型。

Ct值落在20-30之间时,定量分析最准确

Ct值小于10需要将稀释模板后,重新进行验;

Ct值介于30-35之间时,需要提高模板浓度,或者增大反应体系的体积,以提高扩增效率,保证结果分析的准确性;

Ct值大于35时,检测结果无法定量分析基因的表达量,但可用于定性分析。

2) 熔解曲线:

熔解曲线单峰,表明反应特异性好可以进行定量结果分析;若解曲线出现双峰或者多峰,则不能进行定量分析。

熔解曲线出现双峰,需要通过DNA琼脂糖凝胶电泳判断非目标峰是引物二聚体还是非特异性扩增。

如果是引物二聚体,建议降低引物浓度,或者重新设计扩增效率高的引物。

如果是非特异性扩增,请提高退火温度,或者重新设计更高特异性的引物。

 

引物设计指南

1)推荐引物长度25 bp左右。扩增产物长度150 bp为佳,可以在100 bp-300 bp内选择。

2)正向引物和反向引物的Tm值相差不宜超过2引物Tm值60ºC-65ºC为佳。

3)引物碱基分布要均匀,避免出现连续的4个相同碱基,GC含量控制在50%左右。3’端最后一个碱基最好为G或C

4)引物内部或者正反两条引物间最好避免出现3个碱基以上的互补序列

5)引物特异性需要用NCBI BLAST程序进行核对。避免引物3’端有2个碱基以上的非特异性互补

6)设计完成的引物需要进行扩增效率的检测,只有具备相同扩增效率的引物才可用于定量比较分析

 

适用机型

High Rox适用机型 ABI 5700, 7000, 7300, 7700, 7900HT Fast, StepOne, StepOne Plus;

Low Rox 适用机型: ABI 7500, 7500 Fast, ViiA7, QuantStudio 3 and 5, QuantStudio6,7,12k Flex; Stratagene MX3000P, MX3005P, MX4000P;  

不需要Rox校正的仪器型号:

Bio-Rad CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf Mastercycler ep realplex, realplex 2 s; Qiagen Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science LightCycler 480, LightCycler 2.0; Lightcycler 96; Thermo Scientific PikoReal Cycler;

Cepheid SmartCycler; Illumina Eco qPCR. 

 

相关产品

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit HOT

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit  (gDNA digester plus)

11121ES60

100 T

Hifair® II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)HOT

11123ES60

100 T

Hieff® qPCR SYBR Green Master Mix (No Rox )HOT

11201ES08

5 mL

Hieff® qPCR SYBR Green Master Mix (Low Rox Plus)HOT

11202ES08

5 mL

Hieff® qPCR SYBR Green Master Mix (High Rox Plus)HOT

11203ES08

5 mL

 

HB220113

Q模板用量X 是多少?常用的量是多少?

A:a)X 表示模板 DNA 量需要实验者在首次实验时进行摸索。首先对模板DNA 进行稀释(一般推荐 5-10 倍),然后模板量梯度上样,选择 CT 值落在  20-30  之间的最佳上样量。

b)常用的量是逆转录 500-1000ng 总RNA,稀释 10 倍取 1μL cDNA 进行qPCR 实验。

QqPCR 实验结果的有效性?为什么建议Ct 值要大于 15?

A:a)有效性要满足三个条件:

1)标准曲线:扩增效率范围:90-110%,对应斜率为-3–3.5。R2>0.98。 (扩增效率=10-1/斜率-1),当斜率=-3.32 时,扩增效率=100%。

2)扩增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无Ct 值。

(3) 熔解曲线:为单一峰。

b)3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。

QRox 的作用?

A:ROX 是一种参比染料,其作用是标准化荧光定量反应中的非PCR 震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。

Q为什么扩增曲线不稳定(扩增曲线平台期锯齿状)?

A:可能原因:

a)RNA 纯度低,体系中存在较多杂质;推荐参数:OD260/OD280=1.8-2.0, OD260/OD230>2.0。随着 qPCR 反应的进行,阻碍反应的因素不断增加,若 RNA 纯度低,杂质多,会进一步影响仪器平台期的算法,导致出现锯齿状。

b)仪器长时间未做校准。仪器未校准会使仪器算法错误,导致各种异常结果。

解决方案:

a)先梯度加大模板稀释倍数看优化效果。若效果仍不好建议新制备高纯度RNA 重新实验。b)定期(一般 1 年)进行仪器校准保养。

Q为什么扩增曲线无法达到平台期?

A:可能原因:

a)模板量太低(CT 值 35 左右)。推荐 Ct 值:15<Ct<30。原因:Ct 值太大(如  Ct>30),刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

b)循环次数太少(30 cycles);循环次数过少(如 35)导致刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

c)试剂扩增效率低(CT 小,但无法达到平台期,曲线比较“趴”)。

解决方案:

a)提高模板量;参考 Q1 的优化方法。

b)提高循环次数;推荐循环数:一般 40。低丰度基因可设 45。

c)做标准曲线测定扩增效率,若确实偏低,则换试剂。

d)增加 Mg2+浓度(会增加非特异扩增)

Q为什么出现双峰,并且较低峰 Tm 在 80℃之前?

A:较低峰 Tm 在 80℃之前可能原因:存在引物二聚体(一般mRNA 反转录后定量,产物在 100-150bp 左右,峰对应 Tm 值为 80-90℃。若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值在 70-80℃之间。故会在 80℃以前出现一个峰, 80℃以后出现一个峰),模板浓度过低或引物浓度过高。

解决方案:

a)适当提高退火温度; b)提高模板量,降低引物浓度; c)重新设计引物。

Q为什么出现双峰,双峰 Tm 都在 80℃以前?

A:双峰Tm 都在 80℃以前的可能原因:做 MicroRNA 定量时存在引物二聚体。Micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十 bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃ 以前出现双峰。

优化方法:提高退火温度、降低引物浓度或重新设计引物等方式优化。

Q为什么出现双峰,并且双峰Tm 都在 80℃以后?

A:可能原因:

a)引物特异性过差导致非特异性产物扩增。

b)交叉污染。

c)gDNA 污染,可通过 NRC 进行确认。

解决方案:

a)Blast 检查引物特异性,差则重新设计引物。

b)超净台中操作,注意更换 Tip 头,避免交叉污染。

c)通过 NRC 阴性对照进行确认,若有,需重新制备模板。

Q为什么是单峰,但 Tm 在 80℃之前?

A:可能原因:

扩增产物是完全的引物二聚体,可能是未加模板。

注:若 microRNA,则结果正常(做 microRNA 定量时存在引物二聚体。micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应 Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃以前出现双峰)。

解决方案:

进行高分辨率琼脂糖电泳,检测有无目的条带,以确定模板是否加入。优化方法:新配制无误的反应体系,重新实验。

Q为什么是单峰,但峰不尖锐?

A:可能原因:

存在大小相近的非特异性扩增

解决方案:a)温度跨度不高于 7℃,视为可用结果(即 Tm 值跨度<7℃可认为是同一种产物);

b)进行高浓度琼脂糖电泳(高分辨率),确认是否为单一条带。

1. Lu, XY., Shi, XJ., Hu, A. et al. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature (2020). IF43

2. Han X., et al., Mapping the Mouse Cell Atlas by Microwell-Seq[J]. Cell. 2018 Feb 22;172(5):1091-1107.e17. IF 30.410

3. Wang X, Ni L, Wan S, et al. Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells[J]. Immunity, 2020, 52(2): 328-341. e5. IF21.522

4. Xiao J, Li W, Zheng X, et al. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection[J]. Immunity, 2020, 52(1): 109-122. e6.IF21.522

5. Han F, Liu X, Chen C, et al. Hypercholesterolemia risk-associated GPR146 is an orphan G-protein coupled receptor that regulates blood cholesterol levels in humans and mice[J]. Cell Research, 2020, 30(4): 363-365.IF20.5

6. Mo J, Chen Z, Qin S, et al. TRADES: Targeted RNA Demethylation by SunTag System[J]. Advanced Science, 2020, 7(19): 2001402.IF15.8

7. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)

8. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244. IF 12.353

9. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer[J]. Nano Letters, 2020.IF12.279

10. Wang Y, Xiao Y, Dong S, et al. Antibody-free enzyme-assisted chemical approach for detection of N 6-methyladenosine[J]. Nature Chemical Biology, 2020: 1-8.(IF12.154)

11. Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress[J]. Nucleic acids research, 2019.IF11.6

12. Su G, Guo D, Chen J, et al. A distal enhancer maintaining Hoxa1 expression orchestrates retinoic acid-induced early ESCs differentiation[J]. Nucleic acids research, 2019.IF11.6

13. Feng Y, Wang Y, Wang X, et al. Simultaneous Epigenetic Perturbation and Genome Imaging Reveal Distinct Roles of H3K9me3 in Chromatin Architecture and Transcription[J]. bioRxiv, 2020.IF10.806 

14. Huang X, He M, Huang S, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription[J]. Molecular cancer, 2019, 18(1): 166.IF10.679

15. Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling[J]. Biomaterials, 2020, 231: 119654.(IF10.317)

16. Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling[J]. Biomaterials, 2019: 119654.IF10.273

17. Yafen Wang, Xiong Zhang, et al. Bisulfite-free, single base-resolution analysis of 5-hydroxymethylcytosine in genomic DNA by chemical-mediated mismatch[J]. Chem. Sci., 2019, Advance Article. IF 9.063

18. Wang Y, et al., Gene specific-loci quantitative and single-base resolution analysis of 5-formylcytosine by compound-mediated polymerase chain reaction[J]. Chem Sci. 2018 Mar 19;9(15):3723-3728. IF 8.668

19. Liu, C., et al., Enrichment and fluorogenic labelling of 5-formyluracil in DNA[J]. Chemical Science, 2017. 8: p.4505-4510.IF 8.668

20. Xiong Z, Yuan C. Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress[J]. Theranostics, 2020, 10(25): 11444.(IF8.579)

产品描述

Hieff® qPCR SYBR Green Master Mix2×实时定量PCR扩增的预混合溶液Mix中含有热启动Hieff® DNA PolymeraseSYBR Green IdNTPs、Mg2+使用时,仅需在扩增体系中加入模板和引物即可进行实时荧光定量PCR,大大简化操作过程,降低污染几率本产品针对不同型号的实时荧光定量PCR仪,分别提供不同浓度的 Rox 参比液(High Rox/Low Rox),用于校正孔与孔之间的荧光信号误差。

本品采用的DNA聚合酶配体可以随温度变化实时调节DNA聚合酶活性。配方添加了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,使定量PCR可以在宽广的定量区域内获得良好的线性关系。

 

产品组分

组分编号

组分名称

产品编号/规格

11204ES03

1 mL)

11204ES08

(5×1 mL)

11204ES50

(50×1 mL)

11204ES60

100×1 mL)

11204-A

Hieff® qPCR SYBR Green Master Mix

1 mL

5 ×1 mL

50 ×1 mL

100 ×1 mL

11204-B

50×Low Rox

40 μL

200 μL

4 ×500 μL

8 ×500 μL

11204-C

50×High Rox

40 μL

200 μL

4 ×500 μL

8 ×500 μL

 

运输与保存方式

冰袋运输。-20避光储存,有效期18个月

本品避免反复冻融产品中含有荧光染料SYBR® Green I,保存或配制反应体系时需避免强光照射。

 

注意事项

1. 推荐使用本公司cDNA合成试剂盒(货号11123ES),以有效去除RNA样品中残留的基因组。

2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

3. 本产品仅作科研用途!

 

反应体系(推荐冰上配制)

组分

体积(μL)

体积(μL)

终浓度

Hieff® qPCR SYBR Green Master Mix

25

10

Forward Primer (10 μM)

1

0.4

0.2 μM

Reverse Primer (10 μM)

1

0.4

0.2 μM

50×High or Low Rox

1

0.4

模板DNA

X

X

无菌超纯水

to 50

to 20

【注】 使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a) 参比染料Rox的添加,可根据不同仪器型号进行选择,具体可参考【适用机型】。

b) 引物浓度:通常引物终浓度为0.2 μM,也可以根据情况0.1-1.0 μM之间进行调整。

c) 模板浓度:如模板类型为未稀释cDNA原液,使用体积不应超过qPCR反应总体积的1/10

d) 模板稀释cDNA原液建议5-10倍稀释,最佳模板加入量以扩增得到的CT值在20-30个循环为好。

e) 反应体系推荐使用20 μL或50 μL以保证目的基因扩增的有效性和重复性。

f) 体系配制请于超净工作台内配制,使用无核酸酶残留的枪头、反应管推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染

 

扩增程序

三步法程序                                                                                                 两步法程序

循环步骤

温度

时间

循环数

 

循环步骤

温度

时间

循环数

预变性

95

5 min

1

 

预变性

95

5 min

1

变性

95

10 sec

40

 

变性

95

10 sec

 

退火

55-60

20 sec

 

退火、延伸

60

30 sec

40

延伸

72

20 sec

         

熔解曲线

  仪器默认设置

1

 

熔解曲线

仪器默认设置

1

【注】:高特异性可选择两步法高效率扩增可选择三步法

a) 预变性时间:根据不同模板和引物的具体情况可适当缩短至2 min。

b) 退火温度和时间:请根据引物和目的基因的长度进行调整。

c) 荧光信号采集():请参考仪器说明书设置。 

d) 解曲线通常情况下可以使用仪器默认程序。

 

结果分析

定量实验至少需要三个生物学重复反应结束后需要确认扩增曲线及解曲线。

1) 扩增曲线标准扩增曲线为S型。

Ct值落在20-30之间时,定量分析最准确

Ct值小于10需要将稀释模板后,重新进行验;

Ct值介于30-35之间时,需要提高模板浓度,或者增大反应体系的体积,以提高扩增效率,保证结果分析的准确性;

Ct值大于35时,检测结果无法定量分析基因的表达量,但可用于定性分析。

2) 熔解曲线:

熔解曲线单峰,表明反应特异性好可以进行定量结果分析;若解曲线出现双峰或者多峰,则不能进行定量分析。

熔解曲线出现双峰,需要通过DNA琼脂糖凝胶电泳判断非目标峰是引物二聚体还是非特异性扩增。

如果是引物二聚体,建议降低引物浓度,或者重新设计扩增效率高的引物。

如果是非特异性扩增,请提高退火温度,或者重新设计更高特异性的引物。

 

引物设计指南

1)推荐引物长度25 bp左右。扩增产物长度150 bp为佳,可以在100 bp-300 bp内选择。

2)正向引物和反向引物的Tm值相差不宜超过2引物Tm值60ºC-65ºC为佳。

3)引物碱基分布要均匀,避免出现连续的4个相同碱基,GC含量控制在50%左右。3’端最后一个碱基最好为G或C

4)引物内部或者正反两条引物间最好避免出现3个碱基以上的互补序列

5)引物特异性需要用NCBI BLAST程序进行核对。避免引物3’端有2个碱基以上的非特异性互补

6)设计完成的引物需要进行扩增效率的检测,只有具备相同扩增效率的引物才可用于定量比较分析

 

适用机型

High Rox适用机型 ABI 5700, 7000, 7300, 7700, 7900HT Fast, StepOne, StepOne Plus;

Low Rox 适用机型: ABI 7500, 7500 Fast, ViiA7, QuantStudio 3 and 5, QuantStudio6,7,12k Flex; Stratagene MX3000P, MX3005P, MX4000P;  

不需要Rox校正的仪器型号:

Bio-Rad CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf Mastercycler ep realplex, realplex 2 s; Qiagen Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science LightCycler 480, LightCycler 2.0; Lightcycler 96; Thermo Scientific PikoReal Cycler;

Cepheid SmartCycler; Illumina Eco qPCR. 

 

相关产品

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit HOT

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit  (gDNA digester plus)

11121ES60

100 T

Hifair® II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)HOT

11123ES60

100 T

Hieff® qPCR SYBR Green Master Mix (No Rox )HOT

11201ES08

5 mL

Hieff® qPCR SYBR Green Master Mix (Low Rox Plus)HOT

11202ES08

5 mL

Hieff® qPCR SYBR Green Master Mix (High Rox Plus)HOT

11203ES08

5 mL

 

HB220113

Q模板用量X 是多少?常用的量是多少?

A:a)X 表示模板 DNA 量需要实验者在首次实验时进行摸索。首先对模板DNA 进行稀释(一般推荐 5-10 倍),然后模板量梯度上样,选择 CT 值落在  20-30  之间的最佳上样量。

b)常用的量是逆转录 500-1000ng 总RNA,稀释 10 倍取 1μL cDNA 进行qPCR 实验。

QqPCR 实验结果的有效性?为什么建议Ct 值要大于 15?

A:a)有效性要满足三个条件:

1)标准曲线:扩增效率范围:90-110%,对应斜率为-3–3.5。R2>0.98。 (扩增效率=10-1/斜率-1),当斜率=-3.32 时,扩增效率=100%。

2)扩增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无Ct 值。

(3) 熔解曲线:为单一峰。

b)3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。

QRox 的作用?

A:ROX 是一种参比染料,其作用是标准化荧光定量反应中的非PCR 震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。

Q为什么扩增曲线不稳定(扩增曲线平台期锯齿状)?

A:可能原因:

a)RNA 纯度低,体系中存在较多杂质;推荐参数:OD260/OD280=1.8-2.0, OD260/OD230>2.0。随着 qPCR 反应的进行,阻碍反应的因素不断增加,若 RNA 纯度低,杂质多,会进一步影响仪器平台期的算法,导致出现锯齿状。

b)仪器长时间未做校准。仪器未校准会使仪器算法错误,导致各种异常结果。

解决方案:

a)先梯度加大模板稀释倍数看优化效果。若效果仍不好建议新制备高纯度RNA 重新实验。b)定期(一般 1 年)进行仪器校准保养。

Q为什么扩增曲线无法达到平台期?

A:可能原因:

a)模板量太低(CT 值 35 左右)。推荐 Ct 值:15<Ct<30。原因:Ct 值太大(如  Ct>30),刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

b)循环次数太少(30 cycles);循环次数过少(如 35)导致刚进入指数扩增期几个循环就停止了反应,故无法到达平台期。

c)试剂扩增效率低(CT 小,但无法达到平台期,曲线比较“趴”)。

解决方案:

a)提高模板量;参考 Q1 的优化方法。

b)提高循环次数;推荐循环数:一般 40。低丰度基因可设 45。

c)做标准曲线测定扩增效率,若确实偏低,则换试剂。

d)增加 Mg2+浓度(会增加非特异扩增)

Q为什么出现双峰,并且较低峰 Tm 在 80℃之前?

