TUNEL细胞凋亡检测试剂盒(FITC)|TUNEL Apoptosis Detection Kit(FITC)

TUNEL细胞凋亡检测试剂盒(FITC)|TUNEL Apoptosis Detection Kit(FITC)

产品说明书

FAQ

COA

已发表文献

产品描述

细胞在发生凋亡时,会激活一些DNA内切酶,这些内切酶会切断核小体间的基因组DNA。细胞凋亡时抽提DNA进行电泳检测,可以发现180-200 bp的DNA ladder。 

TUNEL (TdT mediated dUTP Nick End Labeling)细胞凋亡检测试剂盒(FITC)可以用来检测组织细胞在凋亡晚期过程中细胞核DNA的断裂情况。其原理是在末端脱氧核糖核苷酸转移酶(Terminal Deoxynucleotidyl Transferase, TdT)的作用下,在基因组DNA断裂时暴露出的3´-羟基(3´-OH)末端掺入FITC-12-dUTP,从而可以用荧光显微镜或流式细胞仪检测。

本试剂盒对标记反应进行了优化,采用最佳比例的FITC-12-dUTP和未标记dNTP进行3’-OH末端的核苷酸掺入,使得同一个断裂的DNA片段末端可以形成更长的“标记尾巴”。该“标记尾巴”减少了相邻掺入dNTP上标记基团的空间位阻,增加每个断裂片段上的荧光基团数目,降低荧光基团相邻后可能造成的聚集和淬灭,从而提高检测灵敏度,减少非特异性反应。

本试剂盒应用范围广,可以用于检测冷冻或石蜡切片中的细胞凋亡情况,也可以检测培养的贴壁细胞或悬浮细胞的凋亡情况。

 

产品组分

编号

组分

产品编号/规格

40306ES20(20T)

40306ES50(50T)

40306ES60(100T)

40306-A

5×Equilibration Buffer

750 μL

1.25 mL×2

1.25 mL×3

40306-B

FITC-12-dUTP Labeling Mix

100 μL

250 μL

250 μL×2

40306-C

Recombinant TdT Enzyme

20 μL

50 μL

50 μL×2

40306-D

Proteinase K (2 mg/mL)

40 μL

100 μL

100 μL×2

40306-E

DNase I (1 U/ μL)

5 μL

12.5 μL

25 μL

40306-F

10 × DNase I Buffer

100 μL

250 μL

500 μL

 

运输与保存方法

冰袋(wet ice)运输。

本试剂盒储存在-20℃FITC-12-dUTP Labling Mix避光储存于-20℃,保质期为年。

 

注意事项

1)需自备用于洗涤细胞的PBS,用于封片的抗荧光淬灭封片液,用于固定的4%多聚甲醛。

2)如需染核,需自备DAPI(2 μg/mL)或PI(1 μg/mL)

3)如果用流式细胞仪,自备PI(1 μg/mL)DNase Free RNase A。

4)为了您的安全和健康,请穿实验服并戴一次性手套操作。

5)本产品仅作科研用途!

 

操作步骤

一、样品准备

A. 石蜡包埋组织切片

1. 室温下将石蜡组织切片放入二甲苯中浸泡5 min,重复一次,以彻底脱掉石蜡。

2. 室温下用100%乙醇浸泡切片5 min,重复一次。

3. 室温下用梯度乙醇(90、80、70%)各浸洗1次,每次3 min。

4. 用PBS轻轻润洗切片,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或疏水笔在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

5. 配制Proteinase K工作液:按1:100的比例,用PBS作为稀释液来稀释2 mg/mL的Proteinase K溶液,使其终浓度为20 μg/mL。

6. 每个样本上滴加100 μL上述Proteinase K工作液,使其被全部覆盖,室温孵育20 min。

注:Proteinase K帮助组织和细胞对后续步骤的染色试剂通透。孵育时间过长会增加组织切片在后续洗涤步骤中从载波片上脱落的风险,过短则可能造成透性处理不充分,影响标记效率。未得到更好的结果,可能需要优化Proteinase K孵育的时间。

