一步法RT-gDNA去除qPCR预混液 Hifair® AdvanceFast One-step RT-gDNA Digestion SuperMix for qPCR

一步法RT-gDNA去除qPCR预混液 Hifair® AdvanceFast One-step RT-gDNA Digestion SuperMix for qPCR

产品说明书

FAQ

COA

已发表文献

 

Hifair® AdvanceFast One-step RT-gDNA Digestion SuperMix for qPCR是Hifair® V one-step RT-gDNA digestion SuperMix for qPCR的升级版,在满足了可在同一管中进行反转录和基因组去除两个反应的同时,既简化了反应过程、大幅缩短了反应时间,又提高了反转录产物的产量。本产品4×Hifair® AdvanceFast One-Step RT SuperMix中含反转录反应所需的全部试剂,反应时只需加入gDNA Remover Mix、模板RNA和水即可高效地合成第一链cDNA,同时去除基因组DNA污染。本产品适合具有复杂的RNA模板的反转录,也非常适合少量模板以及低拷贝基因的反转录。

本产品反转录产物兼容探针法与染料法qPCR,探针法与染料法qPCR Mix分别推荐翌圣Hieff Unicon® Universal TaqMan multiplex qPCR master mix (Cat#11211)和Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix (Cat#11184),进行高性能基因表达分析。本产品反转录产物不适用于后续基因克隆等长片段扩增,如果需要,推荐翌圣Hifair® AdvanceFast 1st Strand cDNA Synthesis Kit (Cat#11149、Cat#11150)进行高效反转录。

 

组分信息

组分编号

组分名称

11151ES10

11151ES60

11151-A

4×Hifair® AdvanceFast One-Step RT SuperMix

50 μL

500 μL

11151-B

gDNA Remover Mix

10 μL

100 μL

11151-C

RNase-free Water

1 mL

2×1 mL

 

储存条件

-25~-15℃保存,有效期1年。

 

使用说明

  1. 在冰上融化11151-A/B/C组分,将试剂各组分充分震荡混匀,并在RNase-free离心管中配置如下体系:

组分

体积 μL

RNase-free Water

To 20 μL

4×Hifair® AdvanceFast One-Step RT SuperMix

5 μL

gDNA Remover Mix

1 μL

Total RNA

10 pg -5 μg*

or mRNA

10 pg-500 ng*

1 反应体系

*建议Total RNA的投入量不超过2 μg。如果目的基因的表达丰度低,可增加投入量至最多5 μg Total RNA

  1. 反应程序

温度

时间

37℃

5 min*

85℃

30 s

2 反应程序

*该过程包含反转录及gDNA消化。

  1. 反转录产物可立即用于qPCR反应,也可-20°C短期保存,长期保存建议分装后于-80°C存放,避免反复冻融

 

注意事项

1.所有操作均应在冰上进行,且操作过程应避免RNase污染。

2.为了您的安全和健康,请穿实验服并戴一次性手套操作。

3.本产品仅作科研用途!

 

Ver.CN20230530

Q:这个试剂具备颜色示踪吗?

A:组分A为蓝色,具有加样示踪的作用。

Q: 不做gDNA去除可以吗?

A: 可以,如果RNA提取时候已经处理过gDNA, 可以不加gDNA Remover Mix(组分B),反应体系用RNase-free Water补齐。
Q: 可以扩大反应体系吗?

A: 可以,参考说明书等比例扩大反应体系,注意在使用PCR仪时修改程序上的反应体积。

一步法RT-gDNA去除qPCR预混液 Hifair® AdvanceFast One-step RT-gDNA Digestion SuperMix  for qPCR

暂无内容

 

Hifair® AdvanceFast One-step RT-gDNA Digestion SuperMix for qPCR是Hifair® V one-step RT-gDNA digestion SuperMix for qPCR的升级版,在满足了可在同一管中进行反转录和基因组去除两个反应的同时,既简化了反应过程、大幅缩短了反应时间,又提高了反转录产物的产量。本产品4×Hifair® AdvanceFast One-Step RT SuperMix中含反转录反应所需的全部试剂,反应时只需加入gDNA Remover Mix、模板RNA和水即可高效地合成第一链cDNA,同时去除基因组DNA污染。本产品适合具有复杂的RNA模板的反转录,也非常适合少量模板以及低拷贝基因的反转录。

本产品反转录产物兼容探针法与染料法qPCR,探针法与染料法qPCR Mix分别推荐翌圣Hieff Unicon® Universal TaqMan multiplex qPCR master mix (Cat#11211)和Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix (Cat#11184),进行高性能基因表达分析。本产品反转录产物不适用于后续基因克隆等长片段扩增,如果需要,推荐翌圣Hifair® AdvanceFast 1st Strand cDNA Synthesis Kit (Cat#11149、Cat#11150)进行高效反转录。

 

组分信息

组分编号

组分名称

11151ES10

11151ES60

11151-A

4×Hifair® AdvanceFast One-Step RT SuperMix

50 μL

500 μL

11151-B

gDNA Remover Mix

10 μL

100 μL

11151-C

RNase-free Water

1 mL

2×1 mL

 

储存条件

-25~-15℃保存,有效期1年。

 

使用说明

  1. 在冰上融化11151-A/B/C组分,将试剂各组分充分震荡混匀,并在RNase-free离心管中配置如下体系:

组分

体积 μL

RNase-free Water

To 20 μL

4×Hifair® AdvanceFast One-Step RT SuperMix

5 μL

gDNA Remover Mix

1 μL

Total RNA

10 pg -5 μg*

or mRNA

10 pg-500 ng*

1 反应体系

*建议Total RNA的投入量不超过2 μg。如果目的基因的表达丰度低,可增加投入量至最多5 μg Total RNA

  1. 反应程序

温度

时间

37℃

5 min*

85℃

30 s

2 反应程序

*该过程包含反转录及gDNA消化。

  1. 反转录产物可立即用于qPCR反应,也可-20°C短期保存,长期保存建议分装后于-80°C存放,避免反复冻融

 

注意事项

1.所有操作均应在冰上进行,且操作过程应避免RNase污染。

2.为了您的安全和健康,请穿实验服并戴一次性手套操作。

3.本产品仅作科研用途!

 

Ver.CN20230530

Q:这个试剂具备颜色示踪吗?

A:组分A为蓝色,具有加样示踪的作用。

Q: 不做gDNA去除可以吗?

A: 可以,如果RNA提取时候已经处理过gDNA, 可以不加gDNA Remover Mix(组分B),反应体系用RNase-free Water补齐。
Q: 可以扩大反应体系吗?

A: 可以,参考说明书等比例扩大反应体系,注意在使用PCR仪时修改程序上的反应体积。

一步法RT-gDNA去除qPCR预混液 Hifair® AdvanceFast One-step RT-gDNA Digestion SuperMix  for qPCR

暂无内容

逆转录预混液(含gDNA污染去除)|RT-gDNA digestion SuperMix for qPCR

逆转录预混液(含gDNA污染去除)|RT-gDNA digestion SuperMix for qPCR

产品说明书

FAQ

COA

已发表文献

Hifair® V one-step RT-gDNA digestion SuperMix for qPCRHifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)的升级版,可在同一管中进行逆转录和基因组去除两个反应,操作简便,可有效降低复杂加样过程造成的样品污染和RNA降解的风险。本产品中5×Hifair® One Step RT SuperMix含逆转录反应所需的全部试剂(Hifair® V Reverse Transcriptase, RNase Inhibitor, Oligo(dT)18 Primer, Random Primer, dNTPs, Buffer)反应时只需加入gDNA Remover Mix、模板RNA和水即可高效地合成第一链cDNA,同时去除基因组DNA污染。另外,本产品提供了5×Hifair® One Step No-RT Control SuperMix,用于配置无逆转录酶的对照,判断qPCR模板是否来自cDNA

本产品中的Hifair® V Reverse Transcriptase可耐受高达60°C的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录逆转录产物兼容探针法与染料法qPCR,探针法与染料法qPCR Mix分别推荐翌圣Hieff Unicon® Universal TaqMan multiplex qPCR master mix (Cat#11211)Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix (Cat#11184),进行高性能基因表达分析。

 

产品组分

组分编号

组分名称

产品规格

11142ES10 (10 T)

11142ES60 (100 T)

11142-A

5×Hifair® One Step RT SuperMix

40 μL

400 μL

11142-B

gDNA Remover Mix

10 μL

100 μL

11142-C

5×Hifair® One Step No-RT Control SuperMix

20 μL

40 μL

11142-D

RNase free H2O

1 mL

2×1 mL

 

产品应用

后续适用于qPCR实验。

 

运输和保存方法

冰袋运输。-20°C保存,有效期12个月。

 

注意事项

1)所有操作均应在冰上进行,且操作过程应避免RNase污染

2)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3本产品仅作科研用途!

 

第一链cDNA合成操作步骤

1. 反应体系配置:在冰上融化11142-A/B/C组分,将试剂各组分充分震荡混匀,并在RNase-free离心管中配置如下体系:

组分

使用量

RNase-free H2O

To 20 μL

5×Hifair® One Step RT SuperMix

4 μL

gDNA Remover Mix

1 μL

Total RNA

10 ng-1μg

No-RT Control反应(可选)

5×Hifair® One Step No-RT Control SuperMix,用于配置无逆转录酶的对照,判断qPCR模板是否来自cDNA

组分

使用量

RNase-free H2O

To 20 μL

5×Hifair® One Step No-RT Control SuperMix

4 μL

gDNA Remover Mix

1 μL

Total RNA

10 ng-1μg

 

2. 轻轻混匀,按照如下程序进行逆转录

温度

时间

30°C

5 min

55°C

15 min

85°C

5 min

【注】:1. 逆转录温度:推荐使用55°C。对于高GC含量模板或者复杂模板,可将逆转录温度提高到60°C

  1. 逆转录产物可立即用于后续qPCR反应,也可-20°C短期保存,若需长期保存,建议分装后,于-80°C保存,避免反复冻融。

HB221019

Q: 反转录后的产物是什么?是双链的DNA吗?

A:反转录后的产物是RNA和cDNA的杂交链,并不是DNA双链,其稳定性相较于后者来说要低一些。

[1] Ji C, Li J, Jiang C, et al. Zinc and nitrogen synergistic act on root-to-shoot translocation and preferential distribution in rice. J Adv Res. 2021;35:187-198. Published 2021 Apr 20. doi:10.1016/j.jare.2021.04.005(IF:10.479)

Hifair® V one-step RT-gDNA digestion SuperMix for qPCRHifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)的升级版,可在同一管中进行逆转录和基因组去除两个反应,操作简便,可有效降低复杂加样过程造成的样品污染和RNA降解的风险。本产品中5×Hifair® One Step RT SuperMix含逆转录反应所需的全部试剂(Hifair® V Reverse Transcriptase, RNase Inhibitor, Oligo(dT)18 Primer, Random Primer, dNTPs, Buffer)反应时只需加入gDNA Remover Mix、模板RNA和水即可高效地合成第一链cDNA,同时去除基因组DNA污染。另外,本产品提供了5×Hifair® One Step No-RT Control SuperMix,用于配置无逆转录酶的对照,判断qPCR模板是否来自cDNA

本产品中的Hifair® V Reverse Transcriptase可耐受高达60°C的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,非常适合少量模板以及低拷贝基因的逆转录逆转录产物兼容探针法与染料法qPCR,探针法与染料法qPCR Mix分别推荐翌圣Hieff Unicon® Universal TaqMan multiplex qPCR master mix (Cat#11211)Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix (Cat#11184),进行高性能基因表达分析。

 

产品组分

组分编号

组分名称

产品规格

11142ES10 (10 T)

11142ES60 (100 T)

11142-A

5×Hifair® One Step RT SuperMix

40 μL

400 μL

11142-B

gDNA Remover Mix

10 μL

100 μL

11142-C

5×Hifair® One Step No-RT Control SuperMix

20 μL

40 μL

11142-D

RNase free H2O

1 mL

2×1 mL

 

产品应用

后续适用于qPCR实验。

 

运输和保存方法

冰袋运输。-20°C保存,有效期12个月。

 

注意事项

1)所有操作均应在冰上进行,且操作过程应避免RNase污染

2)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
3本产品仅作科研用途!

 

第一链cDNA合成操作步骤

1. 反应体系配置:在冰上融化11142-A/B/C组分,将试剂各组分充分震荡混匀,并在RNase-free离心管中配置如下体系:

组分

使用量

RNase-free H2O

To 20 μL

5×Hifair® One Step RT SuperMix

4 μL

gDNA Remover Mix

1 μL

Total RNA

10 ng-1μg

No-RT Control反应(可选)

5×Hifair® One Step No-RT Control SuperMix,用于配置无逆转录酶的对照,判断qPCR模板是否来自cDNA

组分

使用量

RNase-free H2O

To 20 μL

5×Hifair® One Step No-RT Control SuperMix

4 μL

gDNA Remover Mix

1 μL

Total RNA

10 ng-1μg

 

2. 轻轻混匀,按照如下程序进行逆转录

温度

时间

30°C

5 min

55°C

15 min

85°C

5 min

【注】:1. 逆转录温度:推荐使用55°C。对于高GC含量模板或者复杂模板,可将逆转录温度提高到60°C

  1. 逆转录产物可立即用于后续qPCR反应,也可-20°C短期保存,若需长期保存,建议分装后,于-80°C保存,避免反复冻融。

HB221019

Q: 反转录后的产物是什么?是双链的DNA吗?

A:反转录后的产物是RNA和cDNA的杂交链,并不是DNA双链,其稳定性相较于后者来说要低一些。

[1] Ji C, Li J, Jiang C, et al. Zinc and nitrogen synergistic act on root-to-shoot translocation and preferential distribution in rice. J Adv Res. 2021;35:187-198. Published 2021 Apr 20. doi:10.1016/j.jare.2021.04.005(IF:10.479)

OnePot cDNA和gDNA文库制备试剂盒 cDNA & gDNA Library Prep Kit

OnePot cDNA和gDNA文库制备试剂盒 cDNA & gDNA Library Prep Kit

产品说明书

FAQ

COA

已发表文献

 

Hieff NGS® OnePot cDNA & gDNA Library Prep Kit针对Illumina®或者MGI®测序平台专业开发设计的新一代酶切法建库试剂盒。与传统的建库法比较,本品采用高质量的片段化酶,摆脱了繁琐的超声过程,同时简化了操作流程,将片段化模块与末端修复模块合二为一,极大的降低了建库的时间和成本。本试剂盒具有优秀的文库转化率,可应用于常规动植物基因组、微生物基因组等样本,同时能兼容cfDNA样本的建库。该试剂盒使用了最新优化的连接酶,改善了接头连接时的片段自连现象,同时替换了新型高保真酶,进一步提升了扩增的均一性和保真性。

Ø 适用500 pg-1 μg的基因组DNA、全长cDNA(衔接Hieff NGS® ds-cDNA Synthesis Kit全长cDNA合成试剂盒Yeasen Cat#13488)等样本;
Ø 高质量片段化酶,可随机切割双链DNA,酶切片段无偏好性;
Ø 片段化、末端修复/A一步完成;
Ø 强扩增效率的高保真酶,显著提高文库质量及产量;
Ø 适用于cfDNA样本;
Ø 严格的批次性能与稳定性质控;

 

产品组分

组分编号             组分名称            

13502ES24

13502ES96

13502-A

OnePot cDNA和gDNA文库制备试剂盒 cDNA & gDNA Library Prep Kit

Smearase Buffer

240 μL

960 μL

13502-B

OnePot cDNA和gDNA文库制备试剂盒 cDNA & gDNA Library Prep Kit

DNA Extra-working Buffer

240 μL

960 μL

13502-C

OnePot cDNA和gDNA文库制备试剂盒 cDNA & gDNA Library Prep Kit

Smearase Enzyme Mix

120 μL

480 μL

13502-D

OnePot cDNA和gDNA文库制备试剂盒 cDNA & gDNA Library Prep Kit

Ligation Enhancer

720 μL

2×1440 μL

13502-E

OnePot cDNA和gDNA文库制备试剂盒 cDNA & gDNA Library Prep Kit

Novel T4 DNA Ligase

120 μL

480 μL

13502-F

OnePot cDNA和gDNA文库制备试剂盒 cDNA & gDNA Library Prep Kit

2× Ultima HF Amplification Mix

600 μL

2×1200 μL

 

运输与保存方法

干冰运输。-20保存有效期1年。

 

注意事项
一、关于操作

1. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

2. 请于使用前将试剂盒各组分置于室温解冻。解冻后上下颠倒数次充分混匀,短暂离心后置于冰上待用。

3. 配制各步骤反应液时推荐使用移液器吹打混匀或轻轻振荡,剧烈振荡可能会造成文库产出下降。

4. 为避免样品交叉污染,推荐使用带滤芯的枪头,吸取不同样品时请更换枪头。

5. 推荐在带热盖的PCR仪中进行各步骤反应,使用前应预热PCR仪至反应温度附近。
6. PCR产物因操作不当极容易产生气溶胶污染,进而影响实验结果准确性。推荐将PCR反应体系配制区和PCR产物纯化检测区进行强制性的物理隔离;使用专用的移液器等设备;并定时对各实验区域进行清洁(使用0.5%次氯酸钠或10%漂白剂进行擦拭清理),以保证实验环境的洁净度。
7. 本产品仅作科研用途!