A:较低峰 Tm 在 80℃之前可能原因:存在引物二聚体(一般mRNA 反转录后定量,产物在 100-150bp 左右,峰对应 Tm 值为 80-90℃。若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值在 70-80℃之间。故会在 80℃以前出现一个峰, 80℃以后出现一个峰),模板浓度过低或引物浓度过高。

解决方案:

a)适当提高退火温度; b)提高模板量,降低引物浓度; c)重新设计引物。

Q为什么出现双峰,双峰 Tm 都在 80℃以前?

A:双峰Tm 都在 80℃以前的可能原因:做 MicroRNA 定量时存在引物二聚体。Micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十 bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃ 以前出现双峰。

优化方法:提高退火温度、降低引物浓度或重新设计引物等方式优化。

Q为什么出现双峰,并且双峰Tm 都在 80℃以后?

A:可能原因:

a)引物特异性过差导致非特异性产物扩增。

b)交叉污染。

c)gDNA 污染,可通过 NRC 进行确认。

解决方案:

a)Blast 检查引物特异性,差则重新设计引物。

b)超净台中操作,注意更换 Tip 头,避免交叉污染。

c)通过 NRC 阴性对照进行确认,若有,需重新制备模板。

Q为什么是单峰,但 Tm 在 80℃之前?

A:可能原因:

扩增产物是完全的引物二聚体,可能是未加模板。

注:若 microRNA,则结果正常(做 microRNA 定量时存在引物二聚体。micro RNA 反转录后定量, 产物在 80-90bp 左右,峰对应 Tm 值为 70-80℃,若有引物二聚体存在,引物二聚体大小只有几十bp,峰对应 Tm 值也在 70-80℃之间。故会在 80℃以前出现双峰)。

解决方案:

进行高分辨率琼脂糖电泳,检测有无目的条带,以确定模板是否加入。优化方法:新配制无误的反应体系,重新实验。

Q为什么是单峰,但峰不尖锐?

A:可能原因:

存在大小相近的非特异性扩增

解决方案:a)温度跨度不高于 7℃,视为可用结果(即 Tm 值跨度<7℃可认为是同一种产物);

b)进行高浓度琼脂糖电泳(高分辨率),确认是否为单一条带。

1. Lu, XY., Shi, XJ., Hu, A. et al. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature (2020). IF43

2. Han X., et al., Mapping the Mouse Cell Atlas by Microwell-Seq[J]. Cell. 2018 Feb 22;172(5):1091-1107.e17. IF 30.410

3. Wang X, Ni L, Wan S, et al. Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells[J]. Immunity, 2020, 52(2): 328-341. e5. IF21.522

4. Xiao J, Li W, Zheng X, et al. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection[J]. Immunity, 2020, 52(1): 109-122. e6.IF21.522

5. Han F, Liu X, Chen C, et al. Hypercholesterolemia risk-associated GPR146 is an orphan G-protein coupled receptor that regulates blood cholesterol levels in humans and mice[J]. Cell Research, 2020, 30(4): 363-365.IF20.5

6. Mo J, Chen Z, Qin S, et al. TRADES: Targeted RNA Demethylation by SunTag System[J]. Advanced Science, 2020, 7(19): 2001402.IF15.8

7. Fan H, Hong B, Luo Y, et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro[J]. Signal transduction and targeted therapy, 2020, 5(1): 1-3.(IF13.493)

8. Wang J., et al., The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun. 2017 Aug 15;8(1):244. IF 12.353

9. Zhou L, Hou B, Wang D, et al. Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer[J]. Nano Letters, 2020.IF12.279

10. Wang Y, Xiao Y, Dong S, et al. Antibody-free enzyme-assisted chemical approach for detection of N 6-methyladenosine[J]. Nature Chemical Biology, 2020: 1-8.(IF12.154)

11. Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress[J]. Nucleic acids research, 2019.IF11.6

12. Su G, Guo D, Chen J, et al. A distal enhancer maintaining Hoxa1 expression orchestrates retinoic acid-induced early ESCs differentiation[J]. Nucleic acids research, 2019.IF11.6

13. Feng Y, Wang Y, Wang X, et al. Simultaneous Epigenetic Perturbation and Genome Imaging Reveal Distinct Roles of H3K9me3 in Chromatin Architecture and Transcription[J]. bioRxiv, 2020.IF10.806 

14. Huang X, He M, Huang S, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription[J]. Molecular cancer, 2019, 18(1): 166.IF10.679

15. Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling[J]. Biomaterials, 2020, 231: 119654.(IF10.317)

16. Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling[J]. Biomaterials, 2019: 119654.IF10.273

17. Yafen Wang, Xiong Zhang, et al. Bisulfite-free, single base-resolution analysis of 5-hydroxymethylcytosine in genomic DNA by chemical-mediated mismatch[J]. Chem. Sci., 2019, Advance Article. IF 9.063

18. Wang Y, et al., Gene specific-loci quantitative and single-base resolution analysis of 5-formylcytosine by compound-mediated polymerase chain reaction[J]. Chem Sci. 2018 Mar 19;9(15):3723-3728. IF 8.668

19. Liu, C., et al., Enrichment and fluorogenic labelling of 5-formyluracil in DNA[J]. Chemical Science, 2017. 8: p.4505-4510.IF 8.668

20. Xiong Z, Yuan C. Restoring the epigenetically silenced PCK2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress[J]. Theranostics, 2020, 10(25): 11444.(IF8.579)

USA Scientific PCR管

 

USA Scientific生产和销售高品质的实验室塑料,设备和配件。

自1982年以来,USAScientific一直是值得信赖的实验室合作伙伴。

我们为提供有助于研究人员和技术人员测试理论,发现,诊断疾病,创造治疗以及开展实验室重要工作的工具而感到自豪。

大部分产品都是在美国生产的。实例包括TipOne ®,TempAssure ® PCR管和TempPlate ® PCR板中,所有的密封薄膜和箔片,塑料储物箱和机架,血清学吸管,most tubes,和选定的设备。

PCR管,板,密封膜,循环器和工作站

PCR Tubes, Plates, Sealing Film, Cyclers, and Workstations

用于实时PCR,终点PCR和测序的消耗品和设备。

Consumables and equipment for real-time PCR, end-point PCR, and sequencing.

 

0.2 ml PCR 8-tube FLEX-FREE strip, attached clear flat caps, natural

 

0.2毫升PCR 8管FLEX-FREE条带,附有透明平盖,自然 

货号: 1402-4700

 

 

0.2 ml  TempAssure PCR 8管无弯曲条带,单独连接,光学透明平盖,自然。120条管,每包装有盖子。

无加强条带经过加固,可在搬运时抵抗弯曲。单独连接的平盖具有光学透明性,可用于实时操作,易于操作,并有助于避免交叉污染。聚丙烯薄壁管提供快速,均匀的热传递,以实现可靠的扩增。在洁净室条件下制造,经认证不含可检测水平的DNase,RNase,DNA和PCR抑制剂。经测试无热原和非自发荧光。美国制造。

自然色。每个包装包含10个单独的12个条带袋,总共120个条带(960个管和帽)。

 

TempPlate非裙边96孔PCR板,天然 

货号:1402-9596

 

TempPlate non-skirted 96-well PCR plate, natural

 

TempPlate

非裙边聚丙烯0.2毫升96孔PCR板,标准深度,A12缺口,自然。两个/袖子,10个/盒。

非裙边板,易于阅读,黑色字母数字标签。边缘孔可大限度地减少交叉污染。包装在5个2(10)的袖子中,提供额外的保护和清洁。TempPlate®聚丙烯板具有薄孔,可实现快速均匀的热传递,实现可靠的扩增。经认证不含可检测的RNase,DNase,DNA和PCR抑制剂。经测试无热原和非自发荧光。美国制造。

 

 

0.2 ml PCR 8-tube FLEX-FREE strip, attached optical cap strip

货号: 1402-1800

 

 

0.2毫升TempAssure PCR 8管无弯曲铰链带,带有光学透明的8盖条,自然。125条管子,每包装一个盖子。

8盖条连接在0.2毫升管条的一端,便于密封。无弯曲的管条经过加固,可在搬运时抵抗弯曲。每包125条(1000管和平盖)。聚丙烯薄壁管提供快速,均匀的热传递,以实现可靠的扩增。在洁净室条件下制造,经认证不含可检测水平的DNase,RNase,DNA和PCR抑制剂。经测试无热原和非自发荧光。美国制造。

 

 

0.2 ml PCR white 8-tube FLEX-FREE strip, attached clear flat caps

货号: 1402-4780

 

0.2毫升TempAssure PCR 8管白色无弯曲条带,带有单独连接的光学透明平盖。120条管,每包装有盖子。

无加强条带经过加固,可在搬运时抵抗弯曲。单独连接的平盖具有光学透明性,可用于实时操作,易于操作,并有助于避免交叉污染。聚丙烯薄壁管提供快速,均匀的热传递,以实现可靠的扩增。在洁净室条件下制造,经认证不含可检测水平的DNase,RNase,DNA和PCR抑制剂。经测试无热原和非自发荧光。美国制造。

白色管有清晰,自然的帽子。每个包装包含10个单独的12个条带袋,总共120个条带(960个管和帽)。

 

0.2 ml PCR white 8-tube FLEX-FREE strip, attached optical cap strip

货号: 1402-1880

 

 

0.2毫升TempAssure PCR白色8管无弯曲铰链带,带有光学透明的8盖条带。125条管子,每包装一个盖子。

8盖条连接在0.2毫升管条的一端,便于密封。无弯曲的管条经过加固,可在搬运时抵抗弯曲。每包125条(1000管和平盖)。聚丙烯薄壁管提供快速,均匀的热传递,以实现可靠的扩增。在洁净室条件下制造,经认证不含可检测水平的DNase,RNase,DNA和PCR抑制剂。经测试无热原和非自发荧光。美国制造。

 

 

0.2 ml PCR 8-tube FLEX-FREE strip, attached clear flat caps, mixed

货号: 1402-4708

 

 

0.2毫升TempAssure PCR 8管无弯曲条带,带有单独连接的光学透明平盖。管是各种颜色,帽是自然的。10袋12条。

无加强条带经过加固,可在搬运时抵抗弯曲。单独连接的平盖具有光学透明性,可用于实时操作,易于操作,并有助于避免交叉污染。聚丙烯薄壁管提供快速,均匀的热传递,以实现可靠的扩增。在洁净室条件下制造,经认证不含可检测水平的DNase,RNase,DNA和PCR抑制剂。经测试无热原和非自发荧光。美国制造。

各种颜色包括两个12个条带的袖子(袋子),每个条带有蓝色,绿色,红色,紫色和黄色。120条(960管和瓶盖)。

 

 

 

 

上海金畔生物科技有限公司是实验试剂一站式采购服务商

1:强大的进口辐射能力,血清、抗体、耗材、大部分限制进口品等。

2:产品种类齐全,经营超过700多个品牌,基本涵盖所有生物实验试剂耗材。

3:提供加急服务,货品一般1-2周到货。

4:富有竞争力的价格优势,绝大部分价格有优势。

5:多年积累良好的信誉,大部分客户提供货到付款服务。客户包括清华、北大、交大、复旦、中山等100多所高校,ROCHE,阿斯利康、国药、fisher等药企。

6:我们还是Santa,Advanced Biotechnologies Inc,Athens Research & Technology,bangs,BBInternational,crystalchem,dianova,FD Neurotechnologies,Inc. FormuMax Scientific,Inc, Genebridege, Glycotope Biotechnology GmbH; iduron,Innovative Research of America, Ludger, neuroprobe,omicronbio, Polysciences,prospecbi, QA-BIO,quickzyme,RESEARCH DIETS,INC,sterlitech;sysy,TriLink BioTechnologies,Inc;worthington-biochem,zyagen等几十家国外公司代理。

7:我们还是invitrogen,qiagen,MiraiBioam,sigma;neb,roche,merck, rnd,BD, GE,pierce,BioLegend等*批发,欢迎合作。

 

 

 

 

大龙TC1000-S等度PCR基因扩增仪

大龙TC1000-S等度PCR基因扩增仪

大龙TC1000-S等度PCR基因扩增仪具有升降温快速,控温精准度高,彩色触屏控制等特点,广泛应用于分子生物学,临床诊断,疾病研究等。基因扩增仪是实验室基本仪器。应用于生物科技、克隆、基因分型、诱变等领域。

新品上市

TC1000-S等度PCR基因扩增仪 

产品简述:

   大龙TC1000-S等度PCR基因扩增仪 广泛应用在生物分子,临床检验,法医鉴定和疾病监控等领域。

产品特点:

  1. 直观的触摸人机交互界面
  2. 快速精准的升降温速率
  3. 提供一个初始加热模块
  4. 出色的温度控制 

产品规格

型号

TC1000-S

容量

0.2mL PCR管×96,0.2ml 8联管×12;96孔PCR板 

加热温度范围 [ o C]

4-105

加热盖温度范围 [ o C]

室温+5-110,当模块设定温度<30度后,热盖自动关闭 

可现实小温度单位 [ o C]

0.1 

温度误差范围 [ o C@55 o C]

±0.3

温度均一性[℃@55℃ ] 

< 0.3 

大变温速率[℃/s] 

5

梯度温度控制支持

有 

梯度控制可设定范围温度 [ o C]

30-99

梯度跨度[℃] 

1-42 

显示屏规格

7英寸800*480 ,LED

触模屏操作 

支持

断电保护 

有(无时间限制) 

输入电压 

100-120V/200-240V, 50/60Hz

订货信息

梯度PCR

产品编号

型号

产品名称

542000120000

TC1000-G

梯度PCR仪,国标插头, 200-240V / 50/60Hz

等度PCR

产品编号

型号

产品名称

541000120000

TC1000-S

等度PCR仪,国标插头, 200-240V / 50/60Hz

大龙TC1000-S等度PCR基因扩增仪

Taq PCR Master Mix

 

Roboklon 在分子生物学方面,提供大量高质量,可靠但廉价的消耗品。 

 

Taq PCR Master Mix

 

 

品质Taq DNA Polymerase Master mix。

一般诊断PCR。

没有“校对”。

方便,稳定的主混音。

包含独立的可选颜色负载解决方案,可直接加载凝胶。

 

详细的产品说明

  

货号

品名

规格

品牌

E2520-03

Taq PCR Master Mix

500 reactions (50 μl)

roboklon

E2520-02

Taq PCR Master Mix

200 reactions (50 μl)

roboklon

E2520-01

100 reactions (50 μl)

roboklon

 

   图1: – 包装内容

[2x](1.5 mM MgCl 2终浓度)

PCR级水

10倍的颜色负载(可选染料混合物直接加载凝胶)

根据客户的要求,可以包含 25 mM MgCl 2溶液用于微调Mg ++离子浓度。如果需要,请要求我们将此组件与您的订单一金畔货。

 

特点

多功能主混合物: 2x PCR Master Mix,配有优化的反应缓冲液和高质量的dNTP。

附加包装内容: Plus PCR纯水和可选的Color Load Buffer,用于直接PCR后凝胶加载,两者均分别在单独的试管中提供。

高质量:与 →Taq DNA聚合酶[Cat No. E2500]相同的高酶纯度和酶活性。

严格的质量控制:与 →Taq DNA聚合酶[目录号E2500]相同的严格质量控制。

针对标准化水平进行了优化:大限度地减少移液错误:保证了关键PCR检测的高重复性。

连续再现性:超过25次冻融循环的稳定,可重复的高性能。

不含污染DNA:用许多不同的扩增目标(包括细菌16S rRNA基因)进行测试,没有残留的PCR可扩增DNA存在。

没有误报。

精心和精心的纯化:通过*但细致和温和的酶纯化,实现高纯度和酶活性。

酶特性:固有的核酸外切酶活性:5'-3'存在,3'-5'无。没有校对活动。

克隆:启用TA和钝端克隆。

也可用作: →Taq DNA聚合酶(非主混合物)[Cat No. E2500])。

应用示例

 

 

 

 

图2:使用Taq DNA聚合酶(目录号E2500,非主混合格式)和即用型(产品目录号)的1.1 kb扩增子(人类ccr5基因)的比较性PCR扩增。 2520)。分子量标记MW (Perfect TM 1kb DNA Ladder)。每个PCR反应:1.25U Taq DNA聚合酶,0.2mM dNTP; 50μl反应体积。泳道2-3:EURx Taq DNA聚合酶(非主混合格式) ; 4-5:EURx (经过25次冻融循环后,证明对反复冻融的耐受性),6-7:EURx (25次冻融循环后)加上可选颜色负载(用于直接后PCR凝胶加载)。

 

 

 

 

图3:用Taq DNA聚合酶(目录号E2500) 进行PCR扩增,大小范围在〜1至15 kb之间。分子量标记MW1 (Perfect TM 1kb DNA Ladder),MW2(λ-DNA [GenBank J02459] / Hind III)。泳道1.1至15kb:PCR扩增反应(每个反应1.25U EURx Taq DNA聚合酶(非主混合形式),Pol缓冲液B,0.2mM dNTPs;50μl反应体积)。

 

其他资源 PCR Master Mix Logsheet 如何触发Taq DNA聚合酶的逆转录酶活性(贡献协议)

 

Roboklon 2018年部分产品列表:

 

货号

品名

规格

品牌

E2500-01

Taq DNA Polymerase

200 u

roboklon

E2500-04

Taq DNA Polymerase

500 u

roboklon

E2500-02

Taq DNA Polymerase

1000 u

roboklon

E2500-03

Taq DNA Polymerase

5000 u

roboklon

EK2500-01

Taq DNA Polymerase

200 u / Kit (+ dNTPs)

roboklon

EK2500-04

Taq DNA Polymerase

500 u / Kit (+ dNTPs)

roboklon

EK2500-02

Taq DNA Polymerase

1000 u / Kit (+ dNTPs)

roboklon

EK2500-03

Taq DNA Polymerase

5000 u / Kit (+ dNTPs)

roboklon

E0401-01

SG qPCR Master Mix

100 x 25μl

roboklon

E0401-02

SG qPCR Master Mix

200 x25μl

roboklon

E0401-03

SG qPCR Master Mix

1.000×25μl

roboklon

E2520-03

500 reactions (50 μl)

roboklon

E2520-02

200 reactions (50 μl)

roboklon

E2520-01

100 reactions (50 μl)

roboklon

 

我们公司优势是强大的采购,

1:基本什么都能进口,血清,抗体,耗材,还有部分限制进口的,

2:货品全,现经营过700多个品牌,基本所有生物试剂耗材都可以进口,特别是冷偏的产品那就更有优势,

3:提供加急服务,一般1-2周到货,超过时限加急费全免

4:价格公道,绝大部分价格有优势,当然不能保证100%产品都是价格低廉,因为价格低廉意味着没有服务.