7. 用PBS溶液润洗样本,轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

B. 组织冰冻切片

1. 将玻片浸没在4%多聚甲醛溶液(溶于PBS)中固定,室温下孵育15 min。

2. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。

3. 将玻片浸没在PBS溶液中,室温孵育15 min。

4. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或疏水笔在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

5. 配制Proteinase K工作液:按1:100的比例,用PBS作为稀释液来稀释2 mg/mL的Proteinase K溶液,使其终浓度为20 μg/mL。

6. 每个样本上滴加100 μL上述Proteinase K工作液,使其被全部覆盖,室温孵育10 min。

【注】Proteinase K帮助组织和细胞对后续步骤的染色试剂通透。孵育时间过长会增加组织切片在后续洗涤步骤中从载波片上脱落的风险,过短则可能造成透性处理不充分,影响标记效率。未得到更好的结果,可能需要优化Proteinase K孵育的时间。

7. 用PBS溶液润洗样本2-3次。

8. 轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

C. 细胞样品

【细胞爬片的准备】

Lab-Tek载玻片小室(Chamber Slides)上培养贴壁细胞。在凋亡诱导处理之后,用PBS洗2遍载玻片。

【细胞涂片的制备(以多聚赖氨酸包被的载玻片为例)】

1. 准备多聚赖氨酸包被的载玻片:吸取50–100 μL 0.01% (w/v)多聚赖氨酸水溶液,滴至每一片预清洗过的玻璃载玻片的表面。在将要用于固定细胞的区域将多聚赖氨酸溶液涂散为一薄层。待载玻片晾干之后,迅速用去离子水漂洗,然后让包被后的载玻片在空气中晾干30-60 min。包被后的载玻片能在室温储存数月。

2. 以约2×107个细胞/mL的浓度将细胞重悬于PBS中,吸取50-100 μL细胞悬液滴于多聚赖氨酸包被的载玻片上,用一片干净的载玻片轻柔的涂开细胞悬液。

按照以下步骤对细胞样品进行处理:

1. 固定细胞,将载玻片浸入装有4%新鲜配制于PBS中的多聚甲醛的染色缸中,在4℃放置25 min。

2. 洗涤载玻片,将其浸入PBS中,室温放置5 min。重复用PBS洗一次。

3. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或指甲油在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

4. 每个样本上可浸于0.2%配制于PBS中的Triton X-100溶液中,室温孵育5 min进行通透处理Proteinase K处理容易使细胞脱落)

5. 在盛有PBS溶液的敞口烧杯中浸没清洗样本2-3次。

6. 轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

二、DNA酶处理阳性对照的步骤(可选)

在样本通透处理后,用DNA酶I处理细胞来准备阳性对照载玻片。该流程通常会引起被处理的大多数细胞显现绿色荧光。

【注】DNA酶I处理固定的细胞会引起染色体DNA的断裂,产生许多可标记的DNA 3’-末端。

1. 按1:10的比例用去离子水稀释10×DNase I Buffer(每个样本需用200 μL 1×DNase I Buffer,即需要用20 μL 10×DNase I Buffer和180 μL去离子水混合稀释),取其中100 μL滴加到已通透的样本上,室温孵育5 min。 向剩余100 μL 1×DNase I Buffer中加1 μL DNase I (1U/μL),使其终浓度为10 U/mL。轻叩掉液体,加入100 μL含5.5-10 units/mL DNase I的缓冲液,室温孵育10 min。

2. 轻轻叩掉液体,加入100 μL 10 U/mL DNase I 的缓冲液,室温孵育10 min。

3. 轻叩载玻片,去掉多余的液体,并将载玻片在装有去离子水的染色缸中彻底洗3-4次。

【注】:阳性对照载玻片必须使用单独的染色缸,否则阳性对照载玻片上残余的DNase I 可能会在实验载玻片上引入高背景。

三、标记与检测

1. 按1:5的比例用去离子水稀释5×Equilibration Buffer。

2. 每个样本滴加100 μL 1×Equilibration Buffer使其全部覆盖待检样本区域,室温孵育10-30 min。或者将载玻片放入一个含有 1×Equilibration Buffer的缸中,保证缓冲液没过样本。在平衡细胞的同时在冰上解冻FITC-12-dUTP Labling Mix,并且依照表1,准备足够量的用于所有实验的和可选阳性对照反应的TdT孵育缓冲液。对于面积小于5 cm2的一个标准反应,其体积是50 μL,用50 μL乘以实验和阳性对照反应的数目来确定所需TdT孵育缓冲液的总体积。对于表面积更大的样本,可成比例的增大试剂体积。