 

、关于接头连接(Adapter Ligation

Illumina接头:

1. 本公司可提供短接头(也称为小Y接头、不完整接头)试剂盒客户可根据实验需求进行选择。

目前双端 384 Index Primers: Hieff NGS® 384 CDI Primer for Illumina® , Set 1~Set 2 Cat#12412~Cat#12413

2. 我们建议选用高质量的商业化接头如客户使用自制接头,请委托具有NGS引物合成经验的公司,并备注需进行严格的防污染控制。此外,进行接头退火操作时,请在超净台完成。每次只操作一种接头,防止交叉污染。

3. 使用接头时,请提前将接头取出放在4°C或冰盒上解冻;在室温操作时,实验室温度最好不要超过25°C,防止接头解链。

4. 建库过程中,接头浓度过高或过低都会导致建库成功率变低。本试剂盒操作方案中,所加入的接头体积固定为5 μL,请根据初始的DNA或者RNA投入量,参考表1对接头进行稀释。本公司接头原始浓度均为15 μM接头稀释液请选择0.1×TE buffer,稀释过的接头可在4°C保存48小时。

1 Input Total RNA/DNA量与接头使用浓度推荐表

Input Total RNA(参照Cat#13488 RNA投入量)

Adapter stock concentration

Input Total DNA

Adapter stock concentration

≥10 ng

15 μM

1μg~200 ng

15 μM

<10 ng

3 μM

100 ng

10 μM

   

50 ng

5 μM

   

10 ng

3 μM

   

5 ng

1μM

   

≤1ng

0.5μM

 

三、关于文库扩增(Library Amplification

库扩增步骤需要严格控制扩增循环数。循环数不足,将导致文库产量低;循环数过多,又将导致文库偏好性增加、重复度增加、嵌合产物增加、扩增突变积累等多种不良后果。表2列举了使用本试剂盒,获得1mg文库的推荐循环数。

2 Input Total RNA或者DNA量与扩增循环数推荐表*

Input Total RNA

Number of cycles

Input Total DNA

Number of cycles

<1 ng

10~12

<1 ng

14~16

 1ng

 9~10

1 ng

13~14

 10 ng

6~7

5 ng

10~11

50ng

4~5

10 ng

9~10

100~1000 ng

4

50 ng

7~8

   

100 ng

6~7

   

200 ng

5~6

【注】:*由于文库产量不仅与投入量和扩增循环数相关,样本质量等都会影响产量。建库过程中请根据实际情况综合考虑,选择最合适的建库条件。

 

DNA磁珠纯化与分选(Bead-based Clean Up and Size Selection

1. 建库过程中有多个步骤需要使用DNA纯化磁珠,我们推荐使用Hieff NGS® DNA Selection Beads (Yeasen Cat#12601)AMPure® XP磁珠(Beckman Cat#A63880)进行DNA纯化和分选。

2. 磁珠使用前应先平衡至室温,否则会导致得率下降、分选效果不佳。

3. 磁珠每次使用前都应充分振荡混匀或使用移液器上下吹打充分混匀。

4. 转移上清时,请勿吸取磁珠,即使微量残留都将影响后续文库质量。

5. 磁珠洗涤使用的80%乙醇应现用现配,否则将影响回收效率。

6. 产物洗脱前应将磁珠置于室温干燥。干燥不充分容易造成无水乙醇残留影响后续反应;过分干燥又会导致磁珠开裂进而降低纯化得率。通常情况下,室温干燥3-5 min足以让磁珠充分干燥。

7. DNA纯化或长度分选产物如需保存,可使用0.1×TE Buffer洗脱,产物于4°C可保存2-20°C可保存1个月。

 

、关于文库质检(Library Quality Analysis

1. 通常情况下,构建好的文库可通过长度分布检测和浓度检测来进行质量评价。

2. 文库浓度检测可使用:基于双链DNA荧光染料的方法,如Qubit®PicoGreen®等;基于qPCR绝对定量的方法。

3. 推荐使用qPCR方法进行文库浓度检测:Qubit®等基于双链DNA荧光染料的浓度测定方法时,无法有效区分单端连接Adapter的产物、两端均未连接Adapter的产物及其他不完整双链结构产物;qPCR绝对定量基于PCR扩增原理,仅定量样品中两端Adapter完整的文库(即可测序的文库),可排除单端或双端都不连接Adapter的不可测序文库的干扰。

4. 文库浓度检测不可使用:基于光谱检测的方法,如NanoDrop®等。

5. 文库长度分布检测,可通过Agilent Bioanalyzer 2100等基于毛细管电泳或微控流原理的设备进行检测。

 

、自备材料Other Material

1. DNA纯化磁珠:Hieff NGS® DNA Selection BeadsYeasen Cat#12601)或AMPure® XP BeadsA63880)或其他等效产品。

2. AdaptersIndex长接头Yeasen Cat#12615~12618或者无Index的短接头试剂盒Yeasen Cat#12611~12614

3. 文库质检:Agilent 2100 Bioanalyzer DNA 1000 Chip/ High Sensitivity Chip或其他等效产品;文库定量试剂。

4. 其他材料:无水乙醇、无菌超纯水、低吸附枪头、PCR管、磁力架、PCR仪等。

 

建库流程图

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit   

 1 DNA建库操作流程

 

使用方法

Step 1 cDNA & gDNA片段化/末端修复/dA尾添加(DNA Fragment/End Preparation/dA-Tailing

该步骤将cDNA & gDNA片段化,同时进行末端修复及dA尾添加。

1. 将表3中各试剂解冻后,颠倒混匀,置于冰上备用。

2. 于冰上配制表3反应体系。

3  DNA片段化/末端修复/dA尾添加 PCR反应体系

名称

体积(μL

名称

体积(μL

2nd Strand cDNA

35

gDNA

35

Smearase Buffer

10

Smearase Buffer

10

Smearase Enzyme Mix

5 

Smearase Enzyme Mix

5 

RNase-free H2O

10

DNA Extra-working Buffer

10

Total

60

Total

60

3. 使用移液器轻轻吹打或低速振荡混匀,并短暂离心将反应液离心至管底。

4. 将上述PCR管置于PCR仪,设置表4所示反应程序,进行DNA片段化,末端修复及dA尾添加反应。

4  DNA片段化/末端修复/dA尾添加 PCR反应程序

温度

时间

热盖105°C

on

4°C

1 min

30 °C

520 min**

72 °C

20 min

4°C

Hold

【注】:*DNA片段化过程为有效控制片段化效果,避免过度酶切,反应程序可预先设置4°C,待模块温度降至4°C时,将PCR管放入PCR仪即可。**对于完整的基因组DNA,酶切时间参考表5

5  片段化时间选择表

插入片段主峰大小

片段化时间

300~500 bp

5 min

250 bp

10 min

200 bp

15 min

150 bp

20~30 min

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

 2  不同片段化条件下的文库峰形参考

 

Step 2 接头连接(Adapter Ligation

该步骤可在末端修复和dA尾添加的产物末端,连接特定的Illumina®或者MGI®接头。

1. 参考注意事项中的表1,根据Input DNA,稀释Adapter至合适浓度。

2. 将表6中各试剂解冻后颠倒混匀,置于冰上备用。

3. Step 1步骤结束后的PCR管中继续配制表6所示反应体系。

6 Adapter Ligation体系

名称

体积(μL

dA-tailed DNA

60

Ligation Enhancer

30*

Novel T4 DNA Ligase

5

DNA Adapter

5**

Total

100

【注】:*Ligation Enhancer使用前请上下颠倒、振荡,充分混匀并瞬时离心后使用。
**本公司Illumina接头原始浓度为15 μM, 请根据注意事项1提示,根据投入量对接头进行稀释,使接头添加体积固定为5 μL

4. 使用移液器轻轻吹打混匀,并短暂离心将反应液收集至管底。

5. PCR管置于PCR仪中,设置表7所示反应程序,进行接头连接反应:

7 Adapter Ligation反应程序

温度

时间

热盖

Off

20°C

15 min

4°C

Hold

 

Step 3连接产物纯化(Post Ligation Clean Up

1. 准备工作:将Hieff NGS® DNA Selection Beads磁珠由冰箱中取出,室温平衡至少30 min。配制80%乙醇。

2. 涡旋振荡或充分颠倒磁珠以保证充分混匀。

3. 吸取45 μL Hieff NGS® DNA Selection Beads0.45×Beads:DNA=0.45:1Adapter Ligation产物中,涡旋或吹打混匀,室温孵育5 min

4. PCR管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约5 min),小心移除上清。

5. 保持PCR管始终置于磁力架中,加入200 μL新鲜配制的80%乙醇漂洗磁珠,室温孵育30 sec后,小心移除上清。

6. 重复步骤5,总计漂洗两次。

7. 保持PCR管始终置于磁力架中,10 μL移液器吸干净残留液体,开盖空气干燥磁珠至刚刚出现龟裂(不超过5 min)。

8. PCR管从磁力架中取出,加入21 μL ddH2O,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温静置5 min。将PCR管短暂离心并置于磁力架中静置,待溶液澄清后(约3 min),小心移取20 μL上清至新PCR管中,进行PCR扩增。

 

Step 4 文库扩增(Library Amplification

该步骤将对纯化后的接头连接产物进行PCR扩增富集。

1. 将表8中的试剂解冻后颠倒混匀,置于冰上备用

2. 于无菌PCR管中配制表8所示反应体系。
8 短接头连接产物PCR反应体系Illumina扩增体系)

组分名称

体积(μL

2× Ultima HF Amplification Mix

25

Universal Primer/ i5 Primer*

2.5

Index Primer/ i7 Primer*

2.5

Adapter Ligated DNA

20

Total

50

【注】:*使用的是无Index的接头,俗称短接头(小Y接头),请使用短接头试剂Cat#12412~Cat#12413中配备的Index primer进行扩增

3. 使用移液器轻轻吹打或振荡混匀,并短暂离心将反应液收集至管底。

4. PCR管置于PCR仪中,设置表9示反应程序,进行PCR扩增

9  PCR扩增反应程序

温度

时间

循环数

98°C

1 min

1

98°C

10 sec

参照注意事项三,文库扩增

60°C

30 sec

72°C

30 sec

72°C

1 min

1

4°C

Hold

 

Step 5 扩增产物磁珠纯化Post Amplification Clean Up

1. 准备工作:将Hieff NGS® DNA Selection Beads磁珠由冰箱中取出,室温平衡至少30 min。配制80%乙醇。

2. 涡旋振荡或充分颠倒磁珠以保证充分混匀。

3. 吸取45 μL Hieff NGS® DNA Selection Beads0.9×Beads:DNA=0.9:1)至Adapter Ligation产物中,涡旋或吹打混匀,室温孵育5 min

4. PCR管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约5 min),小心移除上清。

5. 保持PCR管始终置于磁力架中,加入200 μL新鲜配制的80%乙醇漂洗磁珠,室温孵育30 sec后,小心移除上清。

6. 重复步骤5,总计漂洗两次。

7. 保持PCR管始终置于磁力架中,10 μL移液器吸干净残留液体,开盖空气干燥磁珠至刚刚出现龟裂(不超过5 min)。

8. PCR管从磁力架中取出,加入32 μL ddH2O,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温静置5 min。将PCR管短暂离心并置于磁力架中静置,待溶液澄清后(约3 min),小心移取30 μL上清至新PCR管中,进行文库定量、质检

 

Step 6 文库质量控制

通常情况下,构建好的文库可通过浓度检测和长度分布检测来进行质量评价,具体请参见注意事项

 

HB220810

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

暂无内容

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

暂无内容

 

Hieff NGS® OnePot cDNA & gDNA Library Prep Kit针对Illumina®或者MGI®测序平台专业开发设计的新一代酶切法建库试剂盒。与传统的建库法比较,本品采用高质量的片段化酶,摆脱了繁琐的超声过程,同时简化了操作流程,将片段化模块与末端修复模块合二为一,极大的降低了建库的时间和成本。本试剂盒具有优秀的文库转化率,可应用于常规动植物基因组、微生物基因组等样本,同时能兼容cfDNA样本的建库。该试剂盒使用了最新优化的连接酶,改善了接头连接时的片段自连现象,同时替换了新型高保真酶,进一步提升了扩增的均一性和保真性。

Ø 适用500 pg-1 μg的基因组DNA、全长cDNA(衔接Hieff NGS® ds-cDNA Synthesis Kit全长cDNA合成试剂盒Yeasen Cat#13488)等样本;
Ø 高质量片段化酶,可随机切割双链DNA,酶切片段无偏好性;
Ø 片段化、末端修复/A一步完成;
Ø 强扩增效率的高保真酶,显著提高文库质量及产量;
Ø 适用于cfDNA样本;
Ø 严格的批次性能与稳定性质控;

 

产品组分

组分编号             组分名称            

13502ES24

13502ES96

13502-A

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

Smearase Buffer

240 μL

960 μL

13502-B

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

DNA Extra-working Buffer

240 μL

960 μL

13502-C

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

Smearase Enzyme Mix

120 μL

480 μL

13502-D

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

Ligation Enhancer

720 μL

2×1440 μL

13502-E

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

Novel T4 DNA Ligase

120 μL

480 μL

13502-F

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

2× Ultima HF Amplification Mix

600 μL

2×1200 μL

 

运输与保存方法

干冰运输。-20保存有效期1年。

 

注意事项
一、关于操作

1. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

2. 请于使用前将试剂盒各组分置于室温解冻。解冻后上下颠倒数次充分混匀,短暂离心后置于冰上待用。

3. 配制各步骤反应液时推荐使用移液器吹打混匀或轻轻振荡,剧烈振荡可能会造成文库产出下降。

4. 为避免样品交叉污染,推荐使用带滤芯的枪头,吸取不同样品时请更换枪头。

5. 推荐在带热盖的PCR仪中进行各步骤反应,使用前应预热PCR仪至反应温度附近。
6. PCR产物因操作不当极容易产生气溶胶污染,进而影响实验结果准确性。推荐将PCR反应体系配制区和PCR产物纯化检测区进行强制性的物理隔离;使用专用的移液器等设备;并定时对各实验区域进行清洁(使用0.5%次氯酸钠或10%漂白剂进行擦拭清理),以保证实验环境的洁净度。
7. 本产品仅作科研用途!

 

、关于接头连接(Adapter Ligation

Illumina接头:

1. 本公司可提供短接头(也称为小Y接头、不完整接头)试剂盒客户可根据实验需求进行选择。

目前双端 384 Index Primers: Hieff NGS® 384 CDI Primer for Illumina® , Set 1~Set 2 Cat#12412~Cat#12413

2. 我们建议选用高质量的商业化接头如客户使用自制接头,请委托具有NGS引物合成经验的公司,并备注需进行严格的防污染控制。此外,进行接头退火操作时,请在超净台完成。每次只操作一种接头,防止交叉污染。

3. 使用接头时,请提前将接头取出放在4°C或冰盒上解冻;在室温操作时,实验室温度最好不要超过25°C,防止接头解链。

4. 建库过程中,接头浓度过高或过低都会导致建库成功率变低。本试剂盒操作方案中,所加入的接头体积固定为5 μL,请根据初始的DNA或者RNA投入量,参考表1对接头进行稀释。本公司接头原始浓度均为15 μM接头稀释液请选择0.1×TE buffer,稀释过的接头可在4°C保存48小时。

1 Input Total RNA/DNA量与接头使用浓度推荐表

Input Total RNA(参照Cat#13488 RNA投入量)

Adapter stock concentration

Input Total DNA

Adapter stock concentration

≥10 ng

15 μM

1μg~200 ng

15 μM

<10 ng

3 μM

100 ng

10 μM

   

50 ng

5 μM

   

10 ng

3 μM

   

5 ng

1μM

   

≤1ng

0.5μM

 

三、关于文库扩增(Library Amplification

库扩增步骤需要严格控制扩增循环数。循环数不足,将导致文库产量低;循环数过多,又将导致文库偏好性增加、重复度增加、嵌合产物增加、扩增突变积累等多种不良后果。表2列举了使用本试剂盒,获得1mg文库的推荐循环数。

2 Input Total RNA或者DNA量与扩增循环数推荐表*

Input Total RNA

Number of cycles

Input Total DNA

Number of cycles

<1 ng

10~12

<1 ng

14~16

 1ng

 9~10

1 ng

13~14

 10 ng

6~7

5 ng

10~11

50ng

4~5

10 ng

9~10

100~1000 ng

4

50 ng

7~8

   

100 ng

6~7

   

200 ng

5~6

【注】:*由于文库产量不仅与投入量和扩增循环数相关,样本质量等都会影响产量。建库过程中请根据实际情况综合考虑,选择最合适的建库条件。

 

DNA磁珠纯化与分选(Bead-based Clean Up and Size Selection

1. 建库过程中有多个步骤需要使用DNA纯化磁珠,我们推荐使用Hieff NGS® DNA Selection Beads (Yeasen Cat#12601)AMPure® XP磁珠(Beckman Cat#A63880)进行DNA纯化和分选。

2. 磁珠使用前应先平衡至室温,否则会导致得率下降、分选效果不佳。

3. 磁珠每次使用前都应充分振荡混匀或使用移液器上下吹打充分混匀。

4. 转移上清时,请勿吸取磁珠,即使微量残留都将影响后续文库质量。

5. 磁珠洗涤使用的80%乙醇应现用现配,否则将影响回收效率。

6. 产物洗脱前应将磁珠置于室温干燥。干燥不充分容易造成无水乙醇残留影响后续反应;过分干燥又会导致磁珠开裂进而降低纯化得率。通常情况下,室温干燥3-5 min足以让磁珠充分干燥。

7. DNA纯化或长度分选产物如需保存,可使用0.1×TE Buffer洗脱,产物于4°C可保存2-20°C可保存1个月。

 

、关于文库质检(Library Quality Analysis

1. 通常情况下,构建好的文库可通过长度分布检测和浓度检测来进行质量评价。

2. 文库浓度检测可使用:基于双链DNA荧光染料的方法,如Qubit®PicoGreen®等;基于qPCR绝对定量的方法。

3. 推荐使用qPCR方法进行文库浓度检测:Qubit®等基于双链DNA荧光染料的浓度测定方法时,无法有效区分单端连接Adapter的产物、两端均未连接Adapter的产物及其他不完整双链结构产物;qPCR绝对定量基于PCR扩增原理,仅定量样品中两端Adapter完整的文库(即可测序的文库),可排除单端或双端都不连接Adapter的不可测序文库的干扰。

4. 文库浓度检测不可使用:基于光谱检测的方法,如NanoDrop®等。

5. 文库长度分布检测,可通过Agilent Bioanalyzer 2100等基于毛细管电泳或微控流原理的设备进行检测。

 

、自备材料Other Material

1. DNA纯化磁珠:Hieff NGS® DNA Selection BeadsYeasen Cat#12601)或AMPure® XP BeadsA63880)或其他等效产品。

2. AdaptersIndex长接头Yeasen Cat#12615~12618或者无Index的短接头试剂盒Yeasen Cat#12611~12614

3. 文库质检:Agilent 2100 Bioanalyzer DNA 1000 Chip/ High Sensitivity Chip或其他等效产品;文库定量试剂。

4. 其他材料:无水乙醇、无菌超纯水、低吸附枪头、PCR管、磁力架、PCR仪等。

 

建库流程图

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit   

 1 DNA建库操作流程

 