5:良好的信誉,大部分客户我们提供货到付款服务,客户包括清华,北大 交大 复旦,中山等100多所大学,ROCHE,阿斯利康,国药 ,fisher等500多家公司

6:我们代理的品牌有:Antibody Research Corporation,arcticzymes,Biorelevant,AmberGen, Inc. ,clemente-associates,clodronaiposomes,Columbia Biosciences,enzyme research,Gene Bridges GmbH,Genovis,AmberGen, Inc.  Biotechnology GmbH,Haematologic Technologies HTI Haemtech,hookelabs,Immudex,Innovative Research of America,inspiralis ,List Biological Laboratories, Inc.,lumafluor,Microsurfaces,multiplicom,nanotools,Pel-Freez Biologicals,pentapharm,progen,Protein Ark,QA-Bio,Inc,QA-Bio,IncQuickZyme Biosciences,Teknova,TriLink BioTechnologies, Inc.,Zyagen Laboratories 等

7:我们还是invitrogen,qiagen,Midland BioProducts Corporationam,sigma;neb,roche,merck, rnd,BD, GE,pierce,BioLegend等知名*批发,欢迎合作。

 

0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

产品说明书

FAQ

COA

已发表文献

金畔生物96孔PCR板使用洁净的聚丙烯原料(PP),管壁薄,且厚度均匀,保证良好的热传导。加样完毕后,用封板膜封板即可

 

运输和保存方法

常温运输,室温储存,有效期3年

 

产品特点

· 使用洁净的聚丙烯原料,管壁薄,且厚度均匀,保证良好的热传导

· 适用于对应模块规格的荧光定量PCR仪

· 产品无菌、无RNA酶、无DNA酶、无热源污染,无需灭菌直接使用

· 半裙边式构造,边缘印刷黑字方便加样及记录数据

 

注意事项

1.切勿用手触摸光学平盖顶部,避免影响荧光信号!

2.建议储存在无菌环境下!

3.佩戴手套拿取!

4.仅供科研使用!

适配仪器(仅供参考)

 0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

Ver.CN20231127

 

Q:几款PCR板怎么进行区分呢?

A:可参考适配表,无裙边或者半裙边PCR板可适配更多的仪器。83557ES 适配MGISP-960的自动化建库耗材。

Q: 无裙边半裙边全裙边的区别是什么?

A:

 

0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

暂无内容

金畔生物96孔PCR板使用洁净的聚丙烯原料(PP),管壁薄,且厚度均匀,保证良好的热传导。加样完毕后,用封板膜封板即可

 

运输和保存方法

常温运输,室温储存,有效期3年

 

产品特点

· 使用洁净的聚丙烯原料,管壁薄,且厚度均匀,保证良好的热传导

· 适用于对应模块规格的荧光定量PCR仪

· 产品无菌、无RNA酶、无DNA酶、无热源污染,无需灭菌直接使用

· 半裙边式构造,边缘印刷黑字方便加样及记录数据

 

注意事项

1.切勿用手触摸光学平盖顶部,避免影响荧光信号!

2.建议储存在无菌环境下!

3.佩戴手套拿取!

4.仅供科研使用!

适配仪器(仅供参考)

 0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

Ver.CN20231127

 

Q:几款PCR板怎么进行区分呢?

A:可参考适配表,无裙边或者半裙边PCR板可适配更多的仪器。83557ES 适配MGISP-960的自动化建库耗材。

Q: 无裙边半裙边全裙边的区别是什么?

A:

 

0.2mlPCR板 96孔PCR板-半裙边PCR板 透明PCR板

暂无内容

Biosearch Technologies—q PCR产品/技术中心 中国代理商


Biosearch Technologies—q PCR产品/技术中心 中国代理商

简要描述:Biosearch Technologies代理,Biosearch Technologies中国代理,Biosearch Technologies上海代理,Biosearch Technologies代理,Biosearch Technologies
Biosearch Technologies专业代理-上海金畔生物科技有限公司,具体产品信息欢迎电询

详细介绍

产品咨询

Biosearch Technologies代理,Biosearch Technologies中国代理,Biosearch Technologies上海代理,Biosearch Technologies代理,Biosearch Technologies
Biosearch Technologies专业代理-上海金畔生物科技有限公司,具体产品信息欢迎电询

关键词:Biosearch Technologies,Biosearch,biosearchtech,Black Hole Quencher ,BHQ? dyes,荧光探针,ValuPanel试剂,Slaris? RNA FISH 探针,Slaris FISH

  
Biosearch Technologies—q PCR产品/技术中心
Biosearch Technologies是一家致力于创新性研发新型核酸产品以促进新基因的发现与应用的高科技公司。从上世纪八十年代开始,一代一代的Biosearch创新者就专注于寡核苷酸化学合成技术, 在设计和生产荧光探针及引物中经过多次改良形成了公司*的寡核苷酸修饰技术。目前 Biosearch开发的荧光粹灭技术Black Hole Quencher? (BHQ? dyes) 已成为高效荧光探针设计/合成的工业生产标准。以创新研发为原发动力的Biosearch Technologies公司已经通过英国ISO 9001:2008、ISO 13485:2003标准认证,获得加利福尼亚设备制造许可证以及GMP生产许可证。Biosearch拥有丰富的高品质产品线,不仅包括探针和引物产品,广泛应用于药物研发,DNA测序/SNP检测/基因表达分析等领域,也为其他寡核苷酸生产厂商提供原材料。公司在仪器生产领域的努力也使得我们能对公司产品的合成和纯化进一步深入和发展。 
   

Black Hole Quencher (BHQ?) 染料:
Black Hole Quencher (BHQ?) 染料结合 FRET静粹灭技术避免了常规荧光粹灭技术如TAMRA带来的残留背景信号及dabcyl的低信噪比,可实现宽的光谱范围(从480 nm 到近红外光区)的高效荧光粹灭。
 
Normalized absorption spectra of the BHQ dyes illustrate their range of quenching through FRET

公司主要产品:
一、ValuPanel试剂:
ValuPanel试剂是目前*一家基于BHQ荧光粹灭技术合成的一系列检测病原微生物的探针和引物,用于2009 H1N1, A型流感病毒、InfA、InfA/H1、InfA/H3、 Infa/H5a、Infa/H5b、 InfB、swInfA、swH1、 H7N9 (禽流感)的检测(仅用于研究)。 

二、Slaris? RNA FISH 探针:
FISH (荧光原位杂交) 是一款亚细胞水平的特定RNA定位、定量检测技术。Biosearch Technologies公司的Slaris FISH探针是一系列荧光基团标记的特异引物序列,可以用于目的RNA分子的直接表达检测,无需样品分离、纯化和扩增。目前Biosearch Technologies公司除了大量已合成的成品探针外还接受客户探针定制服务。公司在上还提供高效的在线引物设计软件与实验设计、操作等使用说明,便于客户根据实验需要设计自己*的探针分子。

三、荧光探针和引物
Biosearch Technologies提供多种用于real-time qPCR及SNP检测的探针和引物,所有探针和引物产品均基于 BHQ技术生产,可根据需要标记不同的荧光基团,如FAM、TET、HEX、JOE、CAL Fluor?、Quasar?和 Pulsar? dyes及其它修饰方法. 染料选取请在公司主页上参考Dye Selection Chart板块。
  

四、DNA/RNA合成试剂:
Biosearch Technologies提供多种DNA/RNA合成试剂,包括Black Hole Quencher? (BHQ?) dyes及相关试剂、各种荧光染料及非荧光标记分子(氨基酸、磷酸化、生物素化)、常规的DNA/RNA合成试剂与配件、纯化试剂及纯化柱等产品。
   

五、标记试剂
Biosearch Technologies提供多款荧光基团、粹灭剂及非荧光的修饰试剂,用于DNA、多肽或蛋白的合成后修饰标记。
 
六、定制寡核苷酸服务:
Biosearch Technologies拥有快速合成、纯化大量高质量寡核苷酸的技术与设备,多重严格的质控标准和程序确保客户在5-7个工作日即可收到*无瑕的定制寡核苷酸产品. Biosearch为您提供从标准到特殊要求多种选择的寡核苷酸合成服务。
 
七、免疫化学系列产品
Biosearch Technologies还提供多种分子交联产品,作为分子生物学研究的报告分子等。包括Hapten Reporter Groups and Conjugates、Protein Conjugates、FICOLL Conjugates、Fluorophore Conjugates以及N1-Guanyl-1,7-diaminoheptane (GC7)等。

详细产品信息请访问:https://www.biosearchtech.com/

上海金畔生物科技有限公司
实验试剂一站式采购服务商
1:强大的进口辐射能力,血清、抗体、耗材、大部分限制进口品等。
2:产品种类齐全,经营超过700多个品牌,基本涵盖所有生物实验试剂耗材。
3:提供加急服务,货品一般1-2周到货。
4:富有竞争力的价格优势,绝大部分价格有优势。
5:多年积累良好的信誉,大部分客户提供货到付款服务。客户包括清华、北大、交大、复旦、中山等100多所高校,ROCHE,阿斯利康、国药、fisher等药企。
6:我们还是Santa,Advanced Biotechnologies Inc,Athens Research & Technology,bangs,BBInternational,crystalchem,dianova,FD Neurotechnologies,Inc. FormuMax Scientific,Inc, Genebridege, Glycotope Biotechnology GmbH; iduron,Innovative Research of America, Ludger, neuroprobe,omicronbio, Polysciences,prospecbi, QA-BIO,quickzyme,RESEARCH DIETS,INC,sterlitech;sysy,TriLink BioTechnologies,Inc;worthington-biochem,zyagen等几十家国外公司代理。
7:我们还是invitrogen,qiagen,Biosearch Technologiesam,sigma;neb,roche,merck, rnd,BD, GE,pierce,BioLegend等*批发,欢迎合作。

2×实时定量PCR扩增预混液|qPCR SYBR Green Master Mix(No Rox)

2×实时定量PCR扩增预混液|qPCR SYBR Green Master Mix(No Rox)

产品说明书

FAQ

COA

已发表文献

产品描述

Hieff® qPCR SYBR Green Master Mix(No Rox)2×实时定量PCR扩增的预混合溶液。Mix中含有热启动Hieff® DNA PolymeraseSYBR Green I、dNTPs、Mg2+使用时,仅需在扩增体系中加入模板和引物即可进行实时荧光定量PCR,大大简化操作过程,降低污染几率。

本品采用的DNA聚合酶配体可以随温度变化实时调节DNA聚合酶活性。配方添加了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,使定量PCR可以在宽广的定量区域内获得良好的线性关系。

 

适用机型

Bio-Rad: CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf: Mastercycler ep realplex, realplex 2 s;

Qiagen: Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science: LightCycler 480, LightCycler 2.0; Lightcycler 96;

Thermo Scientific: PikoReal Cycler; Cepheid: SmartCycler; Illumina: Eco qPCR.

 

运输保存方式

冰袋运输。-20避光储存,有效期18个月。

本品避免反复冻融。产品中含有荧光染料SYBR Green I,保存或配制反应体系时需避免强光照射。

 

注意事项

1. 推荐使用本公司cDNA合成试剂盒(货号11123ES),以有效去除RNA样品中残留的基因组。

2. 解冻后Master Mix可能出现絮状物质,4℃放置并上下颠倒混匀至溶液澄清,不影响试剂性能。

3. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

4. 本产品仅作科研用途!

 

反应体系(推荐冰上配制)

组分

体积(μL

体积(μL

终浓度

Hieff® qPCR SYBR Green Master Mix (No Rox)

25

10

Forward Primer (10 μM)

1

0.4

0.2 μM

Reverse Primer (10 μM)

1

0.4

0.2 μM

模板DNA

X

X

无菌超纯水

to 50

to 20

使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a) 引物浓度:通常引物终浓度为0.2 μM,也可以根据情况在0.1-1.0 μM之间进行调整。

b) 模板浓度:如模板类型为未稀释cDNA原液,使用体积不应超过qPCR反应总体积的1/10。

c) 模板稀释cDNA原液建议5-10倍稀释,最佳模板加入量以扩增得到的CT值在20-30个循环为好。

d) 反应体系:推荐使用20 μL50 μL,以保证目的基因扩增的有效性和重复性。

e) 体系配制:请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染。
 

2×实时定量PCR扩增预混液|qPCR SYBR Green Master Mix(No Rox)

 

: 高特异性可选择两步法,高效率扩增可选择三步法。

a) 预变性时间:根据不同模板和引物的具体情况可适当缩短至2 min

b) 退火温度和时间:请根据引物和目的基因的长度进行调整。

c) 荧光信号采集(:请按照仪器使用说明书要求进行实验程序设置,几种常见仪器的时间设定如下:

30sec以上:Applied Biosystems: StepOne, StepOne Plus, 7500 FastRoche Applied Science: LightCycler 480Bio-Rad: CFX96

31sec以上:Applied Biosystems: 7300

34sec以上:Applied Biosystems: 7500

d) 熔解曲线:通常情况下可以使用仪器默认程序。

 

结果分析

定量实验至少需要三个生物学重复。反应结束后需要确认扩增曲线及熔解曲线。

1) 扩增曲线:标准扩增曲线为S型。

Ct值落在20-30之间时,定量分析最准确;

Ct值小于10时,需要将稀释模板后,重新进行实验;

Ct值介于30-35之间时,需要提高模板浓度,或者增大反应体系的体积,以提高扩增效率,保证结果分析的准确性;

Ct值大于35时,检测结果无法定量分析基因的表达量,但可用于定性分析。

2) 熔解曲线:

熔解曲线单峰,表明反应特异性好可以进行定量结果分析;若熔解曲线出现双峰或者多峰,则不能进行定量分析。

熔解曲线出现双峰,需要通过DNA琼脂糖凝胶电泳判断非目标峰是引物二聚体还是非特异性扩增。

如果是引物二聚体,建议降低引物浓度,或者重新设计扩增效率高的引物。

如果是非特异性扩增,请提高退火温度,或者重新设计更高特异性的引物。

 

引物设计指南

1. 推荐引物长度25 bp左右。扩增产物长度150 bp为佳,可以在100 bp-300 bp内选择。

2. 正向引物和反向引物的Tm值相差不宜超过2。引物Tm值60-65为佳。

3. 引物碱基分布要均匀,避免出现连续的4个相同碱基,GC含量控制在50%左右。3’端最后一个碱基最好为G或C。

4. 引物内部或者正反两条引物间最好避免出现有3个碱基以上的互补序列。

5. 引物特异性需要用NCBI BLAST程序进行核对。避免引物3’端有2个碱基以上的非特异性互补。

6. 设计完成的引物需要进行扩增效率的检测,只有具备相同扩增效率的引物才可用于定量比较分析。

 

相关产品

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit HOT

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11121ES60

100 T

Hifair® II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus) HOT

11123ES60

100 T

Hieff® qPCR SYBR® Green Master Mix (No Rox )HOT

11201ES08

5 ml

Hieff® qPCR SYBR® Green Master Mix (Low Rox Plus) HOT

11202ES08

5 ml

Hieff® qPCR SYBR® Green Master Mix (High Rox Plus) HOT

11203ES08

5 ml

 

HB210720

Q:不加 ROX qPCR mix 后续需换用其他仪器需要 ROX,是否可以单独加 ROX后再使用?

A:可以。

Q:可以用于microRNA 或lncRNA 等非编码RNA 吗?环状 RNA 呢?

A:不推荐。

Q:建议qPCR 实验用几步法?

A:常用 2 步法。需提高扩增特异性,可选用 2 步法或提高退火温度。在扩增效率低, ct 值过大的时候,可以改用 3 步法或延长延伸时间。

Q:预变性 5 min 调整成了 10min,对于实验结果有影响吗?

A有影响,预变性时间较长可能会影响酶的活性,导致 PCR 产物的产量有所降低。

Q:qPCR 实验结果的有效性?为什么建议Ct 值要大于 15?

A:有效性要满足三个条件1标准曲线:扩增效率范围:90110%,对应斜率为  33.5 R2>0.98 (扩增效率=10-1/斜率1),当斜率=-3.32 时,扩增效率=100%。2)扩 增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无 Ct 值。3)熔解曲线:为单一峰。

Ct 值大于 15 个循环是因为 3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。

Q:同一基因复孔间熔解曲线 Tm 值有差异?

A同样的扩增产物也会出现Tm 值有微小差异,一般差异在 1 度以内都可以接受。

Q:为什么稀释了模板CT 值反而变小了?