1. 准备用于实验的和可选阳性对照反应的TdT孵育缓冲液

组分

体积(μL /50 μL体系)

ddH2O

34

5×Equilibration Buffer

10

FITC-12-dUTP Labling Mix

5

Recombinant TdT Enzyme

1

阴性对照体系:准备一份不含TdT酶的对照孵育缓冲液,用ddH2O替代TdT酶。

3. 在平衡后的区域周围用吸水纸洗掉100 μL 1×Equilibration Buffer中的大部分,然后在5 cm2面积的细胞上加入50 μL TdT孵育缓冲液。不要让细胞干掉。这之后的操作,载玻片要避光。

4. 把塑料盖玻片盖在细胞上以保证试剂的平均分布,在湿盒的底部放上用水浸湿的纸巾。将载玻片置于湿盒内,在37℃孵育60 min。将湿盒用铝箔纸包裹以避光。

注:塑料盖玻片在使用前可以切成两半。折起盖玻片的边缘以便于移除和操作。

5. 移除塑料盖玻片,并将切片置于PBS溶液中室温孵育5 min。

6. 轻轻去掉多余液体,换用新鲜的PBS溶液室温孵育5 min,重复一次。

7. 用滤纸轻轻擦掉样本周围及背面的PBS溶液。注意:为了降低背景,载玻片在用PBS洗一遍后,可再用含0.1% Triton X-1005 mg/mL BSA的PBS洗3次,每次5 min,这样可将游离的未反应标记物清除干净。

8. 样本在染色缸中染色,在黑暗中将载玻片浸入装有PI溶液(1 μg/mL,用PBS新鲜配制并稀释)的染色缸,室温放置5 min。可选操作:样本在染色缸中染色,在黑暗中将载玻片浸入装有DAPI溶液(2 μg/mL,用PBS新鲜配制并稀释)的染色缸,室温放置5 min。

9. 洗涤样本,将载玻片浸入去离子水中,室温放置5 min,重复2次,总共洗3次。

10. 叩干载玻片上多余的水并且用吸水纸擦拭细胞周边的区域。

11. 立即在荧光显微镜下分析样本,用标准的荧光过滤装置在520±20 nm的荧光下观察绿色荧光;在620 nm下观察PI的红色荧光,或在460 nm观察蓝色的DAPI。如有必要,载玻片能在4℃黑暗条件下存放过夜。PI/DAPI能将凋亡和未凋亡的细胞都染成红色/蓝色,只在凋亡的细胞核中才有FITC-12-dUTP掺入而定位的绿色荧光。

四、利用流式细胞术检测悬浮细胞

1. 将3-5×106个细胞PBS在4℃离心(300×g)洗两次,然后重悬在0.5 mL PBS中

2. 固定细胞,加入5 mL 1%配制于PBS中的多聚甲醛溶液,冰上放置20 min。

3. 细胞在4℃,300×g离心10 min,去上清并且重悬于5mL PBS。重复洗一次,并用0.5 mL PBS重悬细胞。

4. 通透细胞,加入5 mL冰上预冷的70%乙醇,在-20℃孵育4小时。细胞能在70%乙醇中-20℃条件下保存一周,或者,细胞可用配制于PBS中的0.2% Triton X-100溶液通透,室温放置5 min。

5. 细胞在300×g离心10 min,并用5 mL PBS重悬。重复离心,并1 mL PBS重悬。

6. 转移2×106个细胞至一个1.5 mL的微量离心管。

7. 300×g离心10 min,去上清,并用80 μL 1×Equilibration Buffer重悬。室温孵育5 min。

8. 在平衡细胞的同时,在冰上融解FITC-12-dUTP标记混合物,并且依照表1,准备足够量的用于所有反应的TdT孵育缓冲液。对于2×106个细胞的一个标准反应,其体积是50 μL,用50μl乘上反应数目来确定所需TdT孵育缓冲液的总体积。