使用方法

Step 1 cDNA & gDNA片段化/末端修复/dA尾添加(DNA Fragment/End Preparation/dA-Tailing

该步骤将cDNA & gDNA片段化,同时进行末端修复及dA尾添加。

1. 将表3中各试剂解冻后,颠倒混匀,置于冰上备用。

2. 于冰上配制表3反应体系。

3  DNA片段化/末端修复/dA尾添加 PCR反应体系

名称

体积(μL

名称

体积(μL

2nd Strand cDNA

35

gDNA

35

Smearase Buffer

10

Smearase Buffer

10

Smearase Enzyme Mix

5 

Smearase Enzyme Mix

5 

RNase-free H2O

10

DNA Extra-working Buffer

10

Total

60

Total

60

3. 使用移液器轻轻吹打或低速振荡混匀,并短暂离心将反应液离心至管底。

4. 将上述PCR管置于PCR仪,设置表4所示反应程序,进行DNA片段化,末端修复及dA尾添加反应。

4  DNA片段化/末端修复/dA尾添加 PCR反应程序

温度

时间

热盖105°C

on

4°C

1 min

30 °C

520 min**

72 °C

20 min

4°C

Hold

【注】:*DNA片段化过程为有效控制片段化效果,避免过度酶切,反应程序可预先设置4°C,待模块温度降至4°C时,将PCR管放入PCR仪即可。**对于完整的基因组DNA,酶切时间参考表5

5  片段化时间选择表

插入片段主峰大小

片段化时间

300~500 bp

5 min

250 bp

10 min

200 bp

15 min

150 bp

20~30 min

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

 2  不同片段化条件下的文库峰形参考

 

Step 2 接头连接(Adapter Ligation

该步骤可在末端修复和dA尾添加的产物末端,连接特定的Illumina®或者MGI®接头。

1. 参考注意事项中的表1,根据Input DNA,稀释Adapter至合适浓度。

2. 将表6中各试剂解冻后颠倒混匀,置于冰上备用。

3. Step 1步骤结束后的PCR管中继续配制表6所示反应体系。

6 Adapter Ligation体系

名称

体积(μL

dA-tailed DNA

60

Ligation Enhancer

30*

Novel T4 DNA Ligase

5

DNA Adapter

5**

Total

100

【注】:*Ligation Enhancer使用前请上下颠倒、振荡,充分混匀并瞬时离心后使用。
**本公司Illumina接头原始浓度为15 μM, 请根据注意事项1提示,根据投入量对接头进行稀释,使接头添加体积固定为5 μL

4. 使用移液器轻轻吹打混匀,并短暂离心将反应液收集至管底。

5. PCR管置于PCR仪中,设置表7所示反应程序,进行接头连接反应:

7 Adapter Ligation反应程序

温度

时间

热盖

Off

20°C

15 min

4°C

Hold

 

Step 3连接产物纯化(Post Ligation Clean Up

1. 准备工作:将Hieff NGS® DNA Selection Beads磁珠由冰箱中取出,室温平衡至少30 min。配制80%乙醇。

2. 涡旋振荡或充分颠倒磁珠以保证充分混匀。

3. 吸取45 μL Hieff NGS® DNA Selection Beads0.45×Beads:DNA=0.45:1Adapter Ligation产物中,涡旋或吹打混匀,室温孵育5 min

4. PCR管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约5 min),小心移除上清。

5. 保持PCR管始终置于磁力架中,加入200 μL新鲜配制的80%乙醇漂洗磁珠,室温孵育30 sec后,小心移除上清。

6. 重复步骤5,总计漂洗两次。

7. 保持PCR管始终置于磁力架中,10 μL移液器吸干净残留液体,开盖空气干燥磁珠至刚刚出现龟裂(不超过5 min)。

8. PCR管从磁力架中取出,加入21 μL ddH2O,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温静置5 min。将PCR管短暂离心并置于磁力架中静置,待溶液澄清后(约3 min),小心移取20 μL上清至新PCR管中,进行PCR扩增。

 

Step 4 文库扩增(Library Amplification

该步骤将对纯化后的接头连接产物进行PCR扩增富集。

1. 将表8中的试剂解冻后颠倒混匀,置于冰上备用

2. 于无菌PCR管中配制表8所示反应体系。
8 短接头连接产物PCR反应体系Illumina扩增体系)

组分名称

体积(μL

2× Ultima HF Amplification Mix

25

Universal Primer/ i5 Primer*

2.5

Index Primer/ i7 Primer*

2.5

Adapter Ligated DNA

20

Total

50

【注】:*使用的是无Index的接头,俗称短接头(小Y接头),请使用短接头试剂Cat#12412~Cat#12413中配备的Index primer进行扩增

3. 使用移液器轻轻吹打或振荡混匀,并短暂离心将反应液收集至管底。

4. PCR管置于PCR仪中,设置表9示反应程序,进行PCR扩增

9  PCR扩增反应程序

温度

时间

循环数

98°C

1 min

1

98°C

10 sec

参照注意事项三,文库扩增

60°C

30 sec

72°C

30 sec

72°C

1 min

1

4°C

Hold

 

Step 5 扩增产物磁珠纯化Post Amplification Clean Up

1. 准备工作:将Hieff NGS® DNA Selection Beads磁珠由冰箱中取出,室温平衡至少30 min。配制80%乙醇。

2. 涡旋振荡或充分颠倒磁珠以保证充分混匀。

3. 吸取45 μL Hieff NGS® DNA Selection Beads0.9×Beads:DNA=0.9:1)至Adapter Ligation产物中,涡旋或吹打混匀,室温孵育5 min

4. PCR管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约5 min),小心移除上清。

5. 保持PCR管始终置于磁力架中,加入200 μL新鲜配制的80%乙醇漂洗磁珠,室温孵育30 sec后,小心移除上清。

6. 重复步骤5,总计漂洗两次。

7. 保持PCR管始终置于磁力架中,10 μL移液器吸干净残留液体,开盖空气干燥磁珠至刚刚出现龟裂(不超过5 min)。

8. PCR管从磁力架中取出,加入32 μL ddH2O,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温静置5 min。将PCR管短暂离心并置于磁力架中静置,待溶液澄清后(约3 min),小心移取30 μL上清至新PCR管中,进行文库定量、质检

 

Step 6 文库质量控制

通常情况下,构建好的文库可通过浓度检测和长度分布检测来进行质量评价,具体请参见注意事项

 

HB220810

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

暂无内容

OnePot cDNA和gDNA文库制备试剂盒 cDNA &amp; gDNA Library Prep Kit

暂无内容

cDNA第一链合成试剂盒(含有gDNA去除)|1st Strand cDNA Synthesis Kit(gDNA digester plus)

cDNA第一链合成试剂盒(含有gDNA去除)|1st Strand cDNA Synthesis Kit(gDNA digester plus)

产品说明书

FAQ

COA

已发表文献

产品描述

 

Hifair® Ⅱ 1st Strand cDNA Synthesis Kit (gDNA digester plus)是含有gDNA去除步骤的cDNA第一链合成试剂盒。该试剂盒基于Hifair®  Reverse Transcriptase而开发。该酶热稳定性大幅度提高,可耐受高达50℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair® Ⅱ Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA。

该试剂盒包含gDNA digester,可去除RNA模板中残留的基因组DNA污染,保证后续结果更加可靠。该试剂盒提供两种cDNA合成引物:Random Primers N6 和oligo (dT)18,用户可根据需要,选择Random Primers N6,Oligo (dT)18Gene Specific Primers作为逆转录引物,合成的单链cDNA产物可直接用来进行后续PCR或者qPCR反应。

 

产品组分

 

组分编号

组分名称

产品编号/规格

11121ES60 (100 T)

11121-A

RNase-free H2O

2×1 mL

11121-B

5×gDNA digester Buffer

200 μL

11121-C

gDNA digester

100 μL

11121-D

5×Hifair® Ⅱ Buffer plus

400 μL

11121-E

Hifair® Ⅱ Enzyme Mix

200 μL

11121-F

Oligo (dT)18 (50 μM)

100 μL

11121-G

Random Primers N6 (50 μM)

100 μL

】:

1)5×Hifair® Ⅱ Buffer plus包含gDNA digester抑制剂和dNTP

2)Hifair® Ⅱ Enzyme Mix包含RNase inhibitor。

 

运输和保存方法

 

干冰运输。-20℃保存,有效期18个月。

 

注意事项

 

1)反应液的配制应在冰上操作完成,操作过程应避免RNase污染。

2)建议RNA是溶于水而不是TE中,因为TE会干扰gDNA去除以及逆转录反应。

3)可以不经过基因组去除步骤,直接进行逆转录,这样所得到的结果与使用Hifair® Ⅱ 1st Strand cDNA Synthesis Kit(Cat#11119)效果一致。但是请勿将gDNA digester与11119ES中的5×Hifair® Ⅱ Buffer配套使用,因其不含终止gDNA去除反应的成分,会影响反转录和后续的qPCR实验。

4)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

5)本产品仅作科研用途!

 

关于逆转录引物的选择

 

1) 如果模板为真核生物来源,建议选择Oligo (dT)18 ,与真核生物mRNA的3’ Poly A尾配对,可获得最高产量的全长cDNA。
2)原核生物RNA的反转录请选用Random Primers N6或者基因特异性引物。
3)Random Primers N6适用性较广,适用于mRNA、rRNA、tRNA、small RNA和LncRNA等模板。

4)使用Random primers N6,进行2 kb以下的cDNA合成时,Random primers N6的使用量为 1-2 μL2 kb 以上的cDNA合成时,Random primers N6 的使用量为0.4-1 μL。

 

第一链cDNA合成操作步骤

 

一、若实验需要去除残留基因组DNA

1. 在RNase-free离心管中配制如下混合液,用移液器轻轻吹打混匀。42℃孵育2 min。

组分

使用量

RNase-free H2O

To 10 μL

5× gDNA digester Buffer

2 μL

gDNA digester

1 μL

Total RNA

1 ng -5 μg*

or mRNA

1 ng-500 ng*

【注】:* 若后续实验为qPCR,Total RNA投入量为1 ng -1 μgmRNA的投入量为1 ng-100 ng。若基因的表达丰度很低,最多可投入5 μg Total RNA或500 ng mRNA。

2. 逆转录反应体系配制(20 μL体系)

组分

使用量

RNase-free H2O

To 20 μL

上一步的反应液

10 μL

5× Hifair® Ⅱ Buffer plus

2 μL*

Hifair® Ⅱ Enzyme Mix

2 μL

Random Primers N6 (50 μM)  

1 μL

or Oligo (dT)18 (50 μM)

or Gene Specific Primers (2 μM)

or 1 μL

or 1 μL

】:

1)逆转录引物:荧光定量实验推荐Random Primers N6与Oligo (dT)18 1:1混合使用。

2)5×Hifair® Ⅱ Buffer plus加入量*):因gDNA digester buffer的影响,本体系中只需要加2 μL。

3)建议先加入5×Hifair® Ⅱ Buffer plus混匀后再添加反转录引物,以保证完全抑制gDNA digester的活性。

 

3. 逆转录程序设置

温度

时间

25

5 min

42

30 min

85

5 min

】:逆转录温度:推荐使用42。对于高GC含量模板或者复杂模板,可将逆转录温度提高到50

4. 逆转录产物可以-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

二、若实验无需去除基因组DNA

1. 逆转录反应体系配制(20 μL体系)

组分

使用量

RNase-free H2O

To 20 μL

Total RNA

1 ng -5 μg

or mRNA

1 ng-500 ng

5× Hifair® Ⅱ Buffer plus

4 μL*

Oligo (dT)18 (50 μM) or Random Primers N6 (50 μM)

1 μL

Hifair® Ⅱ Enzyme Mix

2 μL

】:

1)逆转录引物:荧光定量实验推荐Random Primers N6与Oligo (dT)18 1:1混合使用。

2)5×Hifair® Ⅱ Buffer plus加入量*):因无gDNA digester buffer的影响,本体系中需要添加4 μL。

【可选步骤】:针对复杂模板,建议RNA、H2O、反转录引物在65保温5 min后,冰上迅速冷却。然后再加入反转录酶和Buffer。

2. 逆转录程序设置参照上述基因组去除后的逆转录程序。

HB220607

Q:如果做lncRNA 的 qPCR 的话,逆转录这步 oligodT 和random 引物是不是都得加?

A:是的,有的 lncRNA 含有A 尾,有的不含,所以这两种引物都要加。

Q:是否能用来做 miRNA 的逆转录。

A:可以,用茎环法。

Q:11121/11139,miRNA 的投入量推荐多少?

A:不同 miRNA 表达丰度不同,建议尽量投入 0.5-1 μg miRNA。

Q:可以用来做 lncRNA 和 circRNA 吗?

A:可以做 circRNA 和无尾的lncRNA。

Q:客户后续构建质粒的逆转录试剂盒和跑 qpcr 逆转录的有啥区别吗,用的逆转录试剂盒要不一样吗,不都是逆转录出来 cdna 吗?

A:mix 和 kit 逆转录长度不同的,这个推荐用 11121 和 11139。

[1] Yu Y, Zhang B, Ji P, et al. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8+/- mouse model of ASD-like behavior. Nat Commun. 2022;13(1):1151. Published 2022 Mar 3. doi:10.1038/s41467-022-28746-2(IF:14.919)
[2] Wu W, Zhang J, Cao X, Cai Z, Zhao F. Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing. Nat Commun. 2022;13(1):3242. Published 2022 Jun 10. doi:10.1038/s41467-022-30963-8(IF:14.919)
[3] Pei P, Qin H, Chen J, et al. Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein [published correction appears in Brief Bioinform. 2021 Jul 17;:]. Brief Bioinform. 2021;22(6):bbab243. doi:10.1093/bib/bbab243(IF:11.622)
[4] Li S, Liu W, Chen Y, et al. Transcriptome analysis of cepharanthine against a SARS-CoV-2-related coronavirus. Brief Bioinform. 2021;22(2):1378-1386. doi:10.1093/bib/bbaa387(IF:11.622)
[5] Xiang H, Tao Y, Jiang Z, et al. Vps33B controls Treg cell suppressive function through inhibiting lysosomal nutrient sensing complex-mediated mTORC1 activation. Cell Rep. 2022;39(11):110943. doi:10.1016/j.celrep.2022.110943(IF:9.423)
[6] Zhang Q, Tong J, Zhou W, et al. Antibacterial and antioxidant chitosan nanoparticles improve the preservation effect for donor kidneys in vitro. Carbohydr Polym. 2022;287:119326. doi:10.1016/j.carbpol.2022.119326(IF:9.381)
[7] Xia S, Ji L, Tao L, et al. TAK1 Is a Novel Target in Hepatocellular Carcinoma and Contributes to Sorafenib Resistance. Cell Mol Gastroenterol Hepatol. 2021;12(3):1121-1143. doi:10.1016/j.jcmgh.2021.04.016(IF:9.225)
[8] Yu H, Du X, Zhao Q, Yin C, Song W. Weighted gene Co-expression network analysis (WGCNA) reveals a set of hub genes related to chlorophyll metabolism process in chlorella (Chlorella vulgaris) response androstenedione. Environ Pollut. 2022;306:119360. doi:10.1016/j.envpol.2022.119360(IF:8.071)
[9] Chen L, Lam JCW, Tang L, et al. Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. Environ Sci Technol. 2020;54(12):7494-7503. doi:10.1021/acs.est.0c02345(IF:7.864)
[10] Wang Z, Xu J, Feng J, et al. Structural and Functional Analyses of Type I IFNa Shed Light Into Its Interaction With Multiple Receptors in Fish. Front Immunol. 2022;13:862764. Published 2022 Mar 22. doi:10.3389/fimmu.2022.862764(IF:7.561)
[11] Zhang M, Zhao X, Feng X, et al. Histone chaperone HIRA complex regulates retrotransposons in embryonic stem cells. Stem Cell Res Ther. 2022;13(1):137. Published 2022 Apr 1. doi:10.1186/s13287-022-02814-2(IF:6.832)
[12] Li Y, Xu W, Zhang F, et al. The Gut Microbiota-Produced Indole-3-Propionic Acid Confers the Antihyperlipidemic Effect of Mulberry-Derived 1-Deoxynojirimycin. mSystems. 2020;5(5):e00313-20. Published 2020 Oct 6. doi:10.1128/mSystems.00313-20(IF:6.633)
[13] Yang ZK, Li DW, Peng L, Liu CF, Wang ZY. Transcriptomic responses of the zearalenone (ZEN)-detoxifying yeast Apiotrichum mycotoxinivorans to ZEN exposure. Ecotoxicol Environ Saf. 2022;241:113756. doi:10.1016/j.ecoenv.2022.113756(IF:6.291)
[14] He L, Fan X, Li Y, et al. Overexpression of zinc finger protein 384 (ZNF 384), a poor prognostic predictor, promotes cell growth by upregulating the expression of Cyclin D1 in Hepatocellular carcinoma. Cell Death Dis. 2019;10(6):444. Published 2019 Jun 5. doi:10.1038/s41419-019-1681-3(IF:5.959)
[15] Li S, Ding H, Deng Y, Zhang J. Knockdown of Quinolinate Phosphoribosyltransferase Results in Decreased Salicylic Acid-Mediated Pathogen Resistance in Arabidopsis thaliana. Int J Mol Sci. 2021;22(16):8484. Published 2021 Aug 6. doi:10.3390/ijms22168484(IF:5.924)
[16] He W, Xu W, Xu L, et al. Length-dependent accumulation of double-stranded RNAs in plastids affects RNA interference efficiency in the Colorado potato beetle. J Exp Bot. 2020;71(9):2670-2677. doi:10.1093/jxb/eraa001(IF:5.908)
[17] Bao L, Yuan L, Li P, et al. A FUS-LATS1/2 Axis Inhibits Hepatocellular Carcinoma Progression via Activating Hippo Pathway. Cell Physiol Biochem. 2018;50(2):437-451. doi:10.1159/000494155(IF:5.500)
[18] Kang H, Guo Q, Dong Y, et al. Inhibition of MAT2A suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss. FASEB J. 2022;36(2):e22167. doi:10.1096/fj.202101205RR(IF:5.192)
[19] Guo HH, Jing XY, Chen H, Xu HX, Zhu BM. STAT3 but Not STAT5 Contributes to the Protective Effect of Electroacupuncture Against Myocardial Ischemia/Reperfusion Injury in Mice. Front Med (Lausanne). 2021;8:649654. Published 2021 Jul 9. doi:10.3389/fmed.2021.649654(IF:5.093)
[20] Wang D, Li Y, Liu Y, et al. NPM1 promotes cell proliferation by targeting PRDX6 in colorectal cancer. Int J Biochem Cell Biol. 2022;147:106233. doi:10.1016/j.biocel.2022.106233(IF:5.085)
[21] Chen Z, Xie F, Xia T, et al. Early Application of Quaternized Chitin Derivatives Inhibits Hypertrophic Scar Formation. Macromol Biosci. 2022;22(3):e2100418. doi:10.1002/mabi.202100418(IF:4.979)
[22] Chen Q, Shen P, Bock R, Li S, Zhang J. Comprehensive analysis of plastid gene expression during fruit development and ripening of kiwifruit. Plant Cell Rep. 2022;41(4):1103-1114. doi:10.1007/s00299-022-02840-7(IF:4.570)
[23] Ge S, Zhang Q, Chen Y, et al. Ribavirin inhibits colorectal cancer growth by downregulating PRMT5 expression and H3R8me2s and H4R3me2s accumulation. Toxicol Appl Pharmacol. 2021;415:115450. doi:10.1016/j.taap.2021.115450(IF:4.219)
[24] Shan N, Xiang Z, Sun J, et al. Genome-wide analysis of valine-glutamine motif-containing proteins related to abiotic stress response in cucumber (Cucumis sativus L.). BMC Plant Biol. 2021;21(1):492. Published 2021 Oct 25. doi:10.1186/s12870-021-03242-9(IF:4.215)
[25] Cui C, Lu Q, Zhao Z, et al. The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits. Planta. 2022;255(6):114. Published 2022 May 4. doi:10.1007/s00425-022-03888-1(IF:4.116)
[26] Chen W, Dong Y, Saqib HSA, et al. Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. Insect Biochem Mol Biol. 2020;119:103316. doi:10.1016/j.ibmb.2020.103316(IF:3.827)
[27] Shah N, Li Q, Xu Q, et al. CRb and PbBa8.1 Synergically Increases Resistant Genes Expression upon Infection of Plasmodiophora brassicae in Brassica napus. Genes (Basel). 2020;11(2):202. Published 2020 Feb 17. doi:10.3390/genes11020202(IF:3.759)
[28] Cheng Y, Zheng L, Yang C, Zhang W, Wang H. Propofol inhibits proliferation and migration of glioma cells by up-regulating lncRNA GAS5. Toxicol In Vitro. 2022;80:105321. doi:10.1016/j.tiv.2022.105321(IF:3.500)
[29] Sun Z, Qin Y, Liu D, et al. The evolution and functional characterization of CXC chemokines and receptors in lamprey. Dev Comp Immunol. 2021;116:103905. doi:10.1016/j.dci.2020.103905(IF:3.192)
[30] Li H, Shen X, Tong Y, et al. Aggravation of hepatic ischemia‑reperfusion injury with increased inflammatory cell infiltration is associated with the TGF‑β/Smad3 signaling pathway. Mol Med Rep. 2021;24(2):580. doi:10.3892/mmr.2021.12219(IF:2.952)
[31] Chen M, Li S, Hao M, et al. T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation. FEBS Open Bio. 2020;10(10):2122-2136. doi:10.1002/2211-5463.12965(IF:2.231)
[32] Zhang Y, Xu L, Li S, Zhang J. Bacteria-Mediated RNA Interference for Management of Plagiodera versicolora (Coleoptera: Chrysomelidae). Insects. 2019;10(12):415. Published 2019 Nov 21. doi:10.3390/insects10120415(IF:2.139)
[33] Li W, Cheng B. Knockdown of LncRNA NEAT1 inhibits myofibroblast activity in oral submucous fibrosis through miR-760/TPM1 axis. J Dent Sci. 2022;17(2):707-717. doi:10.1016/j.jds.2021.11.003(IF:2.080)
[34] Fan HH, Wang LQ, Liu WL, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J (Engl). 2020;133(9):1051-1056. doi:10.1097/CM9.0000000000000797(IF:1.585)