A一般 CT 值与模板起始浓度呈负相关,浓度越高,CT 值越小。但也有很多特殊情况, 比如体系中存在抑制物或是模板不纯,这时候稀释模板反而能使 CT 值变低。

 

[1] Medina-Puche L, Tan H, Dogra V, et al. A Defense Pathway Linking Plasma Membrane and Chloroplasts and Co-opted by Pathogens. Cell. 2020;182(5):1109-1124.e25. doi:10.1016/j.cell.2020.07.020(IF:38.637)
[2] Wan S, Ni L, Zhao X, et al. Costimulation molecules differentially regulate the ERK-Zfp831 axis to shape T follicular helper cell differentiation. Immunity. 2021;54(12):2740-2755.e6. doi:10.1016/j.immuni.2021.09.018(IF:31.745)
[3] Han X, Wang R, Zhou Y, et al. Mapping the Mouse Cell Atlas by Microwell-Seq [published correction appears in Cell. 2018 May 17;173(5):1307]. Cell. 2018;172(5):1091-1107.e17. doi:10.1016/j.cell.2018.02.001(IF:31.398)
[4] Tang Y, Fang G, Guo F, et al. Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell. 2020;38(1):115-128.e9. doi:10.1016/j.ccell.2020.05.019(IF:26.602)
[5] Chang D, Xing Q, Su Y, et al. The Conserved Non-coding Sequences CNS6 and CNS9 Control Cytokine-Induced Rorc Transcription during T Helper 17 Cell Differentiation. Immunity. 2020;53(3):614-626.e4. doi:10.1016/j.immuni.2020.07.012(IF:22.553)
[6] Wang X, Ni L, Wan S, et al. Febrile Temperature Critically Controls the Differentiation and Pathogenicity of T Helper 17 Cells. Immunity. 2020;52(2):328-341.e5. doi:10.1016/j.immuni.2020.01.006(IF:22.553)
[7] Xiao J, Li W, Zheng X, et al. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection. Immunity. 2020;52(1):109-122.e6. doi:10.1016/j.immuni.2019.11.015(IF:21.522)
[8] Zhao X, Di Q, Yu J, et al. USP19 (ubiquitin specific peptidase 19) promotes TBK1 (TANK-binding kinase 1) degradation via chaperone-mediated autophagy. Autophagy. 2022;18(4):891-908. doi:10.1080/15548627.2021.1963155(IF:16.016)
[9] Sun Z, Tang Y, Zhang Y, et al. Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division. Nat Commun. 2021;12(1):5941. Published 2021 Oct 12. doi:10.1038/s41467-021-26203-0(IF:14.919)
[10] Meng YM, Jiang X, Zhao X, et al. Hexokinase 2-driven glycolysis in pericytes activates their contractility leading to tumor blood vessel abnormalities. Nat Commun. 2021;12(1):6011. Published 2021 Oct 14. doi:10.1038/s41467-021-26259-y(IF:14.919)
[11] Wang P, Geng J, Gao J, et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat Commun. 2019;10(1):755. Published 2019 Feb 14. doi:10.1038/s41467-019-08680-6(IF:11.878)
[12] Zhao X, Di Q, Liu H, et al. MEF2C promotes M1 macrophage polarization and Th1 responses. Cell Mol Immunol. 2022;19(4):540-553. doi:10.1038/s41423-022-00841-w(IF:11.530)
[13] Zhang J, Li Y, Liu H, et al. Genome-wide CRISPR/Cas9 library screen identifies PCMT1 as a critical driver of ovarian cancer metastasis. J Exp Clin Cancer Res. 2022;41(1):24. Published 2022 Jan 15. doi:10.1186/s13046-022-02242-3(IF:11.161)
[14] Zhang M, Liu F, Zhou P, et al. The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy. Autophagy. 2019;15(7):1150-1162. doi:10.1080/15548627.2019.1578040(IF:11.059)
[15] Wang X, Chen K, Zhou M, et al. GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean [published online ahead of print, 2022 Jun 25]. New Phytol. 2022;10.1111/nph.18343. doi:10.1111/nph.18343(IF:10.152)
[16] Fan T, Wang S, Jiang Z, et al. Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication. 2021;14(1):10.1088/1758-5090/ac3aca. Published 2021 Dec 1. doi:10.1088/1758-5090/ac3aca(IF:10.020)
[17] Wu F, Duan Z, Xu P, et al. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. Plant Biotechnol J. 2022;20(3):592-609. doi:10.1111/pbi.13742(IF:9.803)
[18] Wu F, Zhang C, Zhao C, et al. Prostaglandin E1 Inhibits GLI2 Amplification-Associated Activation of the Hedgehog Pathway and Drug Refractory Tumor Growth. Cancer Res. 2020;80(13):2818-2832. doi:10.1158/0008-5472.CAN-19-2052(IF:9.727)
[19] Chen K, Gao J, Sun S, et al. BONZAI Proteins Control Global Osmotic Stress Responses in Plants. Curr Biol. 2020;30(24):4815-4825.e4. doi:10.1016/j.cub.2020.09.016(IF:9.601)
[20] Luo F, Yang W, Yin M, et al. A chromosome-level genome of the human blood fluke Schistosoma japonicum identifies the genomic basis of host-switching. Cell Rep. 2022;39(1):110638. doi:10.1016/j.celrep.2022.110638(IF:9.423)
[21] Xiang H, Tao Y, Jiang Z, et al. Vps33B controls Treg cell suppressive function through inhibiting lysosomal nutrient sensing complex-mediated mTORC1 activation. Cell Rep. 2022;39(11):110943. doi:10.1016/j.celrep.2022.110943(IF:9.423)
[22] Yu L, Chu C, Yuan Y, et al. Activity in projection neurons from prelimbic cortex to the PVT is necessary for retrieval of morphine withdrawal memory. Cell Rep. 2021;35(1):108958. doi:10.1016/j.celrep.2021.108958(IF:9.423)
[23] Zhu L, He S, Huang L, et al. Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response. Aging Cell. 2022;21(6):e13616. doi:10.1111/acel.13616(IF:9.304)
[24] Xiang G, Wang S, Chen L, et al. UBR5 targets tumor suppressor CDC73 proteolytically to promote aggressive breast cancer. Cell Death Dis. 2022;13(5):451. Published 2022 May 12. doi:10.1038/s41419-022-04914-6(IF:8.469)
[25] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[26] He G, Cao Y, Wang J, et al. WUSCHEL-Related Homeobox Genes Cooperate with Cytokinin to Promote Bulbil Formation in Lilium lancifolium [published online ahead of print, 2022 Jun 7]. Plant Physiol. 2022;kiac259. doi:10.1093/plphys/kiac259(IF:8.340)
[27] Chen D, Li J, Huang Y, et al. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation. 2022;19(1):112. Published 2022 May 16. doi:10.1186/s12974-022-02471-5(IF:8.322)
[28] Wei P, Wang K, Luo C, et al. Cordycepin confers long-term neuroprotection via inhibiting neutrophil infiltration and neuroinflammation after traumatic brain injury. J Neuroinflammation. 2021;18(1):137. Published 2021 Jun 15. doi:10.1186/s12974-021-02188-x(IF:8.322)
[29] Zhou M, Xu W, Wang J, et al. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine. 2018;35:345-360. doi:10.1016/j.ebiom.2018.08.035(IF:8.143)
[30] Zhou M, Xu W, Wang J, et al. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine. 2018;35:345-360. doi:10.1016/j.ebiom.2018.08.035(IF:8.143)
[31] Wang Q, Zhou X, Yang L, et al. The Natural Compound Notopterol Binds and Targets JAK2/3 to Ameliorate Inflammation and Arthritis [published correction appears in Cell Rep. 2020 Nov 24;33(8):108442]. Cell Rep. 2020;32(11):108158. doi:10.1016/j.celrep.2020.108158(IF:8.109)
[32] Jin M, Wang Y, An X, et al. Phenotypic and transcriptomic changes in the corneal epithelium following exposure to cigarette smoke. Environ Pollut. 2021;287:117540. doi:10.1016/j.envpol.2021.117540(IF:8.071)
[33] Zhang Y, Xu J, Liu S, et al. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics. 2019;9(23):6976-6990. Published 2019 Sep 21. doi:10.7150/thno.35305(IF:8.063)
[34] He S, Huang L, Shao C, et al. Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson's disease. Transl Neurodegener. 2021;10(1):25. Published 2021 Jul 28. doi:10.1186/s40035-021-00249-y(IF:8.014)
[35] Ou Z, Ma Y, Sun Y, et al. A GPR17-cAMP-Lactate Signaling Axis in Oligodendrocytes Regulates Whole-Body Metabolism. Cell Rep. 2019;26(11):2984-2997.e4. doi:10.1016/j.celrep.2019.02.060(IF:7.815)
[36] Chen Y, Yi X, Huo B, et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection. Pharmacol Res. 2022;177:106122. doi:10.1016/j.phrs.2022.106122(IF:7.658)
[37] Wu Z, Lu Z, Li L, et al. Identification and Validation of Ferroptosis-Related LncRNA Signatures as a Novel Prognostic Model for Colon Cancer. Front Immunol. 2022;12:783362. Published 2022 Jan 26. doi:10.3389/fimmu.2021.783362(IF:7.561)
[38] Liu Y, Jin J, Xu H, et al. Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy. Acta Biomater. 2021;121:541-553. doi:10.1016/j.actbio.2020.11.027(IF:7.242)
[39] Zhou M, Li B, Liu J, Hong L. Genomic, Immunological, and Clinical Characterization of Pyroptosis in Ovarian Cancer. J Inflamm Res. 2021;14:7341-7358. Published 2021 Dec 24. doi:10.2147/JIR.S344554(IF:6.922)
[40] Yu L, Liu S, Wang C, et al. Embryonic stem cell-derived extracellular vesicles promote the recovery of kidney injury. Stem Cell Res Ther. 2021;12(1):379. Published 2021 Jul 2. doi:10.1186/s13287-021-02460-0(IF:6.832)
[41] Zhao S, Zhang C, Xu J, et al. Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Res Ther. 2022;13(1):169. Published 2022 Apr 27. doi:10.1186/s13287-022-02846-8(IF:6.832)
[42] Yuan J, Jiang X, Lan H, et al. Multi-Omics Analysis of the Therapeutic Value of MAL2 Based on Data Mining in Human Cancers. Front Cell Dev Biol. 2022;9:736649. Published 2022 Jan 17. doi:10.3389/fcell.2021.736649(IF:6.684)
[43] Zhang Q, Zhang Y, Zhang J, et al. p66α Suppresses Breast Cancer Cell Growth and Migration by Acting as Co-Activator of p53. Cells. 2021;10(12):3593. Published 2021 Dec 20. doi:10.3390/cells10123593(IF:6.600)
[44] Jin T, Lin J, Gong Y, et al. iPLA2β Contributes to ER Stress-Induced Apoptosis during Myocardial Ischemia/Reperfusion Injury. Cells. 2021;10(6):1446. Published 2021 Jun 9. doi:10.3390/cells10061446(IF:6.600)
[45] Li H, Hou L, Zhang Y, et al. PFN2a Suppresses C2C12 Myogenic Development by Inhibiting Proliferation and Promoting Apoptosis via the p53 Pathway. Cells. 2019;8(9):959. Published 2019 Aug 23. doi:10.3390/cells8090959(IF:6.600)
[46] Zhou X, Wang F, Wu H, et al. Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells. Int J Biol Sci. 2021;17(13):3456-3475. Published 2021 Aug 12. doi:10.7150/ijbs.60401(IF:6.582)
[47] Wang B, Huang Y, Zhang Z, Xiao Y, Xie J. Ferulic Acid Treatment Maintains the Quality of Fresh-Cut Taro (Colocasia esculenta) During Cold Storage. Front Nutr. 2022;9:884844. Published 2022 May 24. doi:10.3389/fnut.2022.884844(IF:6.576)
[48] Deng Y, Li S, Chen Z, Wang W, Geng B, Cai J. Mdivi-1, a mitochondrial fission inhibitor, reduces angiotensin-II- induced hypertension by mediating VSMC phenotypic switch. Biomed Pharmacother. 2021;140:111689. doi:10.1016/j.biopha.2021.111689(IF:6.530)
[49] Li S, Hao M, Li B, et al. CACNA1H downregulation induces skeletal muscle atrophy involving endoplasmic reticulum stress activation and autophagy flux blockade. Cell Death Dis. 2020;11(4):279. Published 2020 Apr 24. doi:10.1038/s41419-020-2484-2(IF:6.304)
[50] Cai H, Li J, Zhang Y, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446. Published 2019 Dec 19. doi:10.3389/fonc.2019.01446(IF:6.244)
[51] Nan XW, Gong LH, Chen X, et al. Survivin Promotes Piperlongumine Resistance in Ovarian Cancer. Front Oncol. 2019;9:1345. Published 2019 Nov 29. doi:10.3389/fonc.2019.01345(IF:6.244)
[52] Zhou J, Wu L, Xu P, Li Y, Ji Z, Kang X. Filamin A Is a Potential Driver of Breast Cancer Metastasis via Regulation of MMP-1. Front Oncol. 2022;12:836126. Published 2022 Mar 11. doi:10.3389/fonc.2022.836126(IF:6.244)
[53] Wan Y, Hoyle RG, Xie N, et al. A Super-Enhancer Driven by FOSL1 Controls miR-21-5p Expression in Head and Neck Squamous Cell Carcinoma. Front Oncol. 2021;11:656628. Published 2021 Apr 16. doi:10.3389/fonc.2021.656628(IF:6.244)
[54] Wang F, Zhu Y, Cai H, et al. N6-Methyladenosine Methyltransferase METTL14-Mediated Autophagy in Malignant Development of Oral Squamous Cell Carcinoma. Front Oncol. 2021;11:738406. Published 2021 Nov 24. doi:10.3389/fonc.2021.738406(IF:6.244)
[55] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[56] Zhu H, Zhang Y, Zhang C, Xie Z. RNA-Binding Profiles of CKAP4 as an RNA-Binding Protein in Myocardial Tissues. Front Cardiovasc Med. 2021;8:773573. Published 2021 Dec 23. doi:10.3389/fcvm.2021.773573(IF:6.050)
[57] Li M, Liu S, Tan L, et al. Fumonisin B1 induced intestinal epithelial barrier damage through endoplasmic reticulum stress triggered by the ceramide synthase 2 depletion. Food Chem Toxicol. 2022;166:113263. doi:10.1016/j.fct.2022.113263(IF:6.025)
[58] Zhai Y, Zheng X, Mao Y, et al. Recombinant Human Thymosin β4 (rhTβ4) Modulates the Anti-Inflammatory Responses to Alleviate Benzalkonium Chloride (BAC)-Induced Dry Eye Disease. Int J Mol Sci. 2022;23(10):5458. Published 2022 May 13. doi:10.3390/ijms23105458(IF:5.924)
[59] He G, Yang P, Cao Y, et al. Cytokinin Type-B Response Regulators Promote Bulbil Initiation in Lilium lancifolium. Int J Mol Sci. 2021;22(7):3320. Published 2021 Mar 24. doi:10.3390/ijms22073320(IF:5.924)
[60] Duan Z, Yan Q, Wu F, et al. Genome-Wide Analysis of the UDP-Glycosyltransferase Family Reveals Its Roles in Coumarin Biosynthesis and Abiotic Stress in Melilotus albus. Int J Mol Sci. 2021;22(19):10826. Published 2021 Oct 6. doi:10.3390/ijms221910826(IF:5.924)
[61] He G, Yang P, Cao Y, et al. Cytokinin Type-B Response Regulators Promote Bulbil Initiation in Lilium lancifolium. Int J Mol Sci. 2021;22(7):3320. Published 2021 Mar 24. doi:10.3390/ijms22073320(IF:5.924)
[62] Yuan L, Zhang L, Wei X, et al. Quantitative Trait Locus Mapping of Salt Tolerance in Wild Rice Oryza longistaminata. Int J Mol Sci. 2022;23(4):2379. Published 2022 Feb 21. doi:10.3390/ijms23042379(IF:5.924)
[63] Li P, Lan W, Li J, et al. Identification and Functional Evaluation of a Novel TBX4 Mutation Underlies Small Patella Syndrome. Int J Mol Sci. 2022;23(4):2075. Published 2022 Feb 14. doi:10.3390/ijms23042075(IF:5.924)
[64] Chen LJ, He JT, Pan M, et al. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol. 2021;12:716703. Published 2021 Jul 26. doi:10.3389/fphar.2021.716703(IF:5.811)
[65] Xing YJ, Liu BH, Wan SJ, et al. A SGLT2 Inhibitor Dapagliflozin Alleviates Diabetic Cardiomyopathy by Suppressing High Glucose-Induced Oxidative Stress in vivo and in vitro. Front Pharmacol. 2021;12:708177. Published 2021 Jul 12. doi:10.3389/fphar.2021.708177(IF:5.811)
[66] Yang Q, Nong X, Xu J, et al. Unraveling the Genetic Basis of Fertility Restoration for Cytoplasmic Male Sterile Line WNJ01A Originated From Brassica juncea in Brassica napus. Front Plant Sci. 2021;12:721980. Published 2021 Aug 31. doi:10.3389/fpls.2021.721980(IF:5.754)
[67] Liao Y, Wang F, Zhang Y, Cai H, Song F, Hou J. Silencing SHMT2 inhibits the progression of tongue squamous cell carcinoma through cell cycle regulation. Cancer Cell Int. 2021;21(1):220. Published 2021 Apr 16. doi:10.1186/s12935-021-01880-5(IF:5.722)
[68] Ding FP, Tian JY, Wu J, Han DF, Zhao D. Identification of key genes as predictive biomarkers for osteosarcoma metastasis using translational bioinformatics. Cancer Cell Int. 2021;21(1):640. Published 2021 Dec 2. doi:10.1186/s12935-021-02308-w(IF:5.722)
[69] Miao D, Shi J, Xiong Z, et al. As a prognostic biomarker of clear cell renal cell carcinoma RUFY4 predicts immunotherapy responsiveness in a PDL1-related manner. Cancer Cell Int. 2022;22(1):66. Published 2022 Feb 8. doi:10.1186/s12935-022-02480-7(IF:5.722)
[70] Fan X, Li Y, Yi X, et al. Epigenome-wide DNA methylation profiling of portal vein tumor thrombosis (PVTT) tissues in hepatocellular carcinoma patients. Neoplasia. 2020;22(11):630-643. doi:10.1016/j.neo.2020.09.007(IF:5.696)
[71] Zhu Z, Zhang Y, Wang X, Wang X, Ye SD. Inhibition of protein kinase D by CID755673 promotes maintenance of the pluripotency of embryonic stem cells. Development. 2020;147(16):dev185264. Published 2020 Aug 24. doi:10.1242/dev.185264(IF:5.611)
[72] Zhang C, Shen Y, Tang D, et al. The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet. 2018;14(11):e1007769. Published 2018 Nov 12. doi:10.1371/journal.pgen.1007769(IF:5.540)
[73] Sui Q, Chen Z, Hu Z, et al. Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. J Transl Med. 2022;20(1):171. Published 2022 Apr 11. doi:10.1186/s12967-022-03372-0(IF:5.531)
[74] Qiu X, Wang W, Zhang L, Guo L, Xu P, Tang H. A thermophile Hydrogenibacillus sp. strain efficiently degrades environmental pollutants polycyclic aromatic hydrocarbons. Environ Microbiol. 2022;24(1):436-450. doi:10.1111/1462-2920.15869(IF:5.491)
[75] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[76] Zhao Y, Sun J, Li Y, et al. The strand-biased transcription of SARS-CoV-2 and unbalanced inhibition by remdesivir. iScience. 2021;24(8):102857. doi:10.1016/j.isci.2021.102857(IF:5.458)
[77] Chen L, Ma Q, Zhang G, et al. Protective effect and mechanism of loganin and morroniside on acute lung injury and pulmonary fibrosis [published online ahead of print, 2022 Mar 5]. Phytomedicine. 2022;99:154030. doi:10.1016/j.phymed.2022.154030(IF:5.340)
[78] Chen L, Kan J, Zheng N, et al. A botanical dietary supplement from white peony and licorice attenuates nonalcoholic fatty liver disease by modulating gut microbiota and reducing inflammation. Phytomedicine. 2021;91:153693. doi:10.1016/j.phymed.2021.153693(IF:5.340)
[79] Wang Z, Nie K, Su H, et al. Berberine improves ovulation and endometrial receptivity in polycystic ovary syndrome. Phytomedicine. 2021;91:153654. doi:10.1016/j.phymed.2021.153654(IF:5.340)
[80] Wang M, Guo W, Li J, et al. The miR528-AO Module Confers Enhanced Salt Tolerance in Rice by Modulating the Ascorbic Acid and Abscisic Acid Metabolism and ROS Scavenging. J Agric Food Chem. 2021;69(31):8634-8648. doi:10.1021/acs.jafc.1c01096(IF:5.279)
[81] Li N, Chen J, Geng C, et al. Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI. Cell Death Discov. 2022;8(1):90. Published 2022 Feb 28. doi:10.1038/s41420-022-00894-w(IF:5.241)
[82] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[83] Kang H, Guo Q, Dong Y, et al. Inhibition of MAT2A suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss. FASEB J. 2022;36(2):e22167. doi:10.1096/fj.202101205RR(IF:5.192)
[84] Shen Y, Xu LR, Yan D, et al. BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1. Biochim Biophys Acta Mol Basis Dis. 2022;1868(9):166450. doi:10.1016/j.bbadis.2022.166450(IF:5.187)
[85] Zhang M, Ji J, Wang X, et al. The transcription factor Tfcp2l1 promotes primordial germ cell-like cell specification of pluripotent stem cells. J Biol Chem. 2021;297(4):101217. doi:10.1016/j.jbc.2021.101217(IF:5.157)
[86] He L, Gao K, Liu H, Wang J, Li X, He C. Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation [published online ahead of print, 2021 May 25]. Life Sci. 2021;119651. doi:10.1016/j.lfs.2021.119651(IF:5.037)
[87] Yang L, Wang X, Jiao X, et al. Suppressor of Ty 16 promotes lung cancer malignancy and is negatively regulated by miR-1227-5p. Cancer Sci. 2020;111(11):4075-4087. doi:10.1111/cas.14627(IF:4.966)
[88] Hu R, Zhu X, Chen C, Xu R, Li Y, Xu W. RNA-binding protein PUM2 suppresses osteosarcoma progression via partly and competitively binding to STARD13 3'UTR with miRNAs. Cell Prolif. 2018;51(6):e12508. doi:10.1111/cpr.12508(IF:4.936)
[89] Li Z, Wang Y, Hu R, Xu R, Xu W. LncRNA B4GALT1-AS1 recruits HuR to promote osteosarcoma cells stemness and migration via enhancing YAP transcriptional activity. Cell Prolif. 2018;51(6):e12504. doi:10.1111/cpr.12504(IF:4.936)
[90] Zhou M, Li B, Liu C, et al. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol. 2021;101(Pt B):108223. doi:10.1016/j.intimp.2021.108223(IF:4.932)
[91] Li S, Wang D, Wei P, et al. Elevated Natural Killer Cell-Mediated Cytotoxicity Is Associated with Cavity Formation in Pulmonary Tuberculosis Patients. J Immunol Res. 2021;2021:7925903. Published 2021 Oct 4. doi:10.1155/2021/7925903(IF:4.818)
[92] Zhou X , Weng W , Chen B , et al. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J Mater Chem B. 2018;6(5):740-752. doi:10.1039/c7tb01246b(IF:4.776)
[93] Yang H, Mei W, Wan H, Xu R, Cheng Y. Comprehensive analysis of KCS gene family in Citrinae reveals the involvement of CsKCS2 and CsKCS11 in fruit cuticular wax synthesis at ripening. Plant Sci. 2021;310:110972. doi:10.1016/j.plantsci.2021.110972(IF:4.729)
[94] He B, Kang S, Chen Z, et al. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(11):159006. doi:10.1016/j.bbalip.2021.159006(IF:4.698)
[95] Yang H, Zhu Z, Zhang M, et al. CitWRKY28 and CitNAC029 promote the synthesis of cuticular wax by activating CitKCS gene expression in citrus fruit. Plant Cell Rep. 2022;41(4):905-920. doi:10.1007/s00299-021-02826-x(IF:4.570)
[96] Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol. 2022;13:855959. Published 2022 Apr 21. doi:10.3389/fphys.2022.855959(IF:4.566)
[97] Zhang L, Dong Y, Xue Y, et al. Multifunctional Triple-Layered Composite Scaffolds Combining Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomater Sci Eng. 2019;5(12):6691-6702. doi:10.1021/acsbiomaterials.9b01022(IF:4.511)
[98] Wang T, Cheng C, Peng L, et al. Combination of arsenic trioxide and Dasatinib: a new strategy to treat Philadelphia chromosome-positive acute lymphoblastic leukaemia. J Cell Mol Med. 2018;22(3):1614-1626. doi:10.1111/jcmm.13436(IF:4.499)
[99] Song D, Gui J, Liu C, Sun J, Li L. Suppression of PtrDUF579-3 Expression Causes Structural Changes of the Glucuronoxylan in Populus. Front Plant Sci. 2016;7:493. Published 2016 Apr 11. doi:10.3389/fpls.2016.00493(IF:4.495)
[100] Li J, Chen YH, Li LZ, et al. Omics and Transgenic Analyses Reveal that Salvianolic Acid B Exhibits its Anti-Inflammatory Effects through Inhibiting the Mincle-Syk-Related Pathway in Macrophages. J Proteome Res. 2021;20(7):3734-3748. doi:10.1021/acs.jproteome.1c00325(IF:4.466)
[101] Xu Y, Cai Z, Ba L, et al. Maintenance of Postharvest Quality and Reactive Oxygen Species Homeostasis of Pitaya Fruit by Essential Oil p-Anisaldehyde Treatment. Foods. 2021;10(10):2434. Published 2021 Oct 13. doi:10.3390/foods10102434(IF:4.350)
[102] Peng O, Wei X, Ashraf U, et al. Genome-wide transcriptome analysis of porcine epidemic diarrhea virus virulent or avirulent strain-infected porcine small intestinal epithelial cells. Virol Sin. 2022;37(1):70-81. doi:10.1016/j.virs.2022.01.011(IF:4.327)
[103] Li H, Zhao Z, Ling J, et al. USP14 promotes K63-linked RIG-I deubiquitination and suppresses antiviral immune responses. Eur J Immunol. 2019;49(1):42-53. doi:10.1002/eji.201847603(IF:4.248)
[104] Zhang P, Li H, Zhou C, et al. Single-Cell RNA Transcriptomics Reveals the State of Hepatic Lymphatic Endothelial Cells in Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. J Clin Med. 2022;11(10):2910. Published 2022 May 20. doi:10.3390/jcm11102910(IF:4.242)
[105] Ge S, Zhang Q, Chen Y, et al. Ribavirin inhibits colorectal cancer growth by downregulating PRMT5 expression and H3R8me2s and H4R3me2s accumulation. Toxicol Appl Pharmacol. 2021;415:115450. doi:10.1016/j.taap.2021.115450(IF:4.219)
[106] Bai RB, Zhang YJ, Fan JM, et al. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct. 2020;11(4):3306-3315. doi:10.1039/c9fo02969a(IF:4.171)
[107] Zhou Y, Zhu Y, Dong X, et al. Exosomes Derived from Pancreatic Cancer Cells Induce Osteoclast Differentiation Through the miR125a-5p/TNFRSF1B Pathway. Onco Targets Ther. 2021;14:2727-2739. Published 2021 Apr 19. doi:10.2147/OTT.S282319(IF:4.147)
[108] Yan H, Li Q, Li M, et al. Ajuba functions as a co-activator of C/EBPβ to induce expression of PPARγ and C/EBPα during adipogenesis. Mol Cell Endocrinol. 2022;539:111485. doi:10.1016/j.mce.2021.111485(IF:4.102)
[109] Liu F, Xia Z, Zhang M, et al. SMARCAD1 Promotes Pancreatic Cancer Cell Growth and Metastasis through Wnt/β-catenin-Mediated EMT. Int J Biol Sci. 2019;15(3):636-646. Published 2019 Jan 1. doi:10.7150/ijbs.29562(IF:4.067)
[110] Ma X, Gao Y, Liu J, et al. Low expression of PCK2 in breast tumors contributes to better prognosis by inducing senescence of cancer cells [published online ahead of print, 2022 May 17]. IUBMB Life. 2022;10.1002/iub.2651. doi:10.1002/iub.2651(IF:3.885)
[111] Li H, Chen W, Chen Y, et al. Neferine Attenuates Acute Kidney Injury by Inhibiting NF-κB Signaling and Upregulating Klotho Expression. Front Pharmacol. 2019;10:1197. Published 2019 Oct 15. doi:10.3389/fphar.2019.01197(IF:3.845)
[112] He G, Yang P, Tang Y, et al. Mechanism of exogenous cytokinins inducing bulbil formation in Lilium lancifolium in vitro. Plant Cell Rep. 2020;39(7):861-872. doi:10.1007/s00299-020-02535-x(IF:3.825)
[113] Zhang J, Wang W, Zhu S, Chen Y. Increased SERPINA3 Level Is Associated with Ulcerative Colitis. Diagnostics (Basel). 2021;11(12):2371. Published 2021 Dec 16. doi:10.3390/diagnostics11122371(IF:3.706)
[114] Li H, Quan J, Zhao X, Ling J, Chen W. USP14 negatively regulates RIG-I-mediated IL-6 and TNF-α production by inhibiting NF-κB activation. Mol Immunol. 2021;130:69-76. doi:10.1016/j.molimm.2020.12.022(IF:3.641)
[115] Hao Y, Huang J, Ran Y, et al. Ethylmalonic encephalopathy 1 initiates overactive autophagy in depleted uranium-induced cytotoxicity in the human embryonic kidney 293 cells. J Biochem Mol Toxicol. 2021;35(3):e22669. doi:10.1002/jbt.22669(IF:3.606)
[116] Huang L, He S, Cai Q, et al. Polydatin alleviates traumatic brain injury: Role of inhibiting ferroptosis. Biochem Biophys Res Commun. 2021;556:149-155. doi:10.1016/j.bbrc.2021.03.108(IF:3.575)
[117] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[118] Li M, Ning N, Liu Y, et al. The potential of Zishen Yutai pills to facilitate endometrial recovery and restore fertility after induced abortion in rats. Pharm Biol. 2021;59(1):1505-1516. doi:10.1080/13880209.2021.1993272(IF:3.503)
[119] Zhang H, Chen M, Wen H, et al. Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers. BMC Plant Biol. 2020;20(1):7. Published 2020 Jan 6. doi:10.1186/s12870-019-2222-z(IF:3.497)
[120] Du Q, Zhang S, Li A, Mohammad IS, Liu B, Li Y. Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice. Front Physiol. 2018;9:15. Published 2018 Jan 23. doi:10.3389/fphys.2018.00015(IF:3.394)
[121] Yang Y, Huang C, Lin X, et al. 0.005% Preservative-Free Latanoprost Induces Dry Eye-Like Ocular Surface Damage via Promotion of Inflammation in Mice. Invest Ophthalmol Vis Sci. 2018;59(8):3375-3384. doi:10.1167/iovs.18-24013(IF:3.388)
[122] Xiang Y, Yu Y, Li Q, Chen J, Li Y, Cao W. Chicken telomerase reverse transcriptase mediates LMH cell pyroptosis by regulating the nuclear factor-kappa B signaling pathway. Poult Sci. 2022;101(6):101826. doi:10.1016/j.psj.2022.101826(IF:3.352)
[123] Wang PT, Li N, Wang XY, et al. RIG-I, a novel DAMPs sensor for myoglobin activates NF-κB/caspase-3 signaling in CS-AKI model. Mil Med Res. 2021;8(1):37. Published 2021 Jun 21. doi:10.1186/s40779-021-00333-4(IF:3.329)
[124] Chen S, Li M, Jiang W, Zheng H, Qi LW, Jiang S. The role of Neu1 in the protective effect of dipsacoside B on acetaminophen-induced liver injury. Ann Transl Med. 2020;8(13):823. doi:10.21037/atm-19-3850(IF:3.297)
[125] Xue X, Chen Y. Circular RNA (circ)_0129047 upregulates bone morphogenetic protein receptor type 2 expression to inhibit lung adenocarcinoma progression by sponging microRNA (miR)-1206. Bioengineered. 2022;13(5):12067-12087. doi:10.1080/21655979.2022.2070580(IF:3.269)
[126] Zhuo Y, Guo Z, Ba T, et al. African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-κB Signaling Pathway. Virol Sin. 2021;36(2):176-186. doi:10.1007/s12250-020-00304-4(IF:3.242)
[127] Rothenberg DO, Yang H, Chen M, Zhang W, Zhang L. Metabolome and Transcriptome Sequencing Analysis Reveals Anthocyanin Metabolism in Pink Flowers of Anthocyanin-Rich Tea (Camellia sinensis). Molecules. 2019;24(6):1064. Published 2019 Mar 18. doi:10.3390/molecules24061064(IF:3.060)
[128] Zhang Y, Zhu Z, Ding H, et al. β-catenin stimulates Tcf7l1 degradation through recruitment of casein kinase 2 in mouse embryonic stem cells. Biochem Biophys Res Commun. 2020;524(2):280-287. doi:10.1016/j.bbrc.2020.01.074(IF:2.985)
[129] Liu X, Yang X, Zhang B. Transcriptome analysis and functional identification of GmMYB46 in soybean seedlings under salt stress. PeerJ. 2021;9:e12492. Published 2021 Nov 11. doi:10.7717/peerj.12492(IF:2.984)
[130] Liu Z, Wang Y, Qin W, et al. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J Biochem Mol Toxicol. 2019;33(11):e22395. doi:10.1002/jbt.22395(IF:2.965)
[131] Zheng C, Ouyang YC, Jiang B, et al. Non-canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in mice†. Biol Reprod. 2019;100(6):1673-1685. doi:10.1093/biolre/ioz083(IF:2.960)
[132] Wang Z, Xu J, Liu Y, et al. Selection and validation of appropriate reference genes for real-time quantitative PCR analysis in Momordica charantia. Phytochemistry. 2019;164:1-11. doi:10.1016/j.phytochem.2019.04.010(IF:2.905)
[133] Liu L, Yang Y, Li W, Li Y, Jiang X, Wang L. Tanshinone IIA alleviate rifampicin-induced cholestasis by regulating the expression and function of bile salt export pump. Hum Exp Toxicol. 2022;41:9603271221097365. doi:10.1177/09603271221097365(IF:2.903)
[134] Xu WH, Liang DY, Wang Q, Shen J, Liu QH, Peng YB. Knockdown of KDM2A inhibits proliferation associated with TGF-β expression in HEK293T cell. Mol Cell Biochem. 2019;456(1-2):95-104. doi:10.1007/s11010-018-03493-5(IF:2.884)
[135] Xiao Q, Dong ZQ, Zhu Y, et al. Bombyx mori Nucleopolyhedrovirus (BmNPV) Induces G2/M Arrest to Promote Viral Multiplication by Depleting BmCDK1. Insects. 2021;12(12):1098. Published 2021 Dec 8. doi:10.3390/insects12121098(IF:2.769)
[136] Wang Z, Dong H, Yang L, Yi P, Wang Q, Huang D. The role of FDX1 in granulosa cell of Polycystic ovary syndrome (PCOS). BMC Endocr Disord. 2021;21(1):119. Published 2021 Jun 15. doi:10.1186/s12902-021-00775-w(IF:2.763)
[137] Liu J, Guo M, Fan X. Ethanol induces necroptosis in gastric epithelial cells in vitro. J Food Biochem. 2021;45(4):e13692. doi:10.1111/jfbc.13692(IF:2.720)
[138] Tan D, Hu H, Tong X, et al. Genome-wide identification and characterization of myosin genes in the silkworm, Bombyx mori. Gene. 2019;691:45-55. doi:10.1016/j.gene.2018.12.011(IF:2.638)
[139] Chen X, Liu Y, Meng B, Wu D, Wu Y, Cao Y. Interleukin-20 inhibits the osteogenic differentiation of MC3T3-E1 cells via the GSK3β/β-catenin signalling pathway. Arch Oral Biol. 2021;125:105111. doi:10.1016/j.archoralbio.2021.105111(IF:2.635)
[140] Huang R, Dong R, Wang N, Lan B, Zhao H, Gao Y. Exploring the Antiglioma Mechanisms of Luteolin Based on Network Pharmacology and Experimental Verification. Evid Based Complement Alternat Med. 2021;2021:7765658. Published 2021 Nov 27. doi:10.1155/2021/7765658(IF:2.630)
[141] Huang J, Guo M, Jin S, et al. Antibacterial photodynamic therapy mediated by 5-aminolevulinic acid on methicillin-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther. 2019;28:330-337. doi:10.1016/j.pdpdt.2019.09.008(IF:2.589)
[142] Duan RS, Liu PP, Xi F, et al. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons. Biochem Biophys Res Commun. 2018;499(2):246-252. doi:10.1016/j.bbrc.2018.03.138(IF:2.559)
[143] Guo Z, Qiu C, Mecca C, et al. Elevated lymphotoxin-α (TNFβ) is associated with intervertebral disc degeneration. BMC Musculoskelet Disord. 2021;22(1):77. Published 2021 Jan 13. doi:10.1186/s12891-020-03934-7(IF:2.355)
[144] You L, Chen H, Xu L, Li X. Overexpression of miR-29a-3p Suppresses Proliferation, Migration, and Invasion of Vascular Smooth Muscle Cells in Atherosclerosis via Targeting TNFRSF1A. Biomed Res Int. 2020;2020:9627974. Published 2020 Sep 4. doi:10.1155/2020/9627974(IF:2.276)
[145] Chen G, Yang Z, Wen D, et al. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun Inflamm Dis. 2021;9(3):959-970. doi:10.1002/iid3.455(IF:2.239)
[146] Chen M, Li S, Hao M, et al. T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation. FEBS Open Bio. 2020;10(10):2122-2136. doi:10.1002/2211-5463.12965(IF:2.231)
[147] Zhang Y, Zhou S, Cai W, et al. Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep. 2020;22(1):265-276. doi:10.3892/mmr.2020.11102(IF:2.100)
[148] Zhou F, Liu P, Lv H, Gao Z, Chang W, Xu Y. miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses. Mol Med Rep. 2021;23(1):42. doi:10.3892/mmr.2020.11680(IF:2.100)
[149] Wu H, He Y, Chen H, et al. LncRNA THOR increases osteosarcoma cell stemness and migration by enhancing SOX9 mRNA stability. FEBS Open Bio. 2019;9(4):781-790. Published 2019 Mar 20. doi:10.1002/2211-5463.12620(IF:1.959)
[150] Liu X, Xie F, Lai G, Wang J. Roles of heterogeneous nuclear ribonucleoprotein L in enamel organ development and the differentiation of ameloblasts. Arch Oral Biol. 2020;120:104933. doi:10.1016/j.archoralbio.2020.104933(IF:1.931)
[151] Yi S, Song X, Yu W, et al. De novo assembly and Transcriptome Analysis of the Momordica charantia Seedlings Responding to methyl jasmonate using 454 pyrosequencing. Gene Expr Patterns. 2021;40:119160. doi:10.1016/j.gep.2020.119160(IF:0.897)