9. 细胞在300×g离心10 min,去上清并把沉淀重悬在50 μL TdT孵育缓冲液中,37℃孵育60 min,避光。每隔15 min用微量移液器轻轻重悬细胞。

10. 加入1mL ,20 mM EDTA终止反应,用微量移液器轻柔混匀。

11. 300×g离心10 min,去上清并把沉淀重悬在1mL配制于PBS中0.1% Triton X-100溶液,其中含5 mg/mL BSA,重复一次,总共洗2次。

12. 300×g离心10 min,去上清并把细胞沉淀重悬在0.5 mL PI溶液(1 μg/mL)中,其中包含250 μg 无DNA酶的Rnase A。

13. 在黑暗中室温孵育细胞30 min。

14. 用流式细胞仪分析细胞,测量520±20 nm的FITC-12-dUTP的绿色荧光和>620 nm的PI红色荧光。PI将凋亡和未凋亡的细胞都染成红色,只在凋亡细胞核中才有FITC-12-dUTP掺入而定位的绿色荧光。

相关产品

产品名称

产品编号

规格

Annexin V-FITC/PI 细胞凋亡检测试剂盒

40302ES20

20 T

40302ES50

50 T

40302ES60

100 T

Annexin V-EGFP/PI 细胞凋亡检测试剂盒

40303ES20

20 T

40303ES50

50 T

40303ES60

100 T

Annexin V-Alexa Fluor 647/PI 细胞凋亡检测试剂盒

40304ES20

20 T

40304ES50

50 T

40304ES60

100 T

Annexin V-Alexa Fluor 488/PI 细胞凋亡检测试剂盒

40305ES20

20 T

40305ES50

50 T

40305ES60

100 T

TUNEL细胞凋亡检测试剂盒(FITC)

40306ES20

20 T

40306ES50

50 T

40306ES60

100 T

TUNEL细胞凋亡检测试剂盒(Alexa Fluor 488)

40307ES20

20 T

40307ES50

50 T

40307ES60

100 T

TUNEL细胞凋亡检测试剂盒(Alexa Fluor 640)

40308ES20

20 T

40308ES50

50 T

40308ES60

100 T

 

 

   HB210715

Q共染之后TUNEL 的信号就不在核内了,感觉都弥散了。TUNEL 染色就按照说明书来的,DAPI 之前孵育另外的一抗?

A可能是后期洗涤次数过多,建议减少洗涤次数,或者洗涤动作轻柔一些。

QTUNEL 可以和 DAPI 一起染色细胞吗?

A可以。

QAnnexin V 和 JC-1、Tunel 细胞凋亡检测的区别?

A Annexin V 是检测细胞早期凋亡的试剂,JC-1 是检测细胞中期凋亡的试剂、Tunel 是检测细胞晚期凋亡的试剂。

QAnnexin V 和JC-1、Tunel 细胞凋亡检测的可以应用到植物或是细菌(原核生物) 吗?

A可以,但是需要制备原生质体,因为植物细胞或是细菌(原核生物含有细胞壁,具体的染液使用剂量只需浸没细胞即可,染色时间对于不同细胞有一定的不同。

QTunel 细胞凋亡检测,细胞爬片好凋亡处理后需要在固定通透吗?

A需要通透,因为 TdT 酶需要经过通透的细胞才能进入细胞内,而 Annexin V  JC-1 是不能进行染色固定的。

QTunel 细胞凋亡检测时,贴壁细胞必须要先消化下来再染色吗?

A不需要,对于贴壁细胞,要先用PBS 洗 2-3 次,然后直接用多聚甲醛固定细胞, 通透处理,染色观察。

Q:固定时间可以增加吗?