产品描述

 

Hifair® Ⅱ 1st Strand cDNA Synthesis Kit (gDNA digester plus)是含有gDNA去除步骤的cDNA第一链合成试剂盒。该试剂盒基于Hifair®  Reverse Transcriptase而开发。该酶热稳定性大幅度提高,可耐受高达50℃的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。Hifair® Ⅱ Reverse Transcriptase合成全长cDNA的能力也有了提升,可扩增长达10 kb的cDNA。

该试剂盒包含gDNA digester,可去除RNA模板中残留的基因组DNA污染,保证后续结果更加可靠。该试剂盒提供两种cDNA合成引物:Random Primers N6 和oligo (dT)18,用户可根据需要,选择Random Primers N6,Oligo (dT)18Gene Specific Primers作为逆转录引物,合成的单链cDNA产物可直接用来进行后续PCR或者qPCR反应。

 

产品组分

 

组分编号

组分名称

产品编号/规格

11121ES60 (100 T)

11121-A

RNase-free H2O

2×1 mL

11121-B

5×gDNA digester Buffer

200 μL

11121-C

gDNA digester

100 μL

11121-D

5×Hifair® Ⅱ Buffer plus

400 μL

11121-E

Hifair® Ⅱ Enzyme Mix

200 μL

11121-F

Oligo (dT)18 (50 μM)

100 μL

11121-G

Random Primers N6 (50 μM)

100 μL

】:

1)5×Hifair® Ⅱ Buffer plus包含gDNA digester抑制剂和dNTP

2)Hifair® Ⅱ Enzyme Mix包含RNase inhibitor。

 

运输和保存方法

 

干冰运输。-20℃保存,有效期18个月。

 

注意事项

 

1)反应液的配制应在冰上操作完成,操作过程应避免RNase污染。

2)建议RNA是溶于水而不是TE中,因为TE会干扰gDNA去除以及逆转录反应。

3)可以不经过基因组去除步骤,直接进行逆转录,这样所得到的结果与使用Hifair® Ⅱ 1st Strand cDNA Synthesis Kit(Cat#11119)效果一致。但是请勿将gDNA digester与11119ES中的5×Hifair® Ⅱ Buffer配套使用,因其不含终止gDNA去除反应的成分,会影响反转录和后续的qPCR实验。

4)为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

5)本产品仅作科研用途!

 

关于逆转录引物的选择

 

1) 如果模板为真核生物来源,建议选择Oligo (dT)18 ,与真核生物mRNA的3’ Poly A尾配对,可获得最高产量的全长cDNA。
2)原核生物RNA的反转录请选用Random Primers N6或者基因特异性引物。
3)Random Primers N6适用性较广,适用于mRNA、rRNA、tRNA、small RNA和LncRNA等模板。

4)使用Random primers N6,进行2 kb以下的cDNA合成时,Random primers N6的使用量为 1-2 μL2 kb 以上的cDNA合成时,Random primers N6 的使用量为0.4-1 μL。

 

第一链cDNA合成操作步骤

 

一、若实验需要去除残留基因组DNA

1. 在RNase-free离心管中配制如下混合液,用移液器轻轻吹打混匀。42℃孵育2 min。

组分

使用量

RNase-free H2O

To 10 μL

5× gDNA digester Buffer

2 μL

gDNA digester

1 μL

Total RNA

1 ng -5 μg*

or mRNA

1 ng-500 ng*

【注】:* 若后续实验为qPCR,Total RNA投入量为1 ng -1 μgmRNA的投入量为1 ng-100 ng。若基因的表达丰度很低,最多可投入5 μg Total RNA或500 ng mRNA。

2. 逆转录反应体系配制(20 μL体系)

组分

使用量

RNase-free H2O

To 20 μL

上一步的反应液

10 μL

5× Hifair® Ⅱ Buffer plus

2 μL*

Hifair® Ⅱ Enzyme Mix

2 μL

Random Primers N6 (50 μM)  

1 μL

or Oligo (dT)18 (50 μM)

or Gene Specific Primers (2 μM)

or 1 μL

or 1 μL

】:

1)逆转录引物:荧光定量实验推荐Random Primers N6与Oligo (dT)18 1:1混合使用。

2)5×Hifair® Ⅱ Buffer plus加入量*):因gDNA digester buffer的影响,本体系中只需要加2 μL。

3)建议先加入5×Hifair® Ⅱ Buffer plus混匀后再添加反转录引物,以保证完全抑制gDNA digester的活性。

 

3. 逆转录程序设置

温度

时间

25

5 min

42

30 min

85

5 min

】:逆转录温度:推荐使用42。对于高GC含量模板或者复杂模板,可将逆转录温度提高到50

4. 逆转录产物可以-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

二、若实验无需去除基因组DNA

1. 逆转录反应体系配制(20 μL体系)

组分

使用量

RNase-free H2O

To 20 μL

Total RNA

1 ng -5 μg

or mRNA

1 ng-500 ng

5× Hifair® Ⅱ Buffer plus

4 μL*

Oligo (dT)18 (50 μM) or Random Primers N6 (50 μM)

1 μL

Hifair® Ⅱ Enzyme Mix

2 μL

】:

1)逆转录引物:荧光定量实验推荐Random Primers N6与Oligo (dT)18 1:1混合使用。

2)5×Hifair® Ⅱ Buffer plus加入量*):因无gDNA digester buffer的影响,本体系中需要添加4 μL。

【可选步骤】:针对复杂模板,建议RNA、H2O、反转录引物在65保温5 min后,冰上迅速冷却。然后再加入反转录酶和Buffer。

2. 逆转录程序设置参照上述基因组去除后的逆转录程序。

HB220607

Q:如果做lncRNA 的 qPCR 的话,逆转录这步 oligodT 和random 引物是不是都得加?

A:是的,有的 lncRNA 含有A 尾,有的不含,所以这两种引物都要加。

Q:是否能用来做 miRNA 的逆转录。

A:可以,用茎环法。

Q:11121/11139,miRNA 的投入量推荐多少?

A:不同 miRNA 表达丰度不同,建议尽量投入 0.5-1 μg miRNA。

Q:可以用来做 lncRNA 和 circRNA 吗?

A:可以做 circRNA 和无尾的lncRNA。

Q:客户后续构建质粒的逆转录试剂盒和跑 qpcr 逆转录的有啥区别吗,用的逆转录试剂盒要不一样吗,不都是逆转录出来 cdna 吗?

A:mix 和 kit 逆转录长度不同的,这个推荐用 11121 和 11139。

[1] Yu Y, Zhang B, Ji P, et al. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8+/- mouse model of ASD-like behavior. Nat Commun. 2022;13(1):1151. Published 2022 Mar 3. doi:10.1038/s41467-022-28746-2(IF:14.919)
[2] Wu W, Zhang J, Cao X, Cai Z, Zhao F. Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing. Nat Commun. 2022;13(1):3242. Published 2022 Jun 10. doi:10.1038/s41467-022-30963-8(IF:14.919)
[3] Pei P, Qin H, Chen J, et al. Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein [published correction appears in Brief Bioinform. 2021 Jul 17;:]. Brief Bioinform. 2021;22(6):bbab243. doi:10.1093/bib/bbab243(IF:11.622)
[4] Li S, Liu W, Chen Y, et al. Transcriptome analysis of cepharanthine against a SARS-CoV-2-related coronavirus. Brief Bioinform. 2021;22(2):1378-1386. doi:10.1093/bib/bbaa387(IF:11.622)
[5] Xiang H, Tao Y, Jiang Z, et al. Vps33B controls Treg cell suppressive function through inhibiting lysosomal nutrient sensing complex-mediated mTORC1 activation. Cell Rep. 2022;39(11):110943. doi:10.1016/j.celrep.2022.110943(IF:9.423)
[6] Zhang Q, Tong J, Zhou W, et al. Antibacterial and antioxidant chitosan nanoparticles improve the preservation effect for donor kidneys in vitro. Carbohydr Polym. 2022;287:119326. doi:10.1016/j.carbpol.2022.119326(IF:9.381)
[7] Xia S, Ji L, Tao L, et al. TAK1 Is a Novel Target in Hepatocellular Carcinoma and Contributes to Sorafenib Resistance. Cell Mol Gastroenterol Hepatol. 2021;12(3):1121-1143. doi:10.1016/j.jcmgh.2021.04.016(IF:9.225)
[8] Yu H, Du X, Zhao Q, Yin C, Song W. Weighted gene Co-expression network analysis (WGCNA) reveals a set of hub genes related to chlorophyll metabolism process in chlorella (Chlorella vulgaris) response androstenedione. Environ Pollut. 2022;306:119360. doi:10.1016/j.envpol.2022.119360(IF:8.071)
[9] Chen L, Lam JCW, Tang L, et al. Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. Environ Sci Technol. 2020;54(12):7494-7503. doi:10.1021/acs.est.0c02345(IF:7.864)
[10] Wang Z, Xu J, Feng J, et al. Structural and Functional Analyses of Type I IFNa Shed Light Into Its Interaction With Multiple Receptors in Fish. Front Immunol. 2022;13:862764. Published 2022 Mar 22. doi:10.3389/fimmu.2022.862764(IF:7.561)
[11] Zhang M, Zhao X, Feng X, et al. Histone chaperone HIRA complex regulates retrotransposons in embryonic stem cells. Stem Cell Res Ther. 2022;13(1):137. Published 2022 Apr 1. doi:10.1186/s13287-022-02814-2(IF:6.832)
[12] Li Y, Xu W, Zhang F, et al. The Gut Microbiota-Produced Indole-3-Propionic Acid Confers the Antihyperlipidemic Effect of Mulberry-Derived 1-Deoxynojirimycin. mSystems. 2020;5(5):e00313-20. Published 2020 Oct 6. doi:10.1128/mSystems.00313-20(IF:6.633)
[13] Yang ZK, Li DW, Peng L, Liu CF, Wang ZY. Transcriptomic responses of the zearalenone (ZEN)-detoxifying yeast Apiotrichum mycotoxinivorans to ZEN exposure. Ecotoxicol Environ Saf. 2022;241:113756. doi:10.1016/j.ecoenv.2022.113756(IF:6.291)
[14] He L, Fan X, Li Y, et al. Overexpression of zinc finger protein 384 (ZNF 384), a poor prognostic predictor, promotes cell growth by upregulating the expression of Cyclin D1 in Hepatocellular carcinoma. Cell Death Dis. 2019;10(6):444. Published 2019 Jun 5. doi:10.1038/s41419-019-1681-3(IF:5.959)
[15] Li S, Ding H, Deng Y, Zhang J. Knockdown of Quinolinate Phosphoribosyltransferase Results in Decreased Salicylic Acid-Mediated Pathogen Resistance in Arabidopsis thaliana. Int J Mol Sci. 2021;22(16):8484. Published 2021 Aug 6. doi:10.3390/ijms22168484(IF:5.924)
[16] He W, Xu W, Xu L, et al. Length-dependent accumulation of double-stranded RNAs in plastids affects RNA interference efficiency in the Colorado potato beetle. J Exp Bot. 2020;71(9):2670-2677. doi:10.1093/jxb/eraa001(IF:5.908)
[17] Bao L, Yuan L, Li P, et al. A FUS-LATS1/2 Axis Inhibits Hepatocellular Carcinoma Progression via Activating Hippo Pathway. Cell Physiol Biochem. 2018;50(2):437-451. doi:10.1159/000494155(IF:5.500)
[18] Kang H, Guo Q, Dong Y, et al. Inhibition of MAT2A suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss. FASEB J. 2022;36(2):e22167. doi:10.1096/fj.202101205RR(IF:5.192)
[19] Guo HH, Jing XY, Chen H, Xu HX, Zhu BM. STAT3 but Not STAT5 Contributes to the Protective Effect of Electroacupuncture Against Myocardial Ischemia/Reperfusion Injury in Mice. Front Med (Lausanne). 2021;8:649654. Published 2021 Jul 9. doi:10.3389/fmed.2021.649654(IF:5.093)
[20] Wang D, Li Y, Liu Y, et al. NPM1 promotes cell proliferation by targeting PRDX6 in colorectal cancer. Int J Biochem Cell Biol. 2022;147:106233. doi:10.1016/j.biocel.2022.106233(IF:5.085)
[21] Chen Z, Xie F, Xia T, et al. Early Application of Quaternized Chitin Derivatives Inhibits Hypertrophic Scar Formation. Macromol Biosci. 2022;22(3):e2100418. doi:10.1002/mabi.202100418(IF:4.979)
[22] Chen Q, Shen P, Bock R, Li S, Zhang J. Comprehensive analysis of plastid gene expression during fruit development and ripening of kiwifruit. Plant Cell Rep. 2022;41(4):1103-1114. doi:10.1007/s00299-022-02840-7(IF:4.570)
[23] Ge S, Zhang Q, Chen Y, et al. Ribavirin inhibits colorectal cancer growth by downregulating PRMT5 expression and H3R8me2s and H4R3me2s accumulation. Toxicol Appl Pharmacol. 2021;415:115450. doi:10.1016/j.taap.2021.115450(IF:4.219)
[24] Shan N, Xiang Z, Sun J, et al. Genome-wide analysis of valine-glutamine motif-containing proteins related to abiotic stress response in cucumber (Cucumis sativus L.). BMC Plant Biol. 2021;21(1):492. Published 2021 Oct 25. doi:10.1186/s12870-021-03242-9(IF:4.215)
[25] Cui C, Lu Q, Zhao Z, et al. The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits. Planta. 2022;255(6):114. Published 2022 May 4. doi:10.1007/s00425-022-03888-1(IF:4.116)
[26] Chen W, Dong Y, Saqib HSA, et al. Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. Insect Biochem Mol Biol. 2020;119:103316. doi:10.1016/j.ibmb.2020.103316(IF:3.827)
[27] Shah N, Li Q, Xu Q, et al. CRb and PbBa8.1 Synergically Increases Resistant Genes Expression upon Infection of Plasmodiophora brassicae in Brassica napus. Genes (Basel). 2020;11(2):202. Published 2020 Feb 17. doi:10.3390/genes11020202(IF:3.759)
[28] Cheng Y, Zheng L, Yang C, Zhang W, Wang H. Propofol inhibits proliferation and migration of glioma cells by up-regulating lncRNA GAS5. Toxicol In Vitro. 2022;80:105321. doi:10.1016/j.tiv.2022.105321(IF:3.500)
[29] Sun Z, Qin Y, Liu D, et al. The evolution and functional characterization of CXC chemokines and receptors in lamprey. Dev Comp Immunol. 2021;116:103905. doi:10.1016/j.dci.2020.103905(IF:3.192)
[30] Li H, Shen X, Tong Y, et al. Aggravation of hepatic ischemia‑reperfusion injury with increased inflammatory cell infiltration is associated with the TGF‑β/Smad3 signaling pathway. Mol Med Rep. 2021;24(2):580. doi:10.3892/mmr.2021.12219(IF:2.952)
[31] Chen M, Li S, Hao M, et al. T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation. FEBS Open Bio. 2020;10(10):2122-2136. doi:10.1002/2211-5463.12965(IF:2.231)
[32] Zhang Y, Xu L, Li S, Zhang J. Bacteria-Mediated RNA Interference for Management of Plagiodera versicolora (Coleoptera: Chrysomelidae). Insects. 2019;10(12):415. Published 2019 Nov 21. doi:10.3390/insects10120415(IF:2.139)
[33] Li W, Cheng B. Knockdown of LncRNA NEAT1 inhibits myofibroblast activity in oral submucous fibrosis through miR-760/TPM1 axis. J Dent Sci. 2022;17(2):707-717. doi:10.1016/j.jds.2021.11.003(IF:2.080)
[34] Fan HH, Wang LQ, Liu WL, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J (Engl). 2020;133(9):1051-1056. doi:10.1097/CM9.0000000000000797(IF:1.585)

qPCR第一链cDNA合成即用型预混液(含有gDNA去除)|1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)

qPCR第一链cDNA合成即用型预混液(含有gDNA去除)|1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)