产品描述

Hieff® qPCR SYBR Green Master Mix(No Rox)2×实时定量PCR扩增的预混合溶液。Mix中含有热启动Hieff® DNA PolymeraseSYBR Green I、dNTPs、Mg2+使用时,仅需在扩增体系中加入模板和引物即可进行实时荧光定量PCR,大大简化操作过程,降低污染几率。

本品采用的DNA聚合酶配体可以随温度变化实时调节DNA聚合酶活性。配方添加了有效抑制非特异性PCR扩增的因子和提升PCR反应扩增效率的因子,使定量PCR可以在宽广的定量区域内获得良好的线性关系。

 

适用机型

Bio-Rad: CFX96, CFX384, iCycler iQ, iQ5, MyiQ, MiniOpticon, Opticon, Opticon 2, Chromo4;

Eppendorf: Mastercycler ep realplex, realplex 2 s;

Qiagen: Corbett Rotor-Gene Q, Rotor-Gene 3000, Rotor-Gene 6000;

Roche Applied Science: LightCycler 480, LightCycler 2.0; Lightcycler 96;

Thermo Scientific: PikoReal Cycler; Cepheid: SmartCycler; Illumina: Eco qPCR.

 

运输保存方式

冰袋运输。-20避光储存,有效期18个月。

本品避免反复冻融。产品中含有荧光染料SYBR Green I,保存或配制反应体系时需避免强光照射。

 

注意事项

1. 推荐使用本公司cDNA合成试剂盒(货号11123ES),以有效去除RNA样品中残留的基因组。

2. 解冻后Master Mix可能出现絮状物质,4℃放置并上下颠倒混匀至溶液澄清,不影响试剂性能。

3. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

4. 本产品仅作科研用途!

 

反应体系(推荐冰上配制)

组分

体积(μL

体积(μL

终浓度

Hieff® qPCR SYBR Green Master Mix (No Rox)

25

10

Forward Primer (10 μM)

1

0.4

0.2 μM

Reverse Primer (10 μM)

1

0.4

0.2 μM

模板DNA

X

X

无菌超纯水

to 50

to 20

使用前务必充分混匀,避免剧烈震荡产生过多气泡。

a) 引物浓度:通常引物终浓度为0.2 μM,也可以根据情况在0.1-1.0 μM之间进行调整。

b) 模板浓度:如模板类型为未稀释cDNA原液,使用体积不应超过qPCR反应总体积的1/10。

c) 模板稀释cDNA原液建议5-10倍稀释,最佳模板加入量以扩增得到的CT值在20-30个循环为好。

d) 反应体系:推荐使用20 μL50 μL,以保证目的基因扩增的有效性和重复性。

e) 体系配制:请于超净工作台内配制,并使用无核酸酶残留的枪头、反应管;推荐使用带滤芯的枪头。避免交叉污染和气溶胶污染。
 

2×实时定量PCR扩增预混液|qPCR SYBR Green Master Mix(No Rox)

 

: 高特异性可选择两步法,高效率扩增可选择三步法。

a) 预变性时间:根据不同模板和引物的具体情况可适当缩短至2 min

b) 退火温度和时间:请根据引物和目的基因的长度进行调整。

c) 荧光信号采集(:请按照仪器使用说明书要求进行实验程序设置,几种常见仪器的时间设定如下:

30sec以上:Applied Biosystems: StepOne, StepOne Plus, 7500 FastRoche Applied Science: LightCycler 480Bio-Rad: CFX96

31sec以上:Applied Biosystems: 7300

34sec以上:Applied Biosystems: 7500

d) 熔解曲线:通常情况下可以使用仪器默认程序。

 

结果分析

定量实验至少需要三个生物学重复。反应结束后需要确认扩增曲线及熔解曲线。

1) 扩增曲线:标准扩增曲线为S型。

Ct值落在20-30之间时,定量分析最准确;

Ct值小于10时,需要将稀释模板后,重新进行实验;

Ct值介于30-35之间时,需要提高模板浓度,或者增大反应体系的体积,以提高扩增效率,保证结果分析的准确性;

Ct值大于35时,检测结果无法定量分析基因的表达量,但可用于定性分析。

2) 熔解曲线:

熔解曲线单峰,表明反应特异性好可以进行定量结果分析;若熔解曲线出现双峰或者多峰,则不能进行定量分析。

熔解曲线出现双峰,需要通过DNA琼脂糖凝胶电泳判断非目标峰是引物二聚体还是非特异性扩增。

如果是引物二聚体,建议降低引物浓度,或者重新设计扩增效率高的引物。

如果是非特异性扩增,请提高退火温度,或者重新设计更高特异性的引物。

 

引物设计指南

1. 推荐引物长度25 bp左右。扩增产物长度150 bp为佳,可以在100 bp-300 bp内选择。

2. 正向引物和反向引物的Tm值相差不宜超过2。引物Tm值60-65为佳。

3. 引物碱基分布要均匀,避免出现连续的4个相同碱基,GC含量控制在50%左右。3’端最后一个碱基最好为G或C。

4. 引物内部或者正反两条引物间最好避免出现有3个碱基以上的互补序列。

5. 引物特异性需要用NCBI BLAST程序进行核对。避免引物3’端有2个碱基以上的非特异性互补。

6. 设计完成的引物需要进行扩增效率的检测,只有具备相同扩增效率的引物才可用于定量比较分析。

 

相关产品

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit HOT

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11121ES60

100 T

Hifair® II 1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus) HOT

11123ES60

100 T

Hieff® qPCR SYBR® Green Master Mix (No Rox )HOT

11201ES08

5 ml

Hieff® qPCR SYBR® Green Master Mix (Low Rox Plus) HOT

11202ES08

5 ml

Hieff® qPCR SYBR® Green Master Mix (High Rox Plus) HOT

11203ES08

5 ml

 

HB210720

Q:不加 ROX qPCR mix 后续需换用其他仪器需要 ROX,是否可以单独加 ROX后再使用?

A:可以。

Q:可以用于microRNA 或lncRNA 等非编码RNA 吗?环状 RNA 呢?

A:不推荐。

Q:建议qPCR 实验用几步法?

A:常用 2 步法。需提高扩增特异性,可选用 2 步法或提高退火温度。在扩增效率低, ct 值过大的时候,可以改用 3 步法或延长延伸时间。

Q:预变性 5 min 调整成了 10min,对于实验结果有影响吗?

A有影响,预变性时间较长可能会影响酶的活性,导致 PCR 产物的产量有所降低。

Q:qPCR 实验结果的有效性?为什么建议Ct 值要大于 15?

A:有效性要满足三个条件1标准曲线:扩增效率范围:90110%,对应斜率为  33.5 R2>0.98 (扩增效率=10-1/斜率1),当斜率=-3.32 时,扩增效率=100%。2)扩 增曲线:S 型曲线,且 Ct 值在 15-35 之间,阴性对照 Ct>35 或无 Ct 值。3)熔解曲线:为单一峰。

Ct 值大于 15 个循环是因为 3-15 个循环的荧光值标准差的 10 倍是荧光阈值,Ct 值太小了会影响曲线。

Q:同一基因复孔间熔解曲线 Tm 值有差异?

A同样的扩增产物也会出现Tm 值有微小差异,一般差异在 1 度以内都可以接受。

Q:为什么稀释了模板CT 值反而变小了?

A一般 CT 值与模板起始浓度呈负相关,浓度越高,CT 值越小。但也有很多特殊情况, 比如体系中存在抑制物或是模板不纯,这时候稀释模板反而能使 CT 值变低。

 