A: 4℃放置25 min左右,选择4%多聚甲醛作固定液,乙醇、甲醇、酸性固定液,会导致标记效率低;固定时间不宜过长,过长导致交联程度过高,进而降低标记效率

[1] Chen J, He W, Hu X, et al. A role for ErbB signaling in the induction of reactive astrogliosis. Cell Discov. 2017;3:17044. Published 2017 Dec 5. doi:10.1038/celldisc.2017.44(IF:10.849)
[2] Pan S, Pei L, Zhang A, et al. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials. 2020;230:119606. doi:10.1016/j.biomaterials.2019.119606(IF:10.273)
[3] Liao Y, Li H, Cao H, et al. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell. 2021;12(3):194-212. doi:10.1007/s13238-020-00750-6(IF:10.164)
[4] Li J, Kong D, Wang Q, et al. Niacin ameliorates ulcerative colitis via prostaglandin D2-mediated D prostanoid receptor 1 activation [published correction appears in EMBO Mol Med. 2020 Dec 7;12(12):e13487]. EMBO Mol Med. 2017;9(5):571-588. doi:10.15252/emmm.201606987(IF:9.249)
[5] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[6] Fu H, Zhang W, Yuan Q, et al. PAK1 Promotes the Proliferation and Inhibits Apoptosis of Human Spermatogonial Stem Cells via PDK1/KDR/ZNF367 and ERK1/2 and AKT Pathways. Mol Ther Nucleic Acids. 2018;12:769-786. doi:10.1016/j.omtn.2018.06.006(IF:8.886)
[7] Aung LHH, Chen X, Cueva Jumbo JC, et al. Cardiomyocyte mitochondrial dynamic-related lncRNA 1 (CMDL-1) may serve as a potential therapeutic target in doxorubicin cardiotoxicity. Mol Ther Nucleic Acids. 2021;25:638-651. Published 2021 Aug 19. doi:10.1016/j.omtn.2021.08.006(IF:8.886)
[8] Qian Y, Wang Y, Jia F, et al. Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials. 2019;188:96-106. doi:10.1016/j.biomaterials.2018.10.003(IF:8.806)
[9] Liu Q, Qian Y, Li P, et al. 131I-Labeled Copper Sulfide-Loaded Microspheres to Treat Hepatic Tumors via Hepatic Artery Embolization. Theranostics. 2018;8(3):785-799. Published 2018 Jan 1. doi:10.7150/thno.21491(IF:8.537)
[10] Wang H, Yuan Q, Niu M, et al. Transcriptional regulation of P63 on the apoptosis of male germ cells and three stages of spermatogenesis in mice. Cell Death Dis. 2018;9(2):76. Published 2018 Jan 23. doi:10.1038/s41419-017-0046-z(IF:8.469)
[11] Huang J, Yu W, He Q, et al. Autophagy facilitates age-related cell apoptosis-a new insight from senile cataract. Cell Death Dis. 2022;13(1):37. Published 2022 Jan 10. doi:10.1038/s41419-021-04489-8(IF:8.469)
[12] Zhou M, Liu X, Qiukai E, et al. Long non-coding RNA Xist regulates oocyte loss via suppressing miR-23b-3p/miR-29a-3p maturation and upregulating STX17 in perinatal mouse ovaries. Cell Death Dis. 2021;12(6):540. Published 2021 May 25. doi:10.1038/s41419-021-03831-4(IF:8.469)
[13] Wang YJ, Liu MG, Wang JH, et al. Restoration of Cingulate Long-Term Depression by Enhancing Non-apoptotic Caspase 3 Alleviates Peripheral Pain Hypersensitivity. Cell Rep. 2020;33(6):108369. doi:10.1016/j.celrep.2020.108369(IF:8.109)
[14] Wan Y, Feng B, You Y, et al. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Rep. 2020;33(5):108346. doi:10.1016/j.celrep.2020.108346(IF:8.109)
[15] Yang X, Zhao X, Zhu Y, et al. FKBP3 Induces Human Immunodeficiency Virus Type 1 Latency by Recruiting Histone Deacetylase 1/2 to the Viral Long Terminal Repeat. mBio. 2021;12(4):e0079521. doi:10.1128/mBio.00795-21(IF:7.867)
[16] Sun Z, Huang J, Su L, et al. Arf6-mediated macropinocytosis-enhanced suicide gene therapy of C16TAB-condensed Tat/pDNA nanoparticles in ovarian cancer. Nanoscale. 2021;13(34):14538-14551. Published 2021 Sep 2. doi:10.1039/d1nr03974a(IF:7.790)