产品说明书

FAQ

COA

已发表文献

产品描述

 

Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)基于Hifair®  Reverse Transcriptase而开发的即用型预混液。该酶的热稳定性大幅度提高,可耐受高达50的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。

该预混液包含gDNA digester和2×Hifair® Ⅱ SuperMix plus。gDNA digester可去除RNA模板中残留的基因组DNA污染,保证后续结果更加可靠。2×Hifair® Ⅱ SuperMix plus含有逆转录反应所需的所有组分(Buffer,dNTP,Hifair® Ⅱ Reverse TranscriptaseRNase inhibitor,Random primers/ Oligo (dT)18 primer mix),只需加入RNA模板和 RNase-free ddH2O即可进行逆转录反应,并同时终止gDNA digester的作用,保证cDNA的完整性。

该产品适用于两步法RT-qPCR检测,针对qPCR进行Random primers/ Oligo (dT)18 primer的比例优化,使cDNA合成可从RNA转录本的各个区域起始,并具有相同的逆转录效率,最大程度保证了qPCR结果的真实性和可重复性。逆转录产物兼容SYBR® Green和探针法qPCR,可以根据实验目的,选择UNICON® qPCR SYBR® Green Master Mix,Hieff® qPCR SYBR® Green Master Mix或Hieff® qPCR TaqMan Probe Master Mix等试剂配合使用,进行高性能的基因表达分析。

 

产品组分

 

编号

组分

产品编号/规格

11123ES10 (10 T)

11123ES60 (100 T)

11123-A

RNase-free ddH2O

1 mL

2×1 mL

11123-B

5×gDNA digester Buffer

20 μL

200 μL

11123-C

gDNA digester

10 μL

100 μL

11123-D

2×Hifair® Ⅱ SuperMix plus

100 μL

1 mL

】:2×Hifair® Ⅱ SuperMix plus含有gDNA digester抑制剂。

 

运输保存方法

干冰运输。-20保存。有效期18个月。

 

注意事项

1)gDNA digester和2×Hifair® Ⅱ SuperMix plus含有高浓度的甘油,使用前请短暂离心,吹打混匀。

2)建议RNA是溶于水而不是TE Buffer中,因为TE Buffe会干扰gDNA去除以及逆转录反应。

3)可以不经过基因组去除步骤,直接进行逆转录,这样所得到的结果与使用Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix  (Cat No. 11120ES) 效果一致。但是请勿将gDNA digester与11120ES中的2×Hifair® Ⅱ SuperMix配套使用,因其不含终止gDNA digester反应的成分,会影响反转录和后续的qPCR实验。

4)反应液的配制应在冰上操作完成,操作过程应避免RNase污染

5) 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

6) 本产品仅作科研用途!

 

第一链cDNA合成操作步骤

 

1. 残留基因组DNA去除

RNase free离心管中配制如下混合液,用移液器轻轻吹打混匀。42 孵育2 min。

组分

使用量

RNase free ddH2O

To 10 μL

5×gDNA digester Buffer

2 μL

gDNA digester

1 μL

Total RNA

1 ng -5 μg*

or mRNA

1 ng-500 ng*

【注】* 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA,否则RNA投入量过高,可能会超过后续定量PCR的线性范围。

2. 逆转录反应体系配制(20 μL体系)

在第1步的反应管中直接加入2×HifairTM Ⅱ SuperMix plus,用移液器轻轻吹打混匀。

组分

使用量

第1步的反应液

10 μL

2×Hifair® Ⅱ SuperMix plus

10 μL

3. 逆转录程序设置

标准程序(适用于微量和常规量的模板量)

温度

时间

25

5 min

42

30 min

85

5 min

】:逆转录温度:推荐使用42。对于GC含量模板或者复杂模板,可将逆转录温度提高到50

4. 逆转录产物可立即用于qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

 

相关产品

 

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit 

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis SuperMix

11120ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11121ES60

100 T

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141ES60

100 T

Hifair® qPCR SYBR® Green Master Mix (No Rox )

11201ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (Low Rox Plus) 

11202ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (High Rox Plus) 

11203ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11195ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11196ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11197ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11198ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11199ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11200ES08

5 mL

Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix

11184ES08

5 mL

                                                                                              HB210628

 

 

 

Q:逆转录产品如何选择?

 

 

A:参考下表。

产品名称/货号

品形式

引物

适用实验类型

产品特点/适用范围(A/B)

Hifair™ II Reverse Transcriptase

第二代耐热逆转录酶  11110ES

单酶

☑cDNA产物后续用于PCR

☑cDNA产物后续用于qPCR

A.常规表达丰度RNA逆转录(总RNA   1ng-5μg)

Hifair™ III Reverse Transcriptase

第三代耐热逆转录酶  11111ES

B.低表达丰度RNA逆转录

(总RNA 10pg-5μg);复杂RNA

Hifair™ II 1st Strand cDNA Synthesis Kit   11119ES/11121ES

酶和Buffer分开

单独成管的Oligo dT 、Random primer

同A

Hifair III 1st Strand cDNA Synthesis Kit 11135ES/11139ES

同B

Hifair™ II 1st Strand cDNA Synthesis SuperMix for qPCR  11120ES/11123ES

酶和Buffer预混

按比例预混的Oligo dT 、Random primer

☑cDNA产物后续用于qPCR

同A

Hifair™ III 1st Strand cDNA Synthesis SuperMix for qPCR  11137ES/11141ES

同B

Q:逆转录引物如何选择?
 

A:11123ES中使用的是Random Primers和oligo dT按照一定优化的比例预混引物。
 

Q:反转录产物可以做普通PCR吗?
 

A:不推荐。11123ES以预混液形式提供,预混液中包含Oligo (dT)与Random Primers混合引物,逆转录产物反转均一,但长度较短,可以做短片段,过长的不适合。若反转录产物后续进行PCR,建议用翌圣11121ES,引物选oligo dT。
 

Q:逆转录产物后续进行qPCR,需要稀释吗?

A:建议稀释5-10倍。目的有二:一、提高稀释倍数,降低移液误差,提高实验重复性;二、降低逆转录体系中高浓度某些成分对下游qPCR反应的抑制作用。
 

Q:该产品可以搭配其他品牌的定量试剂使用吗?
 