[1] Medina-Puche L, Tan H, Dogra V, et al. A Defense Pathway Linking Plasma Membrane and Chloroplasts and Co-opted by Pathogens. Cell. 2020;182(5):1109-1124.e25. doi:10.1016/j.cell.2020.07.020(IF:38.637)
[2] Wan S, Ni L, Zhao X, et al. Costimulation molecules differentially regulate the ERK-Zfp831 axis to shape T follicular helper cell differentiation. Immunity. 2021;54(12):2740-2755.e6. doi:10.1016/j.immuni.2021.09.018(IF:31.745)
[3] Han X, Wang R, Zhou Y, et al. Mapping the Mouse Cell Atlas by Microwell-Seq [published correction appears in Cell. 2018 May 17;173(5):1307]. Cell. 2018;172(5):1091-1107.e17. doi:10.1016/j.cell.2018.02.001(IF:31.398)
[4] Tang Y, Fang G, Guo F, et al. Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell. 2020;38(1):115-128.e9. doi:10.1016/j.ccell.2020.05.019(IF:26.602)
[5] Chang D, Xing Q, Su Y, et al. The Conserved Non-coding Sequences CNS6 and CNS9 Control Cytokine-Induced Rorc Transcription during T Helper 17 Cell Differentiation. Immunity. 2020;53(3):614-626.e4. doi:10.1016/j.immuni.2020.07.012(IF:22.553)
[6] Wang X, Ni L, Wan S, et al. Febrile Temperature Critically Controls the Differentiation and Pathogenicity of T Helper 17 Cells. Immunity. 2020;52(2):328-341.e5. doi:10.1016/j.immuni.2020.01.006(IF:22.553)
[7] Xiao J, Li W, Zheng X, et al. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection. Immunity. 2020;52(1):109-122.e6. doi:10.1016/j.immuni.2019.11.015(IF:21.522)
[8] Zhao X, Di Q, Yu J, et al. USP19 (ubiquitin specific peptidase 19) promotes TBK1 (TANK-binding kinase 1) degradation via chaperone-mediated autophagy. Autophagy. 2022;18(4):891-908. doi:10.1080/15548627.2021.1963155(IF:16.016)
[9] Sun Z, Tang Y, Zhang Y, et al. Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division. Nat Commun. 2021;12(1):5941. Published 2021 Oct 12. doi:10.1038/s41467-021-26203-0(IF:14.919)
[10] Meng YM, Jiang X, Zhao X, et al. Hexokinase 2-driven glycolysis in pericytes activates their contractility leading to tumor blood vessel abnormalities. Nat Commun. 2021;12(1):6011. Published 2021 Oct 14. doi:10.1038/s41467-021-26259-y(IF:14.919)
[11] Wang P, Geng J, Gao J, et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat Commun. 2019;10(1):755. Published 2019 Feb 14. doi:10.1038/s41467-019-08680-6(IF:11.878)
[12] Zhao X, Di Q, Liu H, et al. MEF2C promotes M1 macrophage polarization and Th1 responses. Cell Mol Immunol. 2022;19(4):540-553. doi:10.1038/s41423-022-00841-w(IF:11.530)
[13] Zhang J, Li Y, Liu H, et al. Genome-wide CRISPR/Cas9 library screen identifies PCMT1 as a critical driver of ovarian cancer metastasis. J Exp Clin Cancer Res. 2022;41(1):24. Published 2022 Jan 15. doi:10.1186/s13046-022-02242-3(IF:11.161)
[14] Zhang M, Liu F, Zhou P, et al. The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy. Autophagy. 2019;15(7):1150-1162. doi:10.1080/15548627.2019.1578040(IF:11.059)
[15] Wang X, Chen K, Zhou M, et al. GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean [published online ahead of print, 2022 Jun 25]. New Phytol. 2022;10.1111/nph.18343. doi:10.1111/nph.18343(IF:10.152)
[16] Fan T, Wang S, Jiang Z, et al. Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication. 2021;14(1):10.1088/1758-5090/ac3aca. Published 2021 Dec 1. doi:10.1088/1758-5090/ac3aca(IF:10.020)
[17] Wu F, Duan Z, Xu P, et al. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. Plant Biotechnol J. 2022;20(3):592-609. doi:10.1111/pbi.13742(IF:9.803)
[18] Wu F, Zhang C, Zhao C, et al. Prostaglandin E1 Inhibits GLI2 Amplification-Associated Activation of the Hedgehog Pathway and Drug Refractory Tumor Growth. Cancer Res. 2020;80(13):2818-2832. doi:10.1158/0008-5472.CAN-19-2052(IF:9.727)
[19] Chen K, Gao J, Sun S, et al. BONZAI Proteins Control Global Osmotic Stress Responses in Plants. Curr Biol. 2020;30(24):4815-4825.e4. doi:10.1016/j.cub.2020.09.016(IF:9.601)
[20] Luo F, Yang W, Yin M, et al. A chromosome-level genome of the human blood fluke Schistosoma japonicum identifies the genomic basis of host-switching. Cell Rep. 2022;39(1):110638. doi:10.1016/j.celrep.2022.110638(IF:9.423)
[21] Xiang H, Tao Y, Jiang Z, et al. Vps33B controls Treg cell suppressive function through inhibiting lysosomal nutrient sensing complex-mediated mTORC1 activation. Cell Rep. 2022;39(11):110943. doi:10.1016/j.celrep.2022.110943(IF:9.423)
[22] Yu L, Chu C, Yuan Y, et al. Activity in projection neurons from prelimbic cortex to the PVT is necessary for retrieval of morphine withdrawal memory. Cell Rep. 2021;35(1):108958. doi:10.1016/j.celrep.2021.108958(IF:9.423)
[23] Zhu L, He S, Huang L, et al. Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response. Aging Cell. 2022;21(6):e13616. doi:10.1111/acel.13616(IF:9.304)
[24] Xiang G, Wang S, Chen L, et al. UBR5 targets tumor suppressor CDC73 proteolytically to promote aggressive breast cancer. Cell Death Dis. 2022;13(5):451. Published 2022 May 12. doi:10.1038/s41419-022-04914-6(IF:8.469)
[25] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[26] He G, Cao Y, Wang J, et al. WUSCHEL-Related Homeobox Genes Cooperate with Cytokinin to Promote Bulbil Formation in Lilium lancifolium [published online ahead of print, 2022 Jun 7]. Plant Physiol. 2022;kiac259. doi:10.1093/plphys/kiac259(IF:8.340)
[27] Chen D, Li J, Huang Y, et al. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation. 2022;19(1):112. Published 2022 May 16. doi:10.1186/s12974-022-02471-5(IF:8.322)
[28] Wei P, Wang K, Luo C, et al. Cordycepin confers long-term neuroprotection via inhibiting neutrophil infiltration and neuroinflammation after traumatic brain injury. J Neuroinflammation. 2021;18(1):137. Published 2021 Jun 15. doi:10.1186/s12974-021-02188-x(IF:8.322)
[29] Zhou M, Xu W, Wang J, et al. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine. 2018;35:345-360. doi:10.1016/j.ebiom.2018.08.035(IF:8.143)
[30] Zhou M, Xu W, Wang J, et al. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine. 2018;35:345-360. doi:10.1016/j.ebiom.2018.08.035(IF:8.143)
[31] Wang Q, Zhou X, Yang L, et al. The Natural Compound Notopterol Binds and Targets JAK2/3 to Ameliorate Inflammation and Arthritis [published correction appears in Cell Rep. 2020 Nov 24;33(8):108442]. Cell Rep. 2020;32(11):108158. doi:10.1016/j.celrep.2020.108158(IF:8.109)
[32] Jin M, Wang Y, An X, et al. Phenotypic and transcriptomic changes in the corneal epithelium following exposure to cigarette smoke. Environ Pollut. 2021;287:117540. doi:10.1016/j.envpol.2021.117540(IF:8.071)
[33] Zhang Y, Xu J, Liu S, et al. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics. 2019;9(23):6976-6990. Published 2019 Sep 21. doi:10.7150/thno.35305(IF:8.063)
[34] He S, Huang L, Shao C, et al. Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson's disease. Transl Neurodegener. 2021;10(1):25. Published 2021 Jul 28. doi:10.1186/s40035-021-00249-y(IF:8.014)
[35] Ou Z, Ma Y, Sun Y, et al. A GPR17-cAMP-Lactate Signaling Axis in Oligodendrocytes Regulates Whole-Body Metabolism. Cell Rep. 2019;26(11):2984-2997.e4. doi:10.1016/j.celrep.2019.02.060(IF:7.815)
[36] Chen Y, Yi X, Huo B, et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection. Pharmacol Res. 2022;177:106122. doi:10.1016/j.phrs.2022.106122(IF:7.658)
[37] Wu Z, Lu Z, Li L, et al. Identification and Validation of Ferroptosis-Related LncRNA Signatures as a Novel Prognostic Model for Colon Cancer. Front Immunol. 2022;12:783362. Published 2022 Jan 26. doi:10.3389/fimmu.2021.783362(IF:7.561)
[38] Liu Y, Jin J, Xu H, et al. Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy. Acta Biomater. 2021;121:541-553. doi:10.1016/j.actbio.2020.11.027(IF:7.242)
[39] Zhou M, Li B, Liu J, Hong L. Genomic, Immunological, and Clinical Characterization of Pyroptosis in Ovarian Cancer. J Inflamm Res. 2021;14:7341-7358. Published 2021 Dec 24. doi:10.2147/JIR.S344554(IF:6.922)
[40] Yu L, Liu S, Wang C, et al. Embryonic stem cell-derived extracellular vesicles promote the recovery of kidney injury. Stem Cell Res Ther. 2021;12(1):379. Published 2021 Jul 2. doi:10.1186/s13287-021-02460-0(IF:6.832)
[41] Zhao S, Zhang C, Xu J, et al. Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Res Ther. 2022;13(1):169. Published 2022 Apr 27. doi:10.1186/s13287-022-02846-8(IF:6.832)
[42] Yuan J, Jiang X, Lan H, et al. Multi-Omics Analysis of the Therapeutic Value of MAL2 Based on Data Mining in Human Cancers. Front Cell Dev Biol. 2022;9:736649. Published 2022 Jan 17. doi:10.3389/fcell.2021.736649(IF:6.684)
[43] Zhang Q, Zhang Y, Zhang J, et al. p66α Suppresses Breast Cancer Cell Growth and Migration by Acting as Co-Activator of p53. Cells. 2021;10(12):3593. Published 2021 Dec 20. doi:10.3390/cells10123593(IF:6.600)
[44] Jin T, Lin J, Gong Y, et al. iPLA2β Contributes to ER Stress-Induced Apoptosis during Myocardial Ischemia/Reperfusion Injury. Cells. 2021;10(6):1446. Published 2021 Jun 9. doi:10.3390/cells10061446(IF:6.600)
[45] Li H, Hou L, Zhang Y, et al. PFN2a Suppresses C2C12 Myogenic Development by Inhibiting Proliferation and Promoting Apoptosis via the p53 Pathway. Cells. 2019;8(9):959. Published 2019 Aug 23. doi:10.3390/cells8090959(IF:6.600)
[46] Zhou X, Wang F, Wu H, et al. Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells. Int J Biol Sci. 2021;17(13):3456-3475. Published 2021 Aug 12. doi:10.7150/ijbs.60401(IF:6.582)
[47] Wang B, Huang Y, Zhang Z, Xiao Y, Xie J. Ferulic Acid Treatment Maintains the Quality of Fresh-Cut Taro (Colocasia esculenta) During Cold Storage. Front Nutr. 2022;9:884844. Published 2022 May 24. doi:10.3389/fnut.2022.884844(IF:6.576)
[48] Deng Y, Li S, Chen Z, Wang W, Geng B, Cai J. Mdivi-1, a mitochondrial fission inhibitor, reduces angiotensin-II- induced hypertension by mediating VSMC phenotypic switch. Biomed Pharmacother. 2021;140:111689. doi:10.1016/j.biopha.2021.111689(IF:6.530)
[49] Li S, Hao M, Li B, et al. CACNA1H downregulation induces skeletal muscle atrophy involving endoplasmic reticulum stress activation and autophagy flux blockade. Cell Death Dis. 2020;11(4):279. Published 2020 Apr 24. doi:10.1038/s41419-020-2484-2(IF:6.304)
[50] Cai H, Li J, Zhang Y, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446. Published 2019 Dec 19. doi:10.3389/fonc.2019.01446(IF:6.244)
[51] Nan XW, Gong LH, Chen X, et al. Survivin Promotes Piperlongumine Resistance in Ovarian Cancer. Front Oncol. 2019;9:1345. Published 2019 Nov 29. doi:10.3389/fonc.2019.01345(IF:6.244)
[52] Zhou J, Wu L, Xu P, Li Y, Ji Z, Kang X. Filamin A Is a Potential Driver of Breast Cancer Metastasis via Regulation of MMP-1. Front Oncol. 2022;12:836126. Published 2022 Mar 11. doi:10.3389/fonc.2022.836126(IF:6.244)
[53] Wan Y, Hoyle RG, Xie N, et al. A Super-Enhancer Driven by FOSL1 Controls miR-21-5p Expression in Head and Neck Squamous Cell Carcinoma. Front Oncol. 2021;11:656628. Published 2021 Apr 16. doi:10.3389/fonc.2021.656628(IF:6.244)
[54] Wang F, Zhu Y, Cai H, et al. N6-Methyladenosine Methyltransferase METTL14-Mediated Autophagy in Malignant Development of Oral Squamous Cell Carcinoma. Front Oncol. 2021;11:738406. Published 2021 Nov 24. doi:10.3389/fonc.2021.738406(IF:6.244)
[55] Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9(1):4. Published 2020 Jan 8. doi:10.1038/s41389-019-0188-1(IF:6.119)
[56] Zhu H, Zhang Y, Zhang C, Xie Z. RNA-Binding Profiles of CKAP4 as an RNA-Binding Protein in Myocardial Tissues. Front Cardiovasc Med. 2021;8:773573. Published 2021 Dec 23. doi:10.3389/fcvm.2021.773573(IF:6.050)
[57] Li M, Liu S, Tan L, et al. Fumonisin B1 induced intestinal epithelial barrier damage through endoplasmic reticulum stress triggered by the ceramide synthase 2 depletion. Food Chem Toxicol. 2022;166:113263. doi:10.1016/j.fct.2022.113263(IF:6.025)
[58] Zhai Y, Zheng X, Mao Y, et al. Recombinant Human Thymosin β4 (rhTβ4) Modulates the Anti-Inflammatory Responses to Alleviate Benzalkonium Chloride (BAC)-Induced Dry Eye Disease. Int J Mol Sci. 2022;23(10):5458. Published 2022 May 13. doi:10.3390/ijms23105458(IF:5.924)
[59] He G, Yang P, Cao Y, et al. Cytokinin Type-B Response Regulators Promote Bulbil Initiation in Lilium lancifolium. Int J Mol Sci. 2021;22(7):3320. Published 2021 Mar 24. doi:10.3390/ijms22073320(IF:5.924)
[60] Duan Z, Yan Q, Wu F, et al. Genome-Wide Analysis of the UDP-Glycosyltransferase Family Reveals Its Roles in Coumarin Biosynthesis and Abiotic Stress in Melilotus albus. Int J Mol Sci. 2021;22(19):10826. Published 2021 Oct 6. doi:10.3390/ijms221910826(IF:5.924)
[61] He G, Yang P, Cao Y, et al. Cytokinin Type-B Response Regulators Promote Bulbil Initiation in Lilium lancifolium. Int J Mol Sci. 2021;22(7):3320. Published 2021 Mar 24. doi:10.3390/ijms22073320(IF:5.924)
[62] Yuan L, Zhang L, Wei X, et al. Quantitative Trait Locus Mapping of Salt Tolerance in Wild Rice Oryza longistaminata. Int J Mol Sci. 2022;23(4):2379. Published 2022 Feb 21. doi:10.3390/ijms23042379(IF:5.924)
[63] Li P, Lan W, Li J, et al. Identification and Functional Evaluation of a Novel TBX4 Mutation Underlies Small Patella Syndrome. Int J Mol Sci. 2022;23(4):2075. Published 2022 Feb 14. doi:10.3390/ijms23042075(IF:5.924)
[64] Chen LJ, He JT, Pan M, et al. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol. 2021;12:716703. Published 2021 Jul 26. doi:10.3389/fphar.2021.716703(IF:5.811)
[65] Xing YJ, Liu BH, Wan SJ, et al. A SGLT2 Inhibitor Dapagliflozin Alleviates Diabetic Cardiomyopathy by Suppressing High Glucose-Induced Oxidative Stress in vivo and in vitro. Front Pharmacol. 2021;12:708177. Published 2021 Jul 12. doi:10.3389/fphar.2021.708177(IF:5.811)
[66] Yang Q, Nong X, Xu J, et al. Unraveling the Genetic Basis of Fertility Restoration for Cytoplasmic Male Sterile Line WNJ01A Originated From Brassica juncea in Brassica napus. Front Plant Sci. 2021;12:721980. Published 2021 Aug 31. doi:10.3389/fpls.2021.721980(IF:5.754)
[67] Liao Y, Wang F, Zhang Y, Cai H, Song F, Hou J. Silencing SHMT2 inhibits the progression of tongue squamous cell carcinoma through cell cycle regulation. Cancer Cell Int. 2021;21(1):220. Published 2021 Apr 16. doi:10.1186/s12935-021-01880-5(IF:5.722)
[68] Ding FP, Tian JY, Wu J, Han DF, Zhao D. Identification of key genes as predictive biomarkers for osteosarcoma metastasis using translational bioinformatics. Cancer Cell Int. 2021;21(1):640. Published 2021 Dec 2. doi:10.1186/s12935-021-02308-w(IF:5.722)
[69] Miao D, Shi J, Xiong Z, et al. As a prognostic biomarker of clear cell renal cell carcinoma RUFY4 predicts immunotherapy responsiveness in a PDL1-related manner. Cancer Cell Int. 2022;22(1):66. Published 2022 Feb 8. doi:10.1186/s12935-022-02480-7(IF:5.722)
[70] Fan X, Li Y, Yi X, et al. Epigenome-wide DNA methylation profiling of portal vein tumor thrombosis (PVTT) tissues in hepatocellular carcinoma patients. Neoplasia. 2020;22(11):630-643. doi:10.1016/j.neo.2020.09.007(IF:5.696)
[71] Zhu Z, Zhang Y, Wang X, Wang X, Ye SD. Inhibition of protein kinase D by CID755673 promotes maintenance of the pluripotency of embryonic stem cells. Development. 2020;147(16):dev185264. Published 2020 Aug 24. doi:10.1242/dev.185264(IF:5.611)
[72] Zhang C, Shen Y, Tang D, et al. The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet. 2018;14(11):e1007769. Published 2018 Nov 12. doi:10.1371/journal.pgen.1007769(IF:5.540)
[73] Sui Q, Chen Z, Hu Z, et al. Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. J Transl Med. 2022;20(1):171. Published 2022 Apr 11. doi:10.1186/s12967-022-03372-0(IF:5.531)
[74] Qiu X, Wang W, Zhang L, Guo L, Xu P, Tang H. A thermophile Hydrogenibacillus sp. strain efficiently degrades environmental pollutants polycyclic aromatic hydrocarbons. Environ Microbiol. 2022;24(1):436-450. doi:10.1111/1462-2920.15869(IF:5.491)
[75] Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2835-2847. doi:10.1016/j.bbadis.2017.07.017(IF:5.476)
[76] Zhao Y, Sun J, Li Y, et al. The strand-biased transcription of SARS-CoV-2 and unbalanced inhibition by remdesivir. iScience. 2021;24(8):102857. doi:10.1016/j.isci.2021.102857(IF:5.458)
[77] Chen L, Ma Q, Zhang G, et al. Protective effect and mechanism of loganin and morroniside on acute lung injury and pulmonary fibrosis [published online ahead of print, 2022 Mar 5]. Phytomedicine. 2022;99:154030. doi:10.1016/j.phymed.2022.154030(IF:5.340)