A:可以。逆转录产物进行稀释后,反转录相关组分对后续不同品牌的qPCR试剂影响非常小。

[1] Wang Y, Wang Y, Song D, et al. An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination. Nat Chem. 2022;14(3):350-359. doi:10.1038/s41557-021-00847-3(IF:24.427)
[2] Zhang C, Zhou B, Gu F, et al. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell. 2022;82(7):1297-1312.e8. doi:10.1016/j.molcel.2022.01.020(IF:17.970)
[3] Qiao J, Jiang H, Lin Y, et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Mol Plant. 2021;14(10):1683-1698. doi:10.1016/j.molp.2021.06.023(IF:13.164)
[4] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[5] Ma D, Zhao Y, Huang L, et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation. Biomaterials. 2020;237:119830. doi:10.1016/j.biomaterials.2020.119830(IF:10.317)
[6] Wang X, Chen K, Zhou M, et al. GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean [published online ahead of print, 2022 Jun 25]. New Phytol. 2022;10.1111/nph.18343. doi:10.1111/nph.18343(IF:10.152)
[7] Yun J, Sun Z, Jiang Q, et al. The miR156b-GmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean. New Phytol. 2022;233(4):1881-1899. doi:10.1111/nph.17899(IF:10.152)
[8] Yan WH, Wu MY, Shah S, et al. Silencing the triacylglycerol lipase (TGL) gene decreases the number of apyrene sperm and inhibits oviposition in Sitotroga cerealella. Cell Mol Life Sci. 2021;79(1):44. Published 2021 Dec 31. doi:10.1007/s00018-021-04048-6(IF:9.261)
[9] Tang M, Bai L, Wan Z, et al. circRNA-DURSA regulates trophoblast apoptosis via miR-760-HIST1H2BE axis in unexplained recurrent spontaneous abortion. Mol Ther Nucleic Acids. 2021;26:1433-1445. Published 2021 Jun 24. doi:10.1016/j.omtn.2021.06.012(IF:8.886)
[10] Zhang J, Zhao Y, Tian Y, et al. Genome-wide screening in the haploid system reveals Slc25a43 as a target gene of oxidative toxicity. Cell Death Dis. 2022;13(3):284. Published 2022 Mar 30. doi:10.1038/s41419-022-04738-4(IF:8.469)
[11] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[12] An J, Feng L, Ren J, et al. Chronic stress promotes breast carcinoma metastasis by accumulating myeloid-derived suppressor cells through activating β-adrenergic signaling. Oncoimmunology. 2021;10(1):2004659. Published 2021 Nov 23. doi:10.1080/2162402X.2021.2004659(IF:8.110)
[13] Wu H, Zhan T, Cui S, et al. Endothelial barrier dysfunction induced by anthracene and its nitrated or oxygenated derivatives at environmentally relevant levels. Sci Total Environ. 2022;802:149793. doi:10.1016/j.scitotenv.2021.149793(IF:7.963)
[14] Ou Z, Ma Y, Sun Y, et al. A GPR17-cAMP-Lactate Signaling Axis in Oligodendrocytes Regulates Whole-Body Metabolism. Cell Rep. 2019;26(11):2984-2997.e4. doi:10.1016/j.celrep.2019.02.060(IF:7.815)
[15] Wang Y, You K, You Y, et al. Paeoniflorin prevents aberrant proliferation and differentiation of intestinal stem cells by controlling C1q release from macrophages in chronic colitis [published online ahead of print, 2022 Jun 16]. Pharmacol Res. 2022;182:106309. doi:10.1016/j.phrs.2022.106309(IF:7.658)
[16] Shen M, Guo M, Li Y, et al. m6A methylation is required for dihydroartemisinin to alleviate liver fibrosis by inducing ferroptosis in hepatic stellate cells. Free Radic Biol Med. 2022;182:246-259. doi:10.1016/j.freeradbiomed.2022.02.028(IF:7.376)
[17] Li X, Liu J, Lu L, et al. Sirt7 associates with ELK1 to participate in hyperglycemia memory and diabetic nephropathy via modulation of DAPK3 expression and endothelial inflammation. Transl Res. 2022;247:99-116. doi:10.1016/j.trsl.2022.04.005(IF:7.012)
[18] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[19] Zhou M, Li B, Liu J, Hong L. Genomic, Immunological, and Clinical Characterization of Pyroptosis in Ovarian Cancer. J Inflamm Res. 2021;14:7341-7358. Published 2021 Dec 24. doi:10.2147/JIR.S344554(IF:6.922)
[20] Yang P, Chen T, Wu K, et al. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum Reprod. 2021;36(7):2011-2019. doi:10.1093/humrep/deab094(IF:6.918)
[21] Li Y, Dong Y, Ran Y, et al. Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res Ther. 2021;12(1):358. Published 2021 Jun 21. doi:10.1186/s13287-021-02416-4(IF:6.832)
[22] Peng L, Wang Y, Yang B, Qin Q, Song E, Song Y. Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop. Environ Pollut. 2021;274:115606. doi:10.1016/j.envpol.2020.115606(IF:6.793)
[23] Lv J, Zheng T, Song Z, et al. Strawberry Proteome Responses to Controlled Hot and Cold Stress Partly Mimic Post-harvest Storage Temperature Effects on Fruit Quality. Front Nutr. 2022;8:812666. Published 2022 Feb 15. doi:10.3389/fnut.2021.812666(IF:6.576)
[24] Liu W, Guan Y, Qiao S, et al. Antiaging Effects of Vicatia thibetica de Boiss Root Extract on Caenorhabditis elegans and Doxorubicin-Induced Premature Aging in Adult Mice. Oxid Med Cell Longev. 2021;2021:9942090. Published 2021 Aug 6. doi:10.1155/2021/9942090(IF:6.543)
[25] Liu S, Wu W, Chen Q, et al. TXNRD1: A Key Regulator Involved in the Ferroptosis of CML Cells Induced by Cysteine Depletion In Vitro. Oxid Med Cell Longev. 2021;2021:7674565. Published 2021 Dec 7. doi:10.1155/2021/7674565(IF:6.543)
[26] Liang X, Wang Y, Liu L, et al. Acute nitrite exposure interferes with intestinal thyroid hormone homeostasis in grass carp (Ctenopharyngodon idellus). Ecotoxicol Environ Saf. 2022;237:113510. doi:10.1016/j.ecoenv.2022.113510(IF:6.291)
[27] Duan N, Zhang Y, Tan S, et al. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiol Dis. 2022;169:105739. doi:10.1016/j.nbd.2022.105739(IF:5.996)
[28] Wu YR, Shi XY, Ma CY, Zhang Y, Xu RX, Li JJ. Liraglutide improves lipid metabolism by enhancing cholesterol efflux associated with ABCA1 and ERK1/2 pathway. Cardiovasc Diabetol. 2019;18(1):146. Published 2019 Nov 9. doi:10.1186/s12933-019-0954-6(IF:5.948)
[29] Li J, Teng P, Yang F, Ou X, Zhang J, Chen W. Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci. 2022;23(9):4628. Published 2022 Apr 22. doi:10.3390/ijms23094628(IF:5.924)
[30] Li J, Teng P, Yang F, Ou X, Zhang J, Chen W. Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci. 2022;23(9):4628. Published 2022 Apr 22. doi:10.3390/ijms23094628(IF:5.924)
[31] Zhang W, Ho CT, Lu M. Piperine Improves Lipid Dysregulation by Modulating Circadian Genes Bmal1 and Clock in HepG2 Cells. Int J Mol Sci. 2022;23(10):5611. Published 2022 May 17. doi:10.3390/ijms23105611(IF:5.924)
[32] Xiang C, Fan C, Lu Q, et al. Interfering with alternatively activated macrophages by CSF-1R inhibition exerts therapeutic capacity on allergic airway inflammation. Biochem Pharmacol. 2022;198:114952. doi:10.1016/j.bcp.2022.114952(IF:5.858)
[33] Xia S, Wang Z, Chen L, et al. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal. Biochem Pharmacol. 2021;192:114730. doi:10.1016/j.bcp.2021.114730(IF:5.858)
[34] Liu N, Meng F, Tian C. Transcriptional Network in Colletotrichum gloeosporioides Mutants Lacking Msb2 or Msb2 and Sho1. J Fungi (Basel). 2022;8(2):207. Published 2022 Feb 21. doi:10.3390/jof8020207(IF:5.816)
[35] Chen Y, Chen J, Shu A, et al. Combination of the Herbs Radix Rehmanniae and Cornus Officinalis Mitigated Testicular Damage From Diabetes Mellitus by Enhancing Glycolysis via the AGEs/RAGE/HIF-1α Axis. Front Pharmacol. 2021;12:678300. Published 2021 Jun 28. doi:10.3389/fphar.2021.678300(IF:5.811)
[36] Dai Z, Cai L, Chen Y, et al. Brusatol Inhibits Proliferation and Invasion of Glioblastoma by Down-Regulating the Expression of ECM1. Front Pharmacol. 2021;12:775680. Published 2021 Dec 14. doi:10.3389/fphar.2021.775680(IF:5.811)
[37] Li H, Fan C, Lu H, et al. Protective role of berberine on ulcerative colitis through modulating enteric glial cells-intestinal epithelial cells-immune cells interactions. Acta Pharm Sin B. 2020;10(3):447-461. doi:10.1016/j.apsb.2019.08.006(IF:5.808)
[38] Fan X, Li Y, Yi X, et al. Epigenome-wide DNA methylation profiling of portal vein tumor thrombosis (PVTT) tissues in hepatocellular carcinoma patients. Neoplasia. 2020;22(11):630-643. doi:10.1016/j.neo.2020.09.007(IF:5.696)
[39] Rong R, Yang R, Li H, et al. The roles of mitochondrial dynamics and NLRP3 inflammasomes in the pathogenesis of retinal light damage. Ann N Y Acad Sci. 2022;1508(1):78-91. doi:10.1111/nyas.14716(IF:5.691)
[40] Ye S, Yang N, Lu T, et al. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience. 2021;24(6):102672. Published 2021 May 31. doi:10.1016/j.isci.2021.102672(IF:5.458)
[41] Li G, Yang L, Feng L, et al. Syringaresinol Protects against Type 1 Diabetic Cardiomyopathy by Alleviating Inflammation Responses, Cardiac Fibrosis, and Oxidative Stress. Mol Nutr Food Res. 2020;64(18):e2000231. doi:10.1002/mnfr.202000231(IF:5.309)
[42] Hu Y, Liu M, Qin H, et al. Artemether, Artesunate, Arteannuin B, Echinatin, Licochalcone B and Andrographolide Effectively Inhibit SARS-CoV-2 and Related Viruses In Vitro. Front Cell Infect Microbiol. 2021;11:680127. Published 2021 Aug 30. doi:10.3389/fcimb.2021.680127(IF:5.293)
[43] Xu B, Zhang C, Jiang A, et al. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. J Biol Chem. 2022;298(7):102115. doi:10.1016/j.jbc.2022.102115(IF:5.157)
[44] Cai X, Tian F, Teng L, et al. Cultivation of a Lytic Double-Stranded RNA Bacteriophage Infecting Microvirgula aerodenitrificans Reveals a Mutualistic Parasitic Lifestyle. J Virol. 2021;95(17):e0039921. doi:10.1128/JVI.00399-21(IF:5.103)
[45] Qi J, Chen X, Wu Q, et al. Fasting Induces Hepatocellular Carcinoma Cell Apoptosis by Inhibiting SET8 Expression. Oxid Med Cell Longev. 2020;2020:3985089. Published 2020 Mar 19. doi:10.1155/2020/3985089(IF:5.076)
[46] Wang J, Han C, Lu Z, et al. Simulated microgravity suppresses MAPK pathway-mediated innate immune response to bacterial infection and induces gut microbiota dysbiosis. FASEB J. 2020;34(11):14631-14644. doi:10.1096/fj.202001428R(IF:4.966)
[47] Yang L, Wang X, Jiao X, et al. Suppressor of Ty 16 promotes lung cancer malignancy and is negatively regulated by miR-1227-5p. Cancer Sci. 2020;111(11):4075-4087. doi:10.1111/cas.14627(IF:4.966)
[48] Wang ZM, Xia SW, Zhang T, et al. LncRNA-H19 induces hepatic stellate cell activation via upregulating alcohol dehydrogenase III-mediated retinoic acid signals. Int Immunopharmacol. 2020;84:106470. doi:10.1016/j.intimp.2020.106470(IF:4.932)
[49] Zhou M, Li B, Liu C, et al. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol. 2021;101(Pt B):108223. doi:10.1016/j.intimp.2021.108223(IF:4.932)
[50] Chen X, Yao T, Cai J, et al. A novel cis-regulatory variant modulating TIE1 expression associated with attention deficit hyperactivity disorder in Han Chinese children. J Affect Disord. 2022;300:179-188. doi:10.1016/j.jad.2021.12.066(IF:4.839)
[51] Chen DD, Fang BZ, Manzoor A, et al. Revealing the salinity adaptation mechanism in halotolerant bacterium Egicoccus halophilus EGI 80432T by physiological analysis and comparative transcriptomics. Appl Microbiol Biotechnol. 2021;105(6):2497-2511. doi:10.1007/s00253-021-11190-5(IF:4.813)
[52] Li X, Yuan S, Sun Z, et al. Gene identification and functional analysis of peptidoglycan recognition protein from the spotted sea bass (Lateolabrax maculatus). Fish Shellfish Immunol. 2020;106:1014-1024. doi:10.1016/j.fsi.2020.08.041(IF:4.581)
[53] Zhao X, Huang W, Guo J, et al. PLAAT1 promotes p53 degradation via autophagy-lysosome pathway in zebrafish. Fish Shellfish Immunol. 2022;125:48-53. doi:10.1016/j.fsi.2022.05.001(IF:4.581)
[54] Wang W, Wang J, Lei L, et al. Characterisation of IL-15 and IL-2Rβ in grass carp: IL-15 upregulates cytokines and transcription factors of type 1 immune response and NK cell activation. Fish Shellfish Immunol. 2020;107(Pt A):104-117. doi:10.1016/j.fsi.2020.09.029(IF:4.581)
[55] Wu Y, Yang Y, Dang H, et al. Molecular identification of Klebsiella pneumoniae and expression of immune genes in infected spotted gar Lepisosteus oculatus. Fish Shellfish Immunol. 2021;119:220-230. doi:10.1016/j.fsi.2021.10.002(IF:4.581)
[56] Wu L, Gao A, Lei Y, Li J, Mai K, Ye J. SHP1 tyrosine phosphatase gets involved in host defense against Streptococcus agalactiae infection and BCR signaling pathway in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020;99:562-571. doi:10.1016/j.fsi.2020.02.026(IF:4.581)
[57] Lv J, Dong T, Zhang Y, et al. Metabolomic profiling of brassinolide and abscisic acid in response to high-temperature stress. Plant Cell Rep. 2022;41(4):935-946. doi:10.1007/s00299-022-02829-2(IF:4.570)
[58] Cao Y, Lu Z, Wang D, et al. Therapeutic evaluation and metabolic reprograming of isosteviol sodium in a rat model of ischemic cardiomyopathy. Eur J Pharmacol. 2021;911:174539. doi:10.1016/j.ejphar.2021.174539(IF:4.432)
[59] Long J, Liu L, Zhou X, Lu X, Qin L. HLA-DQB1-AS1 Promotes Cell Proliferation, Inhibits Apoptosis, and Binds with ZRANB2 Protein in Hepatocellular Carcinoma. J Oncol. 2022;2022:7130634. Published 2022 May 11. doi:10.1155/2022/7130634(IF:4.375)
[60] Chen G, Fan X, Li Y, et al. Promoter aberrant methylation status of ADRA1A is associated with hepatocellular carcinoma. Epigenetics. 2020;15(6-7):684-701. doi:10.1080/15592294.2019.1709267(IF:4.251)
[61] Zhang P, Li H, Zhou C, et al. Single-Cell RNA Transcriptomics Reveals the State of Hepatic Lymphatic Endothelial Cells in Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. J Clin Med. 2022;11(10):2910. Published 2022 May 20. doi:10.3390/jcm11102910(IF:4.242)
[62] Zhang X, Qi W, Shi Y, et al. Role of miR-145-5p/ CD40 in the inflammation and apoptosis of HUVECs induced by PM2.5. Toxicology. 2021;464:152993. doi:10.1016/j.tox.2021.152993(IF:4.221)
[63] Zhou X, Li S, Yang X. The DcPS1 cooperates with OSDLa during pollen development and 2n gamete production in carnation meiosis. BMC Plant Biol. 2022;22(1):259. Published 2022 May 24. doi:10.1186/s12870-022-03648-z(IF:4.215)
[64] Jia H, Zhang Z, Zhang S, et al. Effect of the Methylation Level on the Grape Fruit Development Process. J Agric Food Chem. 2020;68(7):2099-2115. doi:10.1021/acs.jafc.9b07740(IF:4.192)
[65] Shishay G, Liu G, Jiang X, et al. Variation in the Promoter Region of the MC4R Gene Elucidates the Association of Body Measurement Traits in Hu Sheep. Int J Mol Sci. 2019;20(2):240. Published 2019 Jan 9. doi:10.3390/ijms20020240(IF:4.183)
[66] Sun Y, Gao L, Yuan M, Yuan L, Yang J, Zeng T. In vitro and in vivo Study of Antifungal Effect of Pyrvinium Pamoate Alone and in Combination With Azoles Against Exophiala dermatitidis. Front Cell Infect Microbiol. 2020;10:576975. Published 2020 Oct 23. doi:10.3389/fcimb.2020.576975(IF:4.123)
[67] Sun Y, Gao L, Yuan M, Yuan L, Yang J, Zeng T. In vitro and in vivo Study of Antifungal Effect of Pyrvinium Pamoate Alone and in Combination With Azoles Against Exophiala dermatitidis. Front Cell Infect Microbiol. 2020;10:576975. Published 2020 Oct 23. doi:10.3389/fcimb.2020.576975(IF:4.123)
[68] Yang Y, Zhu X, Cui R, et al. Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq. Planta. 2021;254(6):110. Published 2021 Oct 30. doi:10.1007/s00425-021-03760-8(IF:4.116)
[69] Sun T, Zhang L, Feng J, et al. Characterization of cellular senescence in doxorubicin-induced aging mice. Exp Gerontol. 2022;163:111800. doi:10.1016/j.exger.2022.111800(IF:4.032)
[70] Wang Z, Yang X, Kai J, et al. HIF-1α-upregulated lncRNA-H19 regulates lipid droplet metabolism through the AMPKα pathway in hepatic stellate cells. Life Sci. 2020;255:117818. doi:10.1016/j.lfs.2020.117818(IF:3.647)
[71] Wang J, Jia Z, Dang H, Zou J. Meteorin-like/Meteorin-β upregulates proinflammatory cytokines via NF-κB pathway in grass carp Ctenopharyngodon idella. Dev Comp Immunol. 2022;127:104289. doi:10.1016/j.dci.2021.104289(IF:3.636)
[72] Wei W, Wang J, Min Q, et al. CCL19 variants mediate chemotactic response via CCR7 in grass carp Ctenopharyngodon idella. Dev Comp Immunol. 2021;122:104127. doi:10.1016/j.dci.2021.104127(IF:3.636)
[73] Yin X, Bai H, Mu L, et al. Expression and functional characterization of the mannose receptor (MR) from Nile tilapia (Oreochromis niloticus) in response to bacterial infection. Dev Comp Immunol. 2022;126:104257. doi:10.1016/j.dci.2021.104257(IF:3.636)
[74] Xu YH, Feng YF, Zou R, Yuan F, Yuan YZ. Silencing of YAP attenuates pericyte-myofibroblast transition and subretinal fibrosis in experimental model of choroidal neovascularization. Cell Biol Int. 2022;46(8):1249-1263. doi:10.1002/cbin.11809(IF:3.612)
[75] Qiao K, Wang F, Liang S, Wang H, Hu Z, Chai T. New Biofortification Tool: Wheat TaCNR5 Enhances Zinc and Manganese Tolerance and Increases Zinc and Manganese Accumulation in Rice Grains. J Agric Food Chem. 2019;67(35):9877-9884. doi:10.1021/acs.jafc.9b04210(IF:3.571)
[76] Yang Y, Wang L, Che Z, et al. Novel target sites for soybean yield enhancement by photosynthesis. J Plant Physiol. 2022;268:153580. doi:10.1016/j.jplph.2021.153580(IF:3.549)
[77] Ji X, Tang Z, Shuai W, et al. Endogenous peptide LYENRL prevents the activation of hypertrophic scar-derived fibroblasts by inhibiting the TGF-β1/Smad pathway. Life Sci. 2019;231:116674. doi:10.1016/j.lfs.2019.116674(IF:3.448)
[78] Hu F, Li C, Zheng X, et al. Lung adenocarcinoma resistance to therapy with EGFR‑tyrosine kinase inhibitors is related to increased expression of cancer stem cell markers SOX2, OCT4 and NANOG. Oncol Rep. 2020;43(2):727-735. doi:10.3892/or.2019.7454(IF:3.417)
[79] Yang M, Yarra R, Zhang R, et al. Transcriptome analysis of oil palm pistil during pollination and fertilization to unravel the role of phytohormone biosynthesis and signaling genes. Funct Integr Genomics. 2022;22(2):261-278. doi:10.1007/s10142-022-00834-y(IF:3.410)
[80] Wu M, Sun X, Wang T, Zhang M, Li P. TRPS1 knockdown inhibits angiogenic vascular mimicry in human triple negative breast cancer cells. Clin Transl Oncol. 2022;24(1):145-153. doi:10.1007/s12094-021-02676-9(IF:3.405)
[81] Zhang H, Yang X, Hu F, et al. Expression Level of Wnt5a Was Related to the Therapeutic Effects of First-Generation EGFR-TKIs. Onco Targets Ther. 2020;13:5387-5394. Published 2020 Jun 11. doi:10.2147/OTT.S250024(IF:3.337)
[82] Xue Y, Jiang X, Gao J, et al. Functional characterisation of interleukin 34 in grass carp Ctenopharyngodon idella. Fish Shellfish Immunol. 2019;92:91-100. doi:10.1016/j.fsi.2019.05.059(IF:3.298)
[83] Chen S, Li M, Jiang W, Zheng H, Qi LW, Jiang S. The role of Neu1 in the protective effect of dipsacoside B on acetaminophen-induced liver injury. Ann Transl Med. 2020;8(13):823. doi:10.21037/atm-19-3850(IF:3.297)
[84] Yang B, Wang Y, Qin Q, et al. Polychlorinated Biphenyl Quinone Promotes Macrophage-Derived Foam Cell Formation. Chem Res Toxicol. 2019;32(12):2422-2432. doi:10.1021/acs.chemrestox.9b00184(IF:3.274)
[85] Liao X, Jin R, Zhang X, et al. Characterization of sulfoxaflor resistance in the brown planthopper, Nilaparvata lugens (Stål). Pest Manag Sci. 2019;75(6):1646-1654. doi:10.1002/ps.5282(IF:3.255)
[86] Zhuo Y, Guo Z, Ba T, et al. African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-κB Signaling Pathway. Virol Sin. 2021;36(2):176-186. doi:10.1007/s12250-020-00304-4(IF:3.242)
[87] Fan X, Guo H, Dai B, He L, Zhou D, Lin H. The association between methylation patterns of DNAH17 and clinicopathological factors in hepatocellular carcinoma. Cancer Med. 2019;8(1):337-350. doi:10.1002/cam4.1930(IF:3.202)
[88] Gao J, Jiang X, Wang J, et al. Phylogeny and expression modulation of interleukin 1 receptors in grass carp (Ctenopharyngodon idella). Dev Comp Immunol. 2019;99:103401. doi:10.1016/j.dci.2019.103401(IF:3.119)
[89] Li Q, Wang Y, Pan Y, Wang J, Yu W, Wang X. Unraveling synonymous and deep intronic variants causing aberrant splicing in two genetically undiagnosed epilepsy families. BMC Med Genomics. 2021;14(1):152. Published 2021 Jun 9. doi:10.1186/s12920-021-01008-8(IF:3.063)
[90] Zhang Y, Zhu Z, Ding H, et al. β-catenin stimulates Tcf7l1 degradation through recruitment of casein kinase 2 in mouse embryonic stem cells. Biochem Biophys Res Commun. 2020;524(2):280-287. doi:10.1016/j.bbrc.2020.01.074(IF:2.985)
[91] Qi J, Wu Q, Cheng Q, Chen X, Zhu M, Miao C. High Glucose Induces Endothelial COX2 and iNOS Expression via Inhibition of Monomethyltransferase SETD8 Expression. J Diabetes Res. 2020;2020:2308520. Published 2020 Feb 23. doi:10.1155/2020/2308520(IF:2.965)
[92] Chong Y, Liu G, Girmay S, Jiang X. Novel mutations in the signal transducer and activator of transcription 3 gene are associated with sheep body weight and fatness traits. Mamm Genome. 2021;32(1):38-49. doi:10.1007/s00335-020-09850-4(IF:2.957)
[93] Ma Z, Li F, Chen L, et al. Autophagy promotes hepatic differentiation of hepatic progenitor cells by regulating the Wnt/β-catenin signaling pathway. J Mol Histol. 2019;50(1):75-90. doi:10.1007/s10735-018-9808-x(IF:2.937)
[94] Ali E, Mao K, Liao X, Jin R, Li J. Cross-resistance and biochemical characterization of buprofezin resistance in the white-backed planthopper, Sogatella furcifera (Horvath). Pestic Biochem Physiol. 2019;158:47-53. doi:10.1016/j.pestbp.2019.04.008(IF:2.870)
[95] Dong Y, Liu J, Xue Z, et al. Pao Pereira extract suppresses benign prostatic hyperplasia by inhibiting inflammation-associated NFκB signaling. BMC Complement Med Ther. 2020;20(1):150. Published 2020 May 16. doi:10.1186/s12906-020-02943-2(IF:2.833)
[96] Duan X, Zhao B, Jin X, Cheng X, Huang S, Li J. Antibiotic Treatment Decrease the Fitness of Honeybee (Apis mellifera) Larvae. Insects. 2021;12(4):301. Published 2021 Mar 30. doi:10.3390/insects12040301(IF:2.769)
[97] Wang C, Zhao F, Li Z, et al. Effects of Resveratrol on Growth Performance, Intestinal Development, and Antioxidant Status of Broilers under Heat Stress. Animals (Basel). 2021;11(5):1427. Published 2021 May 17. doi:10.3390/ani11051427(IF:2.752)
[98] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[99] Chen L, Zhang M, Wang X, et al. Cardiac steroid ouabain transcriptionally increases human leukocyte antigen DR expression on monocytes. Steroids. 2021;175:108915. doi:10.1016/j.steroids.2021.108915(IF:2.668)
[100] Huang J, Guo M, Jin S, et al. Antibacterial photodynamic therapy mediated by 5-aminolevulinic acid on methicillin-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther. 2019;28:330-337. doi:10.1016/j.pdpdt.2019.09.008(IF:2.589)
[101] Gao M, Guo L, Wang H, et al. Orphan nuclear receptor RORγ confers doxorubicin resistance in prostate cancer. Cell Biol Int. 2020;44(10):2170-2176. doi:10.1002/cbin.11411(IF:2.571)
[102] Chen DD, Ahmad M, Liu YH, et al. Transcriptomic responses of haloalkalitolerant bacterium Egicoccus halophilus EGI 80432T to highly alkaline stress. Extremophiles. 2021;25(5-6):459-470. doi:10.1007/s00792-021-01239-8(IF:2.395)
[103] Jiao Z, Zhu X, Li H, et al. Cytological and molecular characterizations of a novel 2A nullisomic line derived from a widely-grown wheat cultivar Zhoumai 18 conferring male sterility. PeerJ. 2020;8:e10275. Published 2020 Oct 30. doi:10.7717/peerj.10275(IF:2.379)
[104] Guo Z, Qiu C, Mecca C, et al. Elevated lymphotoxin-α (TNFβ) is associated with intervertebral disc degeneration. BMC Musculoskelet Disord. 2021;22(1):77. Published 2021 Jan 13. doi:10.1186/s12891-020-03934-7(IF:2.355)
[105] You L, Chen H, Xu L, Li X. Overexpression of miR-29a-3p Suppresses Proliferation, Migration, and Invasion of Vascular Smooth Muscle Cells in Atherosclerosis via Targeting TNFRSF1A. Biomed Res Int. 2020;2020:9627974. Published 2020 Sep 4. doi:10.1155/2020/9627974(IF:2.276)
[106] Liang X, Yan F, Gao Y, et al. Sugar transporter genes in grass carp (Ctenopharyngodon idellus): molecular cloning, characterization, and expression in response to different stocking densities. Fish Physiol Biochem. 2020;46(3):1039-1052. doi:10.1007/s10695-020-00770-3(IF:2.249)
[107] Li Z, Cai T, Qin Y, et al. Transcriptional Response of ATP-Binding Cassette (ABC) Transporters to Insecticide in the Brown Planthopper, Nilaparvata lugens (Stål). Insects. 2020;11(5):280. Published 2020 May 2. doi:10.3390/insects11050280(IF:2.220)
[108] Wang M, Wan H, Wang S, et al. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat. 2020;237(1):29-47. doi:10.1111/joa.13185(IF:2.013)

产品描述

 

Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)基于Hifair®  Reverse Transcriptase而开发的即用型预混液。该酶的热稳定性大幅度提高,可耐受高达50的反应温度,适合具有复杂二级结构的RNA模板的逆转录。同时,该酶增强了与模板的亲和力,适合少量模板以及低拷贝基因的逆转录。

该预混液包含gDNA digester和2×Hifair® Ⅱ SuperMix plus。gDNA digester可去除RNA模板中残留的基因组DNA污染,保证后续结果更加可靠。2×Hifair® Ⅱ SuperMix plus含有逆转录反应所需的所有组分(Buffer,dNTP,Hifair® Ⅱ Reverse TranscriptaseRNase inhibitor,Random primers/ Oligo (dT)18 primer mix),只需加入RNA模板和 RNase-free ddH2O即可进行逆转录反应,并同时终止gDNA digester的作用,保证cDNA的完整性。

该产品适用于两步法RT-qPCR检测,针对qPCR进行Random primers/ Oligo (dT)18 primer的比例优化,使cDNA合成可从RNA转录本的各个区域起始,并具有相同的逆转录效率,最大程度保证了qPCR结果的真实性和可重复性。逆转录产物兼容SYBR® Green和探针法qPCR,可以根据实验目的,选择UNICON® qPCR SYBR® Green Master Mix,Hieff® qPCR SYBR® Green Master Mix或Hieff® qPCR TaqMan Probe Master Mix等试剂配合使用,进行高性能的基因表达分析。

 

产品组分

 

编号

组分

产品编号/规格

11123ES10 (10 T)

11123ES60 (100 T)

11123-A

RNase-free ddH2O

1 mL

2×1 mL

11123-B

5×gDNA digester Buffer

20 μL

200 μL

11123-C

gDNA digester

10 μL

100 μL

11123-D

2×Hifair® Ⅱ SuperMix plus

100 μL

1 mL

】:2×Hifair® Ⅱ SuperMix plus含有gDNA digester抑制剂。

 

运输保存方法

干冰运输。-20保存。有效期18个月。

 

注意事项

1)gDNA digester和2×Hifair® Ⅱ SuperMix plus含有高浓度的甘油,使用前请短暂离心,吹打混匀。

2)建议RNA是溶于水而不是TE Buffer中,因为TE Buffe会干扰gDNA去除以及逆转录反应。

3)可以不经过基因组去除步骤,直接进行逆转录,这样所得到的结果与使用Hifair® Ⅱ 1st Strand cDNA Synthesis SuperMix  (Cat No. 11120ES) 效果一致。但是请勿将gDNA digester与11120ES中的2×Hifair® Ⅱ SuperMix配套使用,因其不含终止gDNA digester反应的成分,会影响反转录和后续的qPCR实验。

4)反应液的配制应在冰上操作完成,操作过程应避免RNase污染

5) 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。

6) 本产品仅作科研用途!

 

第一链cDNA合成操作步骤

 

1. 残留基因组DNA去除

RNase free离心管中配制如下混合液,用移液器轻轻吹打混匀。42 孵育2 min。

组分

使用量

RNase free ddH2O

To 10 μL

5×gDNA digester Buffer

2 μL

gDNA digester

1 μL

Total RNA

1 ng -5 μg*

or mRNA

1 ng-500 ng*

【注】* 20 μL逆转录反应体系建议Total RNA的投入量不超过1 μg。如果目的基因的表达丰度低,最多投入5 μg Total RNA,否则RNA投入量过高,可能会超过后续定量PCR的线性范围。

2. 逆转录反应体系配制(20 μL体系)

在第1步的反应管中直接加入2×HifairTM Ⅱ SuperMix plus,用移液器轻轻吹打混匀。

组分

使用量

第1步的反应液

10 μL

2×Hifair® Ⅱ SuperMix plus

10 μL

3. 逆转录程序设置

标准程序(适用于微量和常规量的模板量)

温度

时间

25

5 min

42

30 min

85

5 min

】:逆转录温度:推荐使用42。对于GC含量模板或者复杂模板,可将逆转录温度提高到50

4. 逆转录产物可立即用于qPCR反应,也可-20℃短期保存,若需长期保存,建议分装后,于-80℃保存,避免反复冻融。

 

相关产品

 

产品名称

货号

规格

Hifair® II 1st Strand cDNA Synthesis Kit 

11119ES60

100 T

Hifair® II 1st Strand cDNA Synthesis SuperMix

11120ES60

100 T

Hifair® II 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11121ES60

100 T

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141ES60

100 T

Hifair® qPCR SYBR® Green Master Mix (No Rox )

11201ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (Low Rox Plus) 

11202ES08

5 mL

Hifair® qPCR SYBR® Green Master Mix (High Rox Plus) 

11203ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11195ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11196ES08

5 mL

Hieff UNICON® Power qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11197ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,No Rox)

11198ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,Low Rox)

11199ES08

5 mL

Hieff UNICON® qPCR SYBR Green Master Mix ( 抗体法,High Rox)

11200ES08

5 mL

Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix

11184ES08

5 mL

                                                                                              HB210628

 

 

 

Q:逆转录产品如何选择?

 

 

A:参考下表。

产品名称/货号

品形式

引物

适用实验类型

产品特点/适用范围(A/B)

Hifair™ II Reverse Transcriptase

第二代耐热逆转录酶  11110ES

单酶

☑cDNA产物后续用于PCR

☑cDNA产物后续用于qPCR

A.常规表达丰度RNA逆转录(总RNA   1ng-5μg)

Hifair™ III Reverse Transcriptase

第三代耐热逆转录酶  11111ES

B.低表达丰度RNA逆转录

(总RNA 10pg-5μg);复杂RNA

Hifair™ II 1st Strand cDNA Synthesis Kit   11119ES/11121ES

酶和Buffer分开

单独成管的Oligo dT 、Random primer

同A

Hifair III 1st Strand cDNA Synthesis Kit 11135ES/11139ES

同B

Hifair™ II 1st Strand cDNA Synthesis SuperMix for qPCR  11120ES/11123ES

酶和Buffer预混

按比例预混的Oligo dT 、Random primer

☑cDNA产物后续用于qPCR

同A

Hifair™ III 1st Strand cDNA Synthesis SuperMix for qPCR  11137ES/11141ES

同B

Q:逆转录引物如何选择?
 

A:11123ES中使用的是Random Primers和oligo dT按照一定优化的比例预混引物。
 

Q:反转录产物可以做普通PCR吗?
 

A:不推荐。11123ES以预混液形式提供,预混液中包含Oligo (dT)与Random Primers混合引物,逆转录产物反转均一,但长度较短,可以做短片段,过长的不适合。若反转录产物后续进行PCR,建议用翌圣11121ES,引物选oligo dT。
 

Q:逆转录产物后续进行qPCR,需要稀释吗?

A:建议稀释5-10倍。目的有二:一、提高稀释倍数,降低移液误差,提高实验重复性;二、降低逆转录体系中高浓度某些成分对下游qPCR反应的抑制作用。
 

Q:该产品可以搭配其他品牌的定量试剂使用吗?
 