[78] Chen L, Kan J, Zheng N, et al. A botanical dietary supplement from white peony and licorice attenuates nonalcoholic fatty liver disease by modulating gut microbiota and reducing inflammation. Phytomedicine. 2021;91:153693. doi:10.1016/j.phymed.2021.153693(IF:5.340)
[79] Wang Z, Nie K, Su H, et al. Berberine improves ovulation and endometrial receptivity in polycystic ovary syndrome. Phytomedicine. 2021;91:153654. doi:10.1016/j.phymed.2021.153654(IF:5.340)
[80] Wang M, Guo W, Li J, et al. The miR528-AO Module Confers Enhanced Salt Tolerance in Rice by Modulating the Ascorbic Acid and Abscisic Acid Metabolism and ROS Scavenging. J Agric Food Chem. 2021;69(31):8634-8648. doi:10.1021/acs.jafc.1c01096(IF:5.279)
[81] Li N, Chen J, Geng C, et al. Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI. Cell Death Discov. 2022;8(1):90. Published 2022 Feb 28. doi:10.1038/s41420-022-00894-w(IF:5.241)
[82] Zhang X, Li Y, Ji J, et al. Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov. 2021;7(1):271. Published 2021 Oct 2. doi:10.1038/s41420-021-00667-x(IF:5.241)
[83] Kang H, Guo Q, Dong Y, et al. Inhibition of MAT2A suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss. FASEB J. 2022;36(2):e22167. doi:10.1096/fj.202101205RR(IF:5.192)
[84] Shen Y, Xu LR, Yan D, et al. BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1. Biochim Biophys Acta Mol Basis Dis. 2022;1868(9):166450. doi:10.1016/j.bbadis.2022.166450(IF:5.187)
[85] Zhang M, Ji J, Wang X, et al. The transcription factor Tfcp2l1 promotes primordial germ cell-like cell specification of pluripotent stem cells. J Biol Chem. 2021;297(4):101217. doi:10.1016/j.jbc.2021.101217(IF:5.157)
[86] He L, Gao K, Liu H, Wang J, Li X, He C. Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation [published online ahead of print, 2021 May 25]. Life Sci. 2021;119651. doi:10.1016/j.lfs.2021.119651(IF:5.037)
[87] Yang L, Wang X, Jiao X, et al. Suppressor of Ty 16 promotes lung cancer malignancy and is negatively regulated by miR-1227-5p. Cancer Sci. 2020;111(11):4075-4087. doi:10.1111/cas.14627(IF:4.966)
[88] Hu R, Zhu X, Chen C, Xu R, Li Y, Xu W. RNA-binding protein PUM2 suppresses osteosarcoma progression via partly and competitively binding to STARD13 3'UTR with miRNAs. Cell Prolif. 2018;51(6):e12508. doi:10.1111/cpr.12508(IF:4.936)
[89] Li Z, Wang Y, Hu R, Xu R, Xu W. LncRNA B4GALT1-AS1 recruits HuR to promote osteosarcoma cells stemness and migration via enhancing YAP transcriptional activity. Cell Prolif. 2018;51(6):e12504. doi:10.1111/cpr.12504(IF:4.936)
[90] Zhou M, Li B, Liu C, et al. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol. 2021;101(Pt B):108223. doi:10.1016/j.intimp.2021.108223(IF:4.932)
[91] Li S, Wang D, Wei P, et al. Elevated Natural Killer Cell-Mediated Cytotoxicity Is Associated with Cavity Formation in Pulmonary Tuberculosis Patients. J Immunol Res. 2021;2021:7925903. Published 2021 Oct 4. doi:10.1155/2021/7925903(IF:4.818)
[92] Zhou X , Weng W , Chen B , et al. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J Mater Chem B. 2018;6(5):740-752. doi:10.1039/c7tb01246b(IF:4.776)
[93] Yang H, Mei W, Wan H, Xu R, Cheng Y. Comprehensive analysis of KCS gene family in Citrinae reveals the involvement of CsKCS2 and CsKCS11 in fruit cuticular wax synthesis at ripening. Plant Sci. 2021;310:110972. doi:10.1016/j.plantsci.2021.110972(IF:4.729)
[94] He B, Kang S, Chen Z, et al. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(11):159006. doi:10.1016/j.bbalip.2021.159006(IF:4.698)
[95] Yang H, Zhu Z, Zhang M, et al. CitWRKY28 and CitNAC029 promote the synthesis of cuticular wax by activating CitKCS gene expression in citrus fruit. Plant Cell Rep. 2022;41(4):905-920. doi:10.1007/s00299-021-02826-x(IF:4.570)
[96] Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol. 2022;13:855959. Published 2022 Apr 21. doi:10.3389/fphys.2022.855959(IF:4.566)
[97] Zhang L, Dong Y, Xue Y, et al. Multifunctional Triple-Layered Composite Scaffolds Combining Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomater Sci Eng. 2019;5(12):6691-6702. doi:10.1021/acsbiomaterials.9b01022(IF:4.511)
[98] Wang T, Cheng C, Peng L, et al. Combination of arsenic trioxide and Dasatinib: a new strategy to treat Philadelphia chromosome-positive acute lymphoblastic leukaemia. J Cell Mol Med. 2018;22(3):1614-1626. doi:10.1111/jcmm.13436(IF:4.499)
[99] Song D, Gui J, Liu C, Sun J, Li L. Suppression of PtrDUF579-3 Expression Causes Structural Changes of the Glucuronoxylan in Populus. Front Plant Sci. 2016;7:493. Published 2016 Apr 11. doi:10.3389/fpls.2016.00493(IF:4.495)
[100] Li J, Chen YH, Li LZ, et al. Omics and Transgenic Analyses Reveal that Salvianolic Acid B Exhibits its Anti-Inflammatory Effects through Inhibiting the Mincle-Syk-Related Pathway in Macrophages. J Proteome Res. 2021;20(7):3734-3748. doi:10.1021/acs.jproteome.1c00325(IF:4.466)
[101] Xu Y, Cai Z, Ba L, et al. Maintenance of Postharvest Quality and Reactive Oxygen Species Homeostasis of Pitaya Fruit by Essential Oil p-Anisaldehyde Treatment. Foods. 2021;10(10):2434. Published 2021 Oct 13. doi:10.3390/foods10102434(IF:4.350)
[102] Peng O, Wei X, Ashraf U, et al. Genome-wide transcriptome analysis of porcine epidemic diarrhea virus virulent or avirulent strain-infected porcine small intestinal epithelial cells. Virol Sin. 2022;37(1):70-81. doi:10.1016/j.virs.2022.01.011(IF:4.327)
[103] Li H, Zhao Z, Ling J, et al. USP14 promotes K63-linked RIG-I deubiquitination and suppresses antiviral immune responses. Eur J Immunol. 2019;49(1):42-53. doi:10.1002/eji.201847603(IF:4.248)
[104] Zhang P, Li H, Zhou C, et al. Single-Cell RNA Transcriptomics Reveals the State of Hepatic Lymphatic Endothelial Cells in Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. J Clin Med. 2022;11(10):2910. Published 2022 May 20. doi:10.3390/jcm11102910(IF:4.242)
[105] Ge S, Zhang Q, Chen Y, et al. Ribavirin inhibits colorectal cancer growth by downregulating PRMT5 expression and H3R8me2s and H4R3me2s accumulation. Toxicol Appl Pharmacol. 2021;415:115450. doi:10.1016/j.taap.2021.115450(IF:4.219)
[106] Bai RB, Zhang YJ, Fan JM, et al. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct. 2020;11(4):3306-3315. doi:10.1039/c9fo02969a(IF:4.171)
[107] Zhou Y, Zhu Y, Dong X, et al. Exosomes Derived from Pancreatic Cancer Cells Induce Osteoclast Differentiation Through the miR125a-5p/TNFRSF1B Pathway. Onco Targets Ther. 2021;14:2727-2739. Published 2021 Apr 19. doi:10.2147/OTT.S282319(IF:4.147)
[108] Yan H, Li Q, Li M, et al. Ajuba functions as a co-activator of C/EBPβ to induce expression of PPARγ and C/EBPα during adipogenesis. Mol Cell Endocrinol. 2022;539:111485. doi:10.1016/j.mce.2021.111485(IF:4.102)
[109] Liu F, Xia Z, Zhang M, et al. SMARCAD1 Promotes Pancreatic Cancer Cell Growth and Metastasis through Wnt/β-catenin-Mediated EMT. Int J Biol Sci. 2019;15(3):636-646. Published 2019 Jan 1. doi:10.7150/ijbs.29562(IF:4.067)
[110] Ma X, Gao Y, Liu J, et al. Low expression of PCK2 in breast tumors contributes to better prognosis by inducing senescence of cancer cells [published online ahead of print, 2022 May 17]. IUBMB Life. 2022;10.1002/iub.2651. doi:10.1002/iub.2651(IF:3.885)
[111] Li H, Chen W, Chen Y, et al. Neferine Attenuates Acute Kidney Injury by Inhibiting NF-κB Signaling and Upregulating Klotho Expression. Front Pharmacol. 2019;10:1197. Published 2019 Oct 15. doi:10.3389/fphar.2019.01197(IF:3.845)
[112] He G, Yang P, Tang Y, et al. Mechanism of exogenous cytokinins inducing bulbil formation in Lilium lancifolium in vitro. Plant Cell Rep. 2020;39(7):861-872. doi:10.1007/s00299-020-02535-x(IF:3.825)
[113] Zhang J, Wang W, Zhu S, Chen Y. Increased SERPINA3 Level Is Associated with Ulcerative Colitis. Diagnostics (Basel). 2021;11(12):2371. Published 2021 Dec 16. doi:10.3390/diagnostics11122371(IF:3.706)
[114] Li H, Quan J, Zhao X, Ling J, Chen W. USP14 negatively regulates RIG-I-mediated IL-6 and TNF-α production by inhibiting NF-κB activation. Mol Immunol. 2021;130:69-76. doi:10.1016/j.molimm.2020.12.022(IF:3.641)
[115] Hao Y, Huang J, Ran Y, et al. Ethylmalonic encephalopathy 1 initiates overactive autophagy in depleted uranium-induced cytotoxicity in the human embryonic kidney 293 cells. J Biochem Mol Toxicol. 2021;35(3):e22669. doi:10.1002/jbt.22669(IF:3.606)
[116] Huang L, He S, Cai Q, et al. Polydatin alleviates traumatic brain injury: Role of inhibiting ferroptosis. Biochem Biophys Res Commun. 2021;556:149-155. doi:10.1016/j.bbrc.2021.03.108(IF:3.575)
[117] You Y, Cui Y, Li Y, et al. Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells. Biochem Biophys Res Commun. 2021;552:142-149. doi:10.1016/j.bbrc.2021.03.030(IF:3.575)
[118] Li M, Ning N, Liu Y, et al. The potential of Zishen Yutai pills to facilitate endometrial recovery and restore fertility after induced abortion in rats. Pharm Biol. 2021;59(1):1505-1516. doi:10.1080/13880209.2021.1993272(IF:3.503)
[119] Zhang H, Chen M, Wen H, et al. Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers. BMC Plant Biol. 2020;20(1):7. Published 2020 Jan 6. doi:10.1186/s12870-019-2222-z(IF:3.497)
[120] Du Q, Zhang S, Li A, Mohammad IS, Liu B, Li Y. Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice. Front Physiol. 2018;9:15. Published 2018 Jan 23. doi:10.3389/fphys.2018.00015(IF:3.394)
[121] Yang Y, Huang C, Lin X, et al. 0.005% Preservative-Free Latanoprost Induces Dry Eye-Like Ocular Surface Damage via Promotion of Inflammation in Mice. Invest Ophthalmol Vis Sci. 2018;59(8):3375-3384. doi:10.1167/iovs.18-24013(IF:3.388)
[122] Xiang Y, Yu Y, Li Q, Chen J, Li Y, Cao W. Chicken telomerase reverse transcriptase mediates LMH cell pyroptosis by regulating the nuclear factor-kappa B signaling pathway. Poult Sci. 2022;101(6):101826. doi:10.1016/j.psj.2022.101826(IF:3.352)
[123] Wang PT, Li N, Wang XY, et al. RIG-I, a novel DAMPs sensor for myoglobin activates NF-κB/caspase-3 signaling in CS-AKI model. Mil Med Res. 2021;8(1):37. Published 2021 Jun 21. doi:10.1186/s40779-021-00333-4(IF:3.329)
[124] Chen S, Li M, Jiang W, Zheng H, Qi LW, Jiang S. The role of Neu1 in the protective effect of dipsacoside B on acetaminophen-induced liver injury. Ann Transl Med. 2020;8(13):823. doi:10.21037/atm-19-3850(IF:3.297)
[125] Xue X, Chen Y. Circular RNA (circ)_0129047 upregulates bone morphogenetic protein receptor type 2 expression to inhibit lung adenocarcinoma progression by sponging microRNA (miR)-1206. Bioengineered. 2022;13(5):12067-12087. doi:10.1080/21655979.2022.2070580(IF:3.269)
[126] Zhuo Y, Guo Z, Ba T, et al. African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-κB Signaling Pathway. Virol Sin. 2021;36(2):176-186. doi:10.1007/s12250-020-00304-4(IF:3.242)
[127] Rothenberg DO, Yang H, Chen M, Zhang W, Zhang L. Metabolome and Transcriptome Sequencing Analysis Reveals Anthocyanin Metabolism in Pink Flowers of Anthocyanin-Rich Tea (Camellia sinensis). Molecules. 2019;24(6):1064. Published 2019 Mar 18. doi:10.3390/molecules24061064(IF:3.060)
[128] Zhang Y, Zhu Z, Ding H, et al. β-catenin stimulates Tcf7l1 degradation through recruitment of casein kinase 2 in mouse embryonic stem cells. Biochem Biophys Res Commun. 2020;524(2):280-287. doi:10.1016/j.bbrc.2020.01.074(IF:2.985)
[129] Liu X, Yang X, Zhang B. Transcriptome analysis and functional identification of GmMYB46 in soybean seedlings under salt stress. PeerJ. 2021;9:e12492. Published 2021 Nov 11. doi:10.7717/peerj.12492(IF:2.984)
[130] Liu Z, Wang Y, Qin W, et al. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J Biochem Mol Toxicol. 2019;33(11):e22395. doi:10.1002/jbt.22395(IF:2.965)
[131] Zheng C, Ouyang YC, Jiang B, et al. Non-canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in mice†. Biol Reprod. 2019;100(6):1673-1685. doi:10.1093/biolre/ioz083(IF:2.960)
[132] Wang Z, Xu J, Liu Y, et al. Selection and validation of appropriate reference genes for real-time quantitative PCR analysis in Momordica charantia. Phytochemistry. 2019;164:1-11. doi:10.1016/j.phytochem.2019.04.010(IF:2.905)
[133] Liu L, Yang Y, Li W, Li Y, Jiang X, Wang L. Tanshinone IIA alleviate rifampicin-induced cholestasis by regulating the expression and function of bile salt export pump. Hum Exp Toxicol. 2022;41:9603271221097365. doi:10.1177/09603271221097365(IF:2.903)
[134] Xu WH, Liang DY, Wang Q, Shen J, Liu QH, Peng YB. Knockdown of KDM2A inhibits proliferation associated with TGF-β expression in HEK293T cell. Mol Cell Biochem. 2019;456(1-2):95-104. doi:10.1007/s11010-018-03493-5(IF:2.884)
[135] Xiao Q, Dong ZQ, Zhu Y, et al. Bombyx mori Nucleopolyhedrovirus (BmNPV) Induces G2/M Arrest to Promote Viral Multiplication by Depleting BmCDK1. Insects. 2021;12(12):1098. Published 2021 Dec 8. doi:10.3390/insects12121098(IF:2.769)
[136] Wang Z, Dong H, Yang L, Yi P, Wang Q, Huang D. The role of FDX1 in granulosa cell of Polycystic ovary syndrome (PCOS). BMC Endocr Disord. 2021;21(1):119. Published 2021 Jun 15. doi:10.1186/s12902-021-00775-w(IF:2.763)
[137] Liu J, Guo M, Fan X. Ethanol induces necroptosis in gastric epithelial cells in vitro. J Food Biochem. 2021;45(4):e13692. doi:10.1111/jfbc.13692(IF:2.720)
[138] Tan D, Hu H, Tong X, et al. Genome-wide identification and characterization of myosin genes in the silkworm, Bombyx mori. Gene. 2019;691:45-55. doi:10.1016/j.gene.2018.12.011(IF:2.638)
[139] Chen X, Liu Y, Meng B, Wu D, Wu Y, Cao Y. Interleukin-20 inhibits the osteogenic differentiation of MC3T3-E1 cells via the GSK3β/β-catenin signalling pathway. Arch Oral Biol. 2021;125:105111. doi:10.1016/j.archoralbio.2021.105111(IF:2.635)
[140] Huang R, Dong R, Wang N, Lan B, Zhao H, Gao Y. Exploring the Antiglioma Mechanisms of Luteolin Based on Network Pharmacology and Experimental Verification. Evid Based Complement Alternat Med. 2021;2021:7765658. Published 2021 Nov 27. doi:10.1155/2021/7765658(IF:2.630)
[141] Huang J, Guo M, Jin S, et al. Antibacterial photodynamic therapy mediated by 5-aminolevulinic acid on methicillin-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther. 2019;28:330-337. doi:10.1016/j.pdpdt.2019.09.008(IF:2.589)
[142] Duan RS, Liu PP, Xi F, et al. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons. Biochem Biophys Res Commun. 2018;499(2):246-252. doi:10.1016/j.bbrc.2018.03.138(IF:2.559)
[143] Guo Z, Qiu C, Mecca C, et al. Elevated lymphotoxin-α (TNFβ) is associated with intervertebral disc degeneration. BMC Musculoskelet Disord. 2021;22(1):77. Published 2021 Jan 13. doi:10.1186/s12891-020-03934-7(IF:2.355)
[144] You L, Chen H, Xu L, Li X. Overexpression of miR-29a-3p Suppresses Proliferation, Migration, and Invasion of Vascular Smooth Muscle Cells in Atherosclerosis via Targeting TNFRSF1A. Biomed Res Int. 2020;2020:9627974. Published 2020 Sep 4. doi:10.1155/2020/9627974(IF:2.276)
[145] Chen G, Yang Z, Wen D, et al. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun Inflamm Dis. 2021;9(3):959-970. doi:10.1002/iid3.455(IF:2.239)
[146] Chen M, Li S, Hao M, et al. T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation. FEBS Open Bio. 2020;10(10):2122-2136. doi:10.1002/2211-5463.12965(IF:2.231)
[147] Zhang Y, Zhou S, Cai W, et al. Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep. 2020;22(1):265-276. doi:10.3892/mmr.2020.11102(IF:2.100)
[148] Zhou F, Liu P, Lv H, Gao Z, Chang W, Xu Y. miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses. Mol Med Rep. 2021;23(1):42. doi:10.3892/mmr.2020.11680(IF:2.100)
[149] Wu H, He Y, Chen H, et al. LncRNA THOR increases osteosarcoma cell stemness and migration by enhancing SOX9 mRNA stability. FEBS Open Bio. 2019;9(4):781-790. Published 2019 Mar 20. doi:10.1002/2211-5463.12620(IF:1.959)
[150] Liu X, Xie F, Lai G, Wang J. Roles of heterogeneous nuclear ribonucleoprotein L in enamel organ development and the differentiation of ameloblasts. Arch Oral Biol. 2020;120:104933. doi:10.1016/j.archoralbio.2020.104933(IF:1.931)
[151] Yi S, Song X, Yu W, et al. De novo assembly and Transcriptome Analysis of the Momordica charantia Seedlings Responding to methyl jasmonate using 454 pyrosequencing. Gene Expr Patterns. 2021;40:119160. doi:10.1016/j.gep.2020.119160(IF:0.897)