A:可以。逆转录产物进行稀释后,反转录相关组分对后续不同品牌的qPCR试剂影响非常小。

[1] Wang Y, Wang Y, Song D, et al. An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination. Nat Chem. 2022;14(3):350-359. doi:10.1038/s41557-021-00847-3(IF:24.427)
[2] Zhang C, Zhou B, Gu F, et al. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell. 2022;82(7):1297-1312.e8. doi:10.1016/j.molcel.2022.01.020(IF:17.970)
[3] Qiao J, Jiang H, Lin Y, et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Mol Plant. 2021;14(10):1683-1698. doi:10.1016/j.molp.2021.06.023(IF:13.164)
[4] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[5] Ma D, Zhao Y, Huang L, et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation. Biomaterials. 2020;237:119830. doi:10.1016/j.biomaterials.2020.119830(IF:10.317)
[6] Wang X, Chen K, Zhou M, et al. GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean [published online ahead of print, 2022 Jun 25]. New Phytol. 2022;10.1111/nph.18343. doi:10.1111/nph.18343(IF:10.152)
[7] Yun J, Sun Z, Jiang Q, et al. The miR156b-GmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean. New Phytol. 2022;233(4):1881-1899. doi:10.1111/nph.17899(IF:10.152)
[8] Yan WH, Wu MY, Shah S, et al. Silencing the triacylglycerol lipase (TGL) gene decreases the number of apyrene sperm and inhibits oviposition in Sitotroga cerealella. Cell Mol Life Sci. 2021;79(1):44. Published 2021 Dec 31. doi:10.1007/s00018-021-04048-6(IF:9.261)
[9] Tang M, Bai L, Wan Z, et al. circRNA-DURSA regulates trophoblast apoptosis via miR-760-HIST1H2BE axis in unexplained recurrent spontaneous abortion. Mol Ther Nucleic Acids. 2021;26:1433-1445. Published 2021 Jun 24. doi:10.1016/j.omtn.2021.06.012(IF:8.886)
[10] Zhang J, Zhao Y, Tian Y, et al. Genome-wide screening in the haploid system reveals Slc25a43 as a target gene of oxidative toxicity. Cell Death Dis. 2022;13(3):284. Published 2022 Mar 30. doi:10.1038/s41419-022-04738-4(IF:8.469)
[11] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[12] An J, Feng L, Ren J, et al. Chronic stress promotes breast carcinoma metastasis by accumulating myeloid-derived suppressor cells through activating β-adrenergic signaling. Oncoimmunology. 2021;10(1):2004659. Published 2021 Nov 23. doi:10.1080/2162402X.2021.2004659(IF:8.110)
[13] Wu H, Zhan T, Cui S, et al. Endothelial barrier dysfunction induced by anthracene and its nitrated or oxygenated derivatives at environmentally relevant levels. Sci Total Environ. 2022;802:149793. doi:10.1016/j.scitotenv.2021.149793(IF:7.963)
[14] Ou Z, Ma Y, Sun Y, et al. A GPR17-cAMP-Lactate Signaling Axis in Oligodendrocytes Regulates Whole-Body Metabolism. Cell Rep. 2019;26(11):2984-2997.e4. doi:10.1016/j.celrep.2019.02.060(IF:7.815)
[15] Wang Y, You K, You Y, et al. Paeoniflorin prevents aberrant proliferation and differentiation of intestinal stem cells by controlling C1q release from macrophages in chronic colitis [published online ahead of print, 2022 Jun 16]. Pharmacol Res. 2022;182:106309. doi:10.1016/j.phrs.2022.106309(IF:7.658)
[16] Shen M, Guo M, Li Y, et al. m6A methylation is required for dihydroartemisinin to alleviate liver fibrosis by inducing ferroptosis in hepatic stellate cells. Free Radic Biol Med. 2022;182:246-259. doi:10.1016/j.freeradbiomed.2022.02.028(IF:7.376)
[17] Li X, Liu J, Lu L, et al. Sirt7 associates with ELK1 to participate in hyperglycemia memory and diabetic nephropathy via modulation of DAPK3 expression and endothelial inflammation. Transl Res. 2022;247:99-116. doi:10.1016/j.trsl.2022.04.005(IF:7.012)
[18] Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol. 2021;175:30-39. doi:10.1016/j.ijbiomac.2021.01.163(IF:6.953)
[19] Zhou M, Li B, Liu J, Hong L. Genomic, Immunological, and Clinical Characterization of Pyroptosis in Ovarian Cancer. J Inflamm Res. 2021;14:7341-7358. Published 2021 Dec 24. doi:10.2147/JIR.S344554(IF:6.922)
[20] Yang P, Chen T, Wu K, et al. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum Reprod. 2021;36(7):2011-2019. doi:10.1093/humrep/deab094(IF:6.918)
[21] Li Y, Dong Y, Ran Y, et al. Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res Ther. 2021;12(1):358. Published 2021 Jun 21. doi:10.1186/s13287-021-02416-4(IF:6.832)
[22] Peng L, Wang Y, Yang B, Qin Q, Song E, Song Y. Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop. Environ Pollut. 2021;274:115606. doi:10.1016/j.envpol.2020.115606(IF:6.793)
[23] Lv J, Zheng T, Song Z, et al. Strawberry Proteome Responses to Controlled Hot and Cold Stress Partly Mimic Post-harvest Storage Temperature Effects on Fruit Quality. Front Nutr. 2022;8:812666. Published 2022 Feb 15. doi:10.3389/fnut.2021.812666(IF:6.576)
[24] Liu W, Guan Y, Qiao S, et al. Antiaging Effects of Vicatia thibetica de Boiss Root Extract on Caenorhabditis elegans and Doxorubicin-Induced Premature Aging in Adult Mice. Oxid Med Cell Longev. 2021;2021:9942090. Published 2021 Aug 6. doi:10.1155/2021/9942090(IF:6.543)
[25] Liu S, Wu W, Chen Q, et al. TXNRD1: A Key Regulator Involved in the Ferroptosis of CML Cells Induced by Cysteine Depletion In Vitro. Oxid Med Cell Longev. 2021;2021:7674565. Published 2021 Dec 7. doi:10.1155/2021/7674565(IF:6.543)
[26] Liang X, Wang Y, Liu L, et al. Acute nitrite exposure interferes with intestinal thyroid hormone homeostasis in grass carp (Ctenopharyngodon idellus). Ecotoxicol Environ Saf. 2022;237:113510. doi:10.1016/j.ecoenv.2022.113510(IF:6.291)
[27] Duan N, Zhang Y, Tan S, et al. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiol Dis. 2022;169:105739. doi:10.1016/j.nbd.2022.105739(IF:5.996)
[28] Wu YR, Shi XY, Ma CY, Zhang Y, Xu RX, Li JJ. Liraglutide improves lipid metabolism by enhancing cholesterol efflux associated with ABCA1 and ERK1/2 pathway. Cardiovasc Diabetol. 2019;18(1):146. Published 2019 Nov 9. doi:10.1186/s12933-019-0954-6(IF:5.948)
[29] Li J, Teng P, Yang F, Ou X, Zhang J, Chen W. Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci. 2022;23(9):4628. Published 2022 Apr 22. doi:10.3390/ijms23094628(IF:5.924)
[30] Li J, Teng P, Yang F, Ou X, Zhang J, Chen W. Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci. 2022;23(9):4628. Published 2022 Apr 22. doi:10.3390/ijms23094628(IF:5.924)
[31] Zhang W, Ho CT, Lu M. Piperine Improves Lipid Dysregulation by Modulating Circadian Genes Bmal1 and Clock in HepG2 Cells. Int J Mol Sci. 2022;23(10):5611. Published 2022 May 17. doi:10.3390/ijms23105611(IF:5.924)
[32] Xiang C, Fan C, Lu Q, et al. Interfering with alternatively activated macrophages by CSF-1R inhibition exerts therapeutic capacity on allergic airway inflammation. Biochem Pharmacol. 2022;198:114952. doi:10.1016/j.bcp.2022.114952(IF:5.858)
[33] Xia S, Wang Z, Chen L, et al. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal. Biochem Pharmacol. 2021;192:114730. doi:10.1016/j.bcp.2021.114730(IF:5.858)
[34] Liu N, Meng F, Tian C. Transcriptional Network in Colletotrichum gloeosporioides Mutants Lacking Msb2 or Msb2 and Sho1. J Fungi (Basel). 2022;8(2):207. Published 2022 Feb 21. doi:10.3390/jof8020207(IF:5.816)
[35] Chen Y, Chen J, Shu A, et al. Combination of the Herbs Radix Rehmanniae and Cornus Officinalis Mitigated Testicular Damage From Diabetes Mellitus by Enhancing Glycolysis via the AGEs/RAGE/HIF-1α Axis. Front Pharmacol. 2021;12:678300. Published 2021 Jun 28. doi:10.3389/fphar.2021.678300(IF:5.811)
[36] Dai Z, Cai L, Chen Y, et al. Brusatol Inhibits Proliferation and Invasion of Glioblastoma by Down-Regulating the Expression of ECM1. Front Pharmacol. 2021;12:775680. Published 2021 Dec 14. doi:10.3389/fphar.2021.775680(IF:5.811)
[37] Li H, Fan C, Lu H, et al. Protective role of berberine on ulcerative colitis through modulating enteric glial cells-intestinal epithelial cells-immune cells interactions. Acta Pharm Sin B. 2020;10(3):447-461. doi:10.1016/j.apsb.2019.08.006(IF:5.808)
[38] Fan X, Li Y, Yi X, et al. Epigenome-wide DNA methylation profiling of portal vein tumor thrombosis (PVTT) tissues in hepatocellular carcinoma patients. Neoplasia. 2020;22(11):630-643. doi:10.1016/j.neo.2020.09.007(IF:5.696)
[39] Rong R, Yang R, Li H, et al. The roles of mitochondrial dynamics and NLRP3 inflammasomes in the pathogenesis of retinal light damage. Ann N Y Acad Sci. 2022;1508(1):78-91. doi:10.1111/nyas.14716(IF:5.691)
[40] Ye S, Yang N, Lu T, et al. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience. 2021;24(6):102672. Published 2021 May 31. doi:10.1016/j.isci.2021.102672(IF:5.458)
[41] Li G, Yang L, Feng L, et al. Syringaresinol Protects against Type 1 Diabetic Cardiomyopathy by Alleviating Inflammation Responses, Cardiac Fibrosis, and Oxidative Stress. Mol Nutr Food Res. 2020;64(18):e2000231. doi:10.1002/mnfr.202000231(IF:5.309)
[42] Hu Y, Liu M, Qin H, et al. Artemether, Artesunate, Arteannuin B, Echinatin, Licochalcone B and Andrographolide Effectively Inhibit SARS-CoV-2 and Related Viruses In Vitro. Front Cell Infect Microbiol. 2021;11:680127. Published 2021 Aug 30. doi:10.3389/fcimb.2021.680127(IF:5.293)
[43] Xu B, Zhang C, Jiang A, et al. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. J Biol Chem. 2022;298(7):102115. doi:10.1016/j.jbc.2022.102115(IF:5.157)
[44] Cai X, Tian F, Teng L, et al. Cultivation of a Lytic Double-Stranded RNA Bacteriophage Infecting Microvirgula aerodenitrificans Reveals a Mutualistic Parasitic Lifestyle. J Virol. 2021;95(17):e0039921. doi:10.1128/JVI.00399-21(IF:5.103)
[45] Qi J, Chen X, Wu Q, et al. Fasting Induces Hepatocellular Carcinoma Cell Apoptosis by Inhibiting SET8 Expression. Oxid Med Cell Longev. 2020;2020:3985089. Published 2020 Mar 19. doi:10.1155/2020/3985089(IF:5.076)
[46] Wang J, Han C, Lu Z, et al. Simulated microgravity suppresses MAPK pathway-mediated innate immune response to bacterial infection and induces gut microbiota dysbiosis. FASEB J. 2020;34(11):14631-14644. doi:10.1096/fj.202001428R(IF:4.966)
[47] Yang L, Wang X, Jiao X, et al. Suppressor of Ty 16 promotes lung cancer malignancy and is negatively regulated by miR-1227-5p. Cancer Sci. 2020;111(11):4075-4087. doi:10.1111/cas.14627(IF:4.966)
[48] Wang ZM, Xia SW, Zhang T, et al. LncRNA-H19 induces hepatic stellate cell activation via upregulating alcohol dehydrogenase III-mediated retinoic acid signals. Int Immunopharmacol. 2020;84:106470. doi:10.1016/j.intimp.2020.106470(IF:4.932)
[49] Zhou M, Li B, Liu C, et al. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol. 2021;101(Pt B):108223. doi:10.1016/j.intimp.2021.108223(IF:4.932)
[50] Chen X, Yao T, Cai J, et al. A novel cis-regulatory variant modulating TIE1 expression associated with attention deficit hyperactivity disorder in Han Chinese children. J Affect Disord. 2022;300:179-188. doi:10.1016/j.jad.2021.12.066(IF:4.839)
[51] Chen DD, Fang BZ, Manzoor A, et al. Revealing the salinity adaptation mechanism in halotolerant bacterium Egicoccus halophilus EGI 80432T by physiological analysis and comparative transcriptomics. Appl Microbiol Biotechnol. 2021;105(6):2497-2511. doi:10.1007/s00253-021-11190-5(IF:4.813)
[52] Li X, Yuan S, Sun Z, et al. Gene identification and functional analysis of peptidoglycan recognition protein from the spotted sea bass (Lateolabrax maculatus). Fish Shellfish Immunol. 2020;106:1014-1024. doi:10.1016/j.fsi.2020.08.041(IF:4.581)
[53] Zhao X, Huang W, Guo J, et al. PLAAT1 promotes p53 degradation via autophagy-lysosome pathway in zebrafish. Fish Shellfish Immunol. 2022;125:48-53. doi:10.1016/j.fsi.2022.05.001(IF:4.581)
[54] Wang W, Wang J, Lei L, et al. Characterisation of IL-15 and IL-2Rβ in grass carp: IL-15 upregulates cytokines and transcription factors of type 1 immune response and NK cell activation. Fish Shellfish Immunol. 2020;107(Pt A):104-117. doi:10.1016/j.fsi.2020.09.029(IF:4.581)
[55] Wu Y, Yang Y, Dang H, et al. Molecular identification of Klebsiella pneumoniae and expression of immune genes in infected spotted gar Lepisosteus oculatus. Fish Shellfish Immunol. 2021;119:220-230. doi:10.1016/j.fsi.2021.10.002(IF:4.581)
[56] Wu L, Gao A, Lei Y, Li J, Mai K, Ye J. SHP1 tyrosine phosphatase gets involved in host defense against Streptococcus agalactiae infection and BCR signaling pathway in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020;99:562-571. doi:10.1016/j.fsi.2020.02.026(IF:4.581)
[57] Lv J, Dong T, Zhang Y, et al. Metabolomic profiling of brassinolide and abscisic acid in response to high-temperature stress. Plant Cell Rep. 2022;41(4):935-946. doi:10.1007/s00299-022-02829-2(IF:4.570)
[58] Cao Y, Lu Z, Wang D, et al. Therapeutic evaluation and metabolic reprograming of isosteviol sodium in a rat model of ischemic cardiomyopathy. Eur J Pharmacol. 2021;911:174539. doi:10.1016/j.ejphar.2021.174539(IF:4.432)
[59] Long J, Liu L, Zhou X, Lu X, Qin L. HLA-DQB1-AS1 Promotes Cell Proliferation, Inhibits Apoptosis, and Binds with ZRANB2 Protein in Hepatocellular Carcinoma. J Oncol. 2022;2022:7130634. Published 2022 May 11. doi:10.1155/2022/7130634(IF:4.375)
[60] Chen G, Fan X, Li Y, et al. Promoter aberrant methylation status of ADRA1A is associated with hepatocellular carcinoma. Epigenetics. 2020;15(6-7):684-701. doi:10.1080/15592294.2019.1709267(IF:4.251)
[61] Zhang P, Li H, Zhou C, et al. Single-Cell RNA Transcriptomics Reveals the State of Hepatic Lymphatic Endothelial Cells in Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. J Clin Med. 2022;11(10):2910. Published 2022 May 20. doi:10.3390/jcm11102910(IF:4.242)
[62] Zhang X, Qi W, Shi Y, et al. Role of miR-145-5p/ CD40 in the inflammation and apoptosis of HUVECs induced by PM2.5. Toxicology. 2021;464:152993. doi:10.1016/j.tox.2021.152993(IF:4.221)
[63] Zhou X, Li S, Yang X. The DcPS1 cooperates with OSDLa during pollen development and 2n gamete production in carnation meiosis. BMC Plant Biol. 2022;22(1):259. Published 2022 May 24. doi:10.1186/s12870-022-03648-z(IF:4.215)
[64] Jia H, Zhang Z, Zhang S, et al. Effect of the Methylation Level on the Grape Fruit Development Process. J Agric Food Chem. 2020;68(7):2099-2115. doi:10.1021/acs.jafc.9b07740(IF:4.192)
[65] Shishay G, Liu G, Jiang X, et al. Variation in the Promoter Region of the MC4R Gene Elucidates the Association of Body Measurement Traits in Hu Sheep. Int J Mol Sci. 2019;20(2):240. Published 2019 Jan 9. doi:10.3390/ijms20020240(IF:4.183)
[66] Sun Y, Gao L, Yuan M, Yuan L, Yang J, Zeng T. In vitro and in vivo Study of Antifungal Effect of Pyrvinium Pamoate Alone and in Combination With Azoles Against Exophiala dermatitidis. Front Cell Infect Microbiol. 2020;10:576975. Published 2020 Oct 23. doi:10.3389/fcimb.2020.576975(IF:4.123)
[67] Sun Y, Gao L, Yuan M, Yuan L, Yang J, Zeng T. In vitro and in vivo Study of Antifungal Effect of Pyrvinium Pamoate Alone and in Combination With Azoles Against Exophiala dermatitidis. Front Cell Infect Microbiol. 2020;10:576975. Published 2020 Oct 23. doi:10.3389/fcimb.2020.576975(IF:4.123)
[68] Yang Y, Zhu X, Cui R, et al. Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq. Planta. 2021;254(6):110. Published 2021 Oct 30. doi:10.1007/s00425-021-03760-8(IF:4.116)
[69] Sun T, Zhang L, Feng J, et al. Characterization of cellular senescence in doxorubicin-induced aging mice. Exp Gerontol. 2022;163:111800. doi:10.1016/j.exger.2022.111800(IF:4.032)
[70] Wang Z, Yang X, Kai J, et al. HIF-1α-upregulated lncRNA-H19 regulates lipid droplet metabolism through the AMPKα pathway in hepatic stellate cells. Life Sci. 2020;255:117818. doi:10.1016/j.lfs.2020.117818(IF:3.647)
[71] Wang J, Jia Z, Dang H, Zou J. Meteorin-like/Meteorin-β upregulates proinflammatory cytokines via NF-κB pathway in grass carp Ctenopharyngodon idella. Dev Comp Immunol. 2022;127:104289. doi:10.1016/j.dci.2021.104289(IF:3.636)
[72] Wei W, Wang J, Min Q, et al. CCL19 variants mediate chemotactic response via CCR7 in grass carp Ctenopharyngodon idella. Dev Comp Immunol. 2021;122:104127. doi:10.1016/j.dci.2021.104127(IF:3.636)
[73] Yin X, Bai H, Mu L, et al. Expression and functional characterization of the mannose receptor (MR) from Nile tilapia (Oreochromis niloticus) in response to bacterial infection. Dev Comp Immunol. 2022;126:104257. doi:10.1016/j.dci.2021.104257(IF:3.636)
[74] Xu YH, Feng YF, Zou R, Yuan F, Yuan YZ. Silencing of YAP attenuates pericyte-myofibroblast transition and subretinal fibrosis in experimental model of choroidal neovascularization. Cell Biol Int. 2022;46(8):1249-1263. doi:10.1002/cbin.11809(IF:3.612)
[75] Qiao K, Wang F, Liang S, Wang H, Hu Z, Chai T. New Biofortification Tool: Wheat TaCNR5 Enhances Zinc and Manganese Tolerance and Increases Zinc and Manganese Accumulation in Rice Grains. J Agric Food Chem. 2019;67(35):9877-9884. doi:10.1021/acs.jafc.9b04210(IF:3.571)
[76] Yang Y, Wang L, Che Z, et al. Novel target sites for soybean yield enhancement by photosynthesis. J Plant Physiol. 2022;268:153580. doi:10.1016/j.jplph.2021.153580(IF:3.549)
[77] Ji X, Tang Z, Shuai W, et al. Endogenous peptide LYENRL prevents the activation of hypertrophic scar-derived fibroblasts by inhibiting the TGF-β1/Smad pathway. Life Sci. 2019;231:116674. doi:10.1016/j.lfs.2019.116674(IF:3.448)
[78] Hu F, Li C, Zheng X, et al. Lung adenocarcinoma resistance to therapy with EGFR‑tyrosine kinase inhibitors is related to increased expression of cancer stem cell markers SOX2, OCT4 and NANOG. Oncol Rep. 2020;43(2):727-735. doi:10.3892/or.2019.7454(IF:3.417)
[79] Yang M, Yarra R, Zhang R, et al. Transcriptome analysis of oil palm pistil during pollination and fertilization to unravel the role of phytohormone biosynthesis and signaling genes. Funct Integr Genomics. 2022;22(2):261-278. doi:10.1007/s10142-022-00834-y(IF:3.410)
[80] Wu M, Sun X, Wang T, Zhang M, Li P. TRPS1 knockdown inhibits angiogenic vascular mimicry in human triple negative breast cancer cells. Clin Transl Oncol. 2022;24(1):145-153. doi:10.1007/s12094-021-02676-9(IF:3.405)
[81] Zhang H, Yang X, Hu F, et al. Expression Level of Wnt5a Was Related to the Therapeutic Effects of First-Generation EGFR-TKIs. Onco Targets Ther. 2020;13:5387-5394. Published 2020 Jun 11. doi:10.2147/OTT.S250024(IF:3.337)
[82] Xue Y, Jiang X, Gao J, et al. Functional characterisation of interleukin 34 in grass carp Ctenopharyngodon idella. Fish Shellfish Immunol. 2019;92:91-100. doi:10.1016/j.fsi.2019.05.059(IF:3.298)
[83] Chen S, Li M, Jiang W, Zheng H, Qi LW, Jiang S. The role of Neu1 in the protective effect of dipsacoside B on acetaminophen-induced liver injury. Ann Transl Med. 2020;8(13):823. doi:10.21037/atm-19-3850(IF:3.297)
[84] Yang B, Wang Y, Qin Q, et al. Polychlorinated Biphenyl Quinone Promotes Macrophage-Derived Foam Cell Formation. Chem Res Toxicol. 2019;32(12):2422-2432. doi:10.1021/acs.chemrestox.9b00184(IF:3.274)
[85] Liao X, Jin R, Zhang X, et al. Characterization of sulfoxaflor resistance in the brown planthopper, Nilaparvata lugens (Stål). Pest Manag Sci. 2019;75(6):1646-1654. doi:10.1002/ps.5282(IF:3.255)
[86] Zhuo Y, Guo Z, Ba T, et al. African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-κB Signaling Pathway. Virol Sin. 2021;36(2):176-186. doi:10.1007/s12250-020-00304-4(IF:3.242)
[87] Fan X, Guo H, Dai B, He L, Zhou D, Lin H. The association between methylation patterns of DNAH17 and clinicopathological factors in hepatocellular carcinoma. Cancer Med. 2019;8(1):337-350. doi:10.1002/cam4.1930(IF:3.202)
[88] Gao J, Jiang X, Wang J, et al. Phylogeny and expression modulation of interleukin 1 receptors in grass carp (Ctenopharyngodon idella). Dev Comp Immunol. 2019;99:103401. doi:10.1016/j.dci.2019.103401(IF:3.119)
[89] Li Q, Wang Y, Pan Y, Wang J, Yu W, Wang X. Unraveling synonymous and deep intronic variants causing aberrant splicing in two genetically undiagnosed epilepsy families. BMC Med Genomics. 2021;14(1):152. Published 2021 Jun 9. doi:10.1186/s12920-021-01008-8(IF:3.063)
[90] Zhang Y, Zhu Z, Ding H, et al. β-catenin stimulates Tcf7l1 degradation through recruitment of casein kinase 2 in mouse embryonic stem cells. Biochem Biophys Res Commun. 2020;524(2):280-287. doi:10.1016/j.bbrc.2020.01.074(IF:2.985)
[91] Qi J, Wu Q, Cheng Q, Chen X, Zhu M, Miao C. High Glucose Induces Endothelial COX2 and iNOS Expression via Inhibition of Monomethyltransferase SETD8 Expression. J Diabetes Res. 2020;2020:2308520. Published 2020 Feb 23. doi:10.1155/2020/2308520(IF:2.965)
[92] Chong Y, Liu G, Girmay S, Jiang X. Novel mutations in the signal transducer and activator of transcription 3 gene are associated with sheep body weight and fatness traits. Mamm Genome. 2021;32(1):38-49. doi:10.1007/s00335-020-09850-4(IF:2.957)
[93] Ma Z, Li F, Chen L, et al. Autophagy promotes hepatic differentiation of hepatic progenitor cells by regulating the Wnt/β-catenin signaling pathway. J Mol Histol. 2019;50(1):75-90. doi:10.1007/s10735-018-9808-x(IF:2.937)
[94] Ali E, Mao K, Liao X, Jin R, Li J. Cross-resistance and biochemical characterization of buprofezin resistance in the white-backed planthopper, Sogatella furcifera (Horvath). Pestic Biochem Physiol. 2019;158:47-53. doi:10.1016/j.pestbp.2019.04.008(IF:2.870)
[95] Dong Y, Liu J, Xue Z, et al. Pao Pereira extract suppresses benign prostatic hyperplasia by inhibiting inflammation-associated NFκB signaling. BMC Complement Med Ther. 2020;20(1):150. Published 2020 May 16. doi:10.1186/s12906-020-02943-2(IF:2.833)
[96] Duan X, Zhao B, Jin X, Cheng X, Huang S, Li J. Antibiotic Treatment Decrease the Fitness of Honeybee (Apis mellifera) Larvae. Insects. 2021;12(4):301. Published 2021 Mar 30. doi:10.3390/insects12040301(IF:2.769)
[97] Wang C, Zhao F, Li Z, et al. Effects of Resveratrol on Growth Performance, Intestinal Development, and Antioxidant Status of Broilers under Heat Stress. Animals (Basel). 2021;11(5):1427. Published 2021 May 17. doi:10.3390/ani11051427(IF:2.752)
[98] Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 2019;519(3):533-539. doi:10.1016/j.bbrc.2019.09.023(IF:2.705)
[99] Chen L, Zhang M, Wang X, et al. Cardiac steroid ouabain transcriptionally increases human leukocyte antigen DR expression on monocytes. Steroids. 2021;175:108915. doi:10.1016/j.steroids.2021.108915(IF:2.668)
[100] Huang J, Guo M, Jin S, et al. Antibacterial photodynamic therapy mediated by 5-aminolevulinic acid on methicillin-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther. 2019;28:330-337. doi:10.1016/j.pdpdt.2019.09.008(IF:2.589)
[101] Gao M, Guo L, Wang H, et al. Orphan nuclear receptor RORγ confers doxorubicin resistance in prostate cancer. Cell Biol Int. 2020;44(10):2170-2176. doi:10.1002/cbin.11411(IF:2.571)
[102] Chen DD, Ahmad M, Liu YH, et al. Transcriptomic responses of haloalkalitolerant bacterium Egicoccus halophilus EGI 80432T to highly alkaline stress. Extremophiles. 2021;25(5-6):459-470. doi:10.1007/s00792-021-01239-8(IF:2.395)
[103] Jiao Z, Zhu X, Li H, et al. Cytological and molecular characterizations of a novel 2A nullisomic line derived from a widely-grown wheat cultivar Zhoumai 18 conferring male sterility. PeerJ. 2020;8:e10275. Published 2020 Oct 30. doi:10.7717/peerj.10275(IF:2.379)
[104] Guo Z, Qiu C, Mecca C, et al. Elevated lymphotoxin-α (TNFβ) is associated with intervertebral disc degeneration. BMC Musculoskelet Disord. 2021;22(1):77. Published 2021 Jan 13. doi:10.1186/s12891-020-03934-7(IF:2.355)
[105] You L, Chen H, Xu L, Li X. Overexpression of miR-29a-3p Suppresses Proliferation, Migration, and Invasion of Vascular Smooth Muscle Cells in Atherosclerosis via Targeting TNFRSF1A. Biomed Res Int. 2020;2020:9627974. Published 2020 Sep 4. doi:10.1155/2020/9627974(IF:2.276)
[106] Liang X, Yan F, Gao Y, et al. Sugar transporter genes in grass carp (Ctenopharyngodon idellus): molecular cloning, characterization, and expression in response to different stocking densities. Fish Physiol Biochem. 2020;46(3):1039-1052. doi:10.1007/s10695-020-00770-3(IF:2.249)
[107] Li Z, Cai T, Qin Y, et al. Transcriptional Response of ATP-Binding Cassette (ABC) Transporters to Insecticide in the Brown Planthopper, Nilaparvata lugens (Stål). Insects. 2020;11(5):280. Published 2020 May 2. doi:10.3390/insects11050280(IF:2.220)
[108] Wang M, Wan H, Wang S, et al. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat. 2020;237(1):29-47. doi:10.1111/joa.13185(IF:2.013)