96孔PCR板 0.2mL白色96孔PCR板 全裙边(NGS)

96孔PCR板 0.2mL白色96孔PCR板 全裙边(NGS)

产品说明书

FAQ

COA

已发表文献

产品描述

83557JP83130JP83672JP是自动化建库专用耗材。

 

产品特点

1. 优质进口聚丙烯原材料,无DNA酶、RNA酶,无热原

2. 应用于qPCR/实时荧光定量PCR

3. 壁厚均匀,极佳的热传导性提高扩增效率

4. 双色PCR板,热循环过程不变形

 

注意事项

1. 建议储存在无菌环境下!

2. 为了您的安全和健康,请穿实验服并带一次性手套操作!

 

储存条件

室温保存。

Ver. CN20230426

Q:几款PCR板怎么进行区分呢?

A:可参考适配表,无裙边或者半裙边PCR板可适配更多的仪器。83557JP 适配MGISP-960的自动化建库耗材。

Q: 无裙边半裙边全裙边的区别是什么?

A:

 

96孔PCR板 0.2mL白色96孔PCR板 全裙边(NGS)

暂无内容

产品描述

83557JP83130JP83672JP是自动化建库专用耗材。

 

产品特点

1. 优质进口聚丙烯原材料,无DNA酶、RNA酶,无热原

2. 应用于qPCR/实时荧光定量PCR

3. 壁厚均匀,极佳的热传导性提高扩增效率

4. 双色PCR板,热循环过程不变形

 

注意事项

1. 建议储存在无菌环境下!

2. 为了您的安全和健康,请穿实验服并带一次性手套操作!

 

储存条件

室温保存。

Ver. CN20230426

Q:几款PCR板怎么进行区分呢?

A:可参考适配表,无裙边或者半裙边PCR板可适配更多的仪器。83557JP 适配MGISP-960的自动化建库耗材。

Q: 无裙边半裙边全裙边的区别是什么?

A:

 

96孔PCR板 0.2mL白色96孔PCR板 全裙边(NGS)

暂无内容

用于 PCR 和冷藏的 AlumaSeal II™ 密封膜

excelscientific 用于 PCR 和冷藏的 AlumaSeal II™ 密封膜

用于 PCR 和冷藏的 AlumaSeal II™ 密封膜

 

AlumasSeal II TM密封膜是一种 36 µm 柔软的非渗透性铝箔密封膜,带有 28 µm 的强力医用级丙烯酸粘合剂,在热循环过程中无需使用热封装置或垫子。每个密封膜的尺寸为 82.6 x 146.1 mm,可为所有 PCR 板提供足够的密封面积。去除端片后穿孔之间的长度为 125.4 毫米。与其他铝箔相比,AlumaSeal II 在去除背纸时不易回卷或自行回卷,并且在应用过程中与印版贴合良好。

  • 使用单道或多道移液器和机器人探针可轻松刺穿

  • 耐热和耐寒,推荐用于 -80 °C 至 +120 °C 的温度

  • 经认证的无 DNase、RNase 和无核酸

  • 优异的阻隔性能,几乎没有样品蒸发或干燥

目录号 描述
数量
 
索取样品包*
AF-100 AlumaSeal II 密封膜,非无菌
100
AlumaSeal II™ 密封膜
[3 个样品]
AFS-25 AlumaSeal II 密封膜, 无菌
50
RL-PLT-01 附件:版辊*
1
不适用
PDL-5 薄膜密封桨 **,非无菌
5
封膜桨 [1 个样品]
您还没有选择经销商[现在选择一个]
显示我的样品请求   完成样品请求

AlumaSeal 96™ 密封膜

38 µm 厚的铝箔密封膜,带有 38 µm 的丙烯酸粘合剂层,用于 96 孔板。安装在凸起边缘板的边缘内。AlumaSeal 96 TM密封膜具有一个没有穿孔的部分宽度的端部标签。可刺穿。仅提供非无菌。密封膜尺寸为 127.0 毫米 x 77.8 毫米(包括单个 9.5 毫米端片)。

  • 安装在凸起边缘板的边缘内

  • 耐热和耐寒,推荐用于 -80 °C 至 +120 °C 的温度

  • 经认证的无 DNase、RNase 和无核酸

** 通过使用附件膜密封桨按压完成 AlumaSeal 96 密封膜的应用,可确保所有孔周围的密封均匀。桨适合在凸起孔板的边缘内。

目录号 描述
数量
 
索取样品包*
F-96-100 AlumaSeal 96 密封膜,非无菌
100
AlumaSeal 96™ 和 AlumaSeal 384™ 薄膜
[各 2 个样品]
PDL-5 薄膜密封桨 **, 非无菌
5
封膜桨 [1 个样品]
您还没有选择经销商[现在选择一个]
显示我的样品请求   完成样品请求

AlumaSeal 384™ 密封膜

38 µm 厚的铝箔密封膜,带有 38 µm 的丙烯酸粘合剂层,用于 384 孔板。AlumaSeal 384 TM密封膜有一个没有穿孔的末端标签。可刺穿。仅提供非无菌。密封膜尺寸为 137.3 毫米 x 82.5 毫米(包括单个 13.5 毫米端片)。

  • 耐热和耐寒,推荐用于 -80 °C 至 +120 °C 的温度

  • 经认证的无 DNase、RNase 和无核酸

* 通过使用附件板辊按压完成 AlumaSeal 384 密封膜的应用,可确保所有孔周围的密封均匀。

目录号 描述
数量
 
索取样品包*
F-384-100 AlumaSeal 384 密封膜,非无菌
100
AlumaSeal 96™ 和 AlumaSeal 384™ 薄膜
[各 2 个样品]
RL-PLT-01 附件:版辊*
1
不适用
您还没有选择经销商[现在选择一个]
显示我的样品请求   完成样品请求

用于冷藏的 AlumaSeal CS™ 密封膜

* 通过用附件板辊按压完成 AlumaSeal CS 密封膜的应用,确保所有孔周围的密封均匀。

AlumaSeal CS TM密封膜是专门配制的 50 µm 铝箔密封膜,带有 50 µm 丙烯酸粘合剂层,可在 -80 °C 的温度下进行冷藏。与 AlumaSeal 组中的其他密封膜不同,AlumaSeal CS 密封膜不推荐用于 PCR 或热循环。单个无孔端接片简化了应用。只需握住拉环,并在密封膜放在板上时从密封膜主体上剥离背衬,以避免卷曲。尺寸为 82.6 x 132.6 毫米,包括单个 9.5 毫米的末端标签。推荐温度范围:-80 °C 至 +120 °C。AlumaSeal CS 密封膜经过认证,不含 DNase、RNase 和核酸。

  • 专为冷藏至 -80 °C 而配制

  • 优异的阻隔性能,可延缓蒸发

  • 使用移液器吸头或机器人探针可轻松刺穿以进行样品回收

目录号 描述
数量
 
索取样品包*
FC-100 AlumaSeal CS 密封膜,非无菌
100
AlumaSeal CS™ 密封膜
[3 个样品]
FCS-25 AlumaSeal CS 密封膜,无菌
50
RL-PLT-01 附件:版辊*
1
不适用
您还没有选择经销商[现在选择一个]
显示我的样品请求   完成样品请求

* 通过使用附件板辊按压完成 AlumaSeal 密封膜的应用,可确保在 96 孔、384 孔和 1536 孔板上的所有孔周围安全均匀地密封。

** 替代板辊,用于压封膜,以确保在 96 孔、384 孔和 1536 孔板上的所有孔周围安全均匀密封。与凸边印版一起使用时比印版滚筒更好。(参见上面的 AlumaSeal 96 TM密封膜。桨片安装在板的边缘内。)

版权所有 © 2005. Excel Scientific, Inc. “AlumaSeal”是注册商标,“AlumaSeal II”、“AlumaSeal 96″、“AlumaSeal 384″和“AlumaSeal CS”是 Excel Scientific, Inc. 的商标。