[17] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[18] Tang K, Qin W, Wei R, et al. Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence. Pharmacol Res. 2022;179:106123. doi:10.1016/j.phrs.2022.106123(IF:7.658)
[19] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[20] Liu B, Qiao G, Han Y, et al. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater. 2020;117:361-373. doi:10.1016/j.actbio.2020.09.040(IF:7.242)
[21] Liu Y , Zhi X , Hou W , et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018;10(40):19052-19063. doi:10.1039/c8nr05886e(IF:7.233)
[22] Wu D, Hu Q, Tan B, Rose P, Zhu D, Zhu YZ. Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca2+/calmodulin-dependent protein kinase II. Redox Biol. 2018;19:250-262. doi:10.1016/j.redox.2018.08.008(IF:7.126)
[23] Zhang C, Chen H, He Q, et al. Fibrinogen/AKT/Microfilament Axis Promotes Colitis by Enhancing Vascular Permeability. Cell Mol Gastroenterol Hepatol. 2021;11(3):683-696. doi:10.1016/j.jcmgh.2020.10.007(IF:7.076)
[24] Zeng M, He Y, Gao X, et al. Characteristics and functions of glyceraldehyde 3-phosphate dehydrogenase S-nitrosylation during controlled aging of elm and Arabidopsis seeds. J Exp Bot. 2021;72(20):7020-7034. doi:10.1093/jxb/erab322(IF:6.992)
[25] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[26] Chen H, Guan B, Chen X, et al. Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed t-PA Treatment: Involvement of ONOO-MMP-9 Pathway. Transl Stroke Res. 2018;9(5):515-529. doi:10.1007/s12975-017-0598-3(IF:6.829)
[27] Liu Y, Yang Y, Suo Y, et al. Inducible caspase-9 suicide gene under control of endogenous oct4 to safeguard mouse and human pluripotent stem cell therapy. Mol Ther Methods Clin Dev. 2022;24:332-341. Published 2022 Feb 1. doi:10.1016/j.omtm.2022.01.014(IF:6.698)
[28] Zhang P, Han X, Zhang X, Zhu X. Lactobacillus acidophilus ATCC 4356 Alleviates Renal Ischemia-Reperfusion Injury Through Antioxidant Stress and Anti-inflammatory Responses and Improves Intestinal Microbial Distribution. Front Nutr. 2021;8:667695. Published 2021 May 11. doi:10.3389/fnut.2021.667695(IF:6.576)
[29] Hu Z, Zhang H, Yi B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis. 2020;11(1):73. Published 2020 Jan 29. doi:10.1038/s41419-020-2256-z(IF:6.304)
[30] Liu J, Liu B, Yuan P, et al. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. Ecotoxicol Environ Saf. 2021;214:112005. doi:10.1016/j.ecoenv.2021.112005(IF:6.291)
[31] Liu H, Zhou W, Guo L, et al. Quercetin protects against palmitate-induced pancreatic β-cell apoptosis by restoring lysosomal function and autophagic flux [published online ahead of print, 2022 May 25]. J Nutr Biochem. 2022;107:109060. doi:10.1016/j.jnutbio.2022.109060(IF:6.048)
[32] Xie L, Huang W, Fang Z, et al. CircERCC2 ameliorated intervertebral disc degeneration by regulating mitophagy and apoptosis through miR-182-5p/SIRT1 axis. Cell Death Dis. 2019;10(10):751. Published 2019 Oct 3. doi:10.1038/s41419-019-1978-2(IF:5.959)
[33] Zhang C, He A, Liu S, et al. Inhibition of HtrA2 alleviated dextran sulfate sodium (DSS)-induced colitis by preventing necroptosis of intestinal epithelial cells. Cell Death Dis. 2019;10(5):344. Published 2019 Apr 24. doi:10.1038/s41419-019-1580-7(IF:5.959)
[34] Hu Y, Qian Y, Wei J, et al. The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Front Pharmacol. 2021;12:752825. Published 2021 Nov 23. doi:10.3389/fphar.2021.752825(IF:5.811)
[35] Cen K, Chen M, He M, et al. Sporoderm-Broken Spores of Ganoderma lucidum Sensitizes Ovarian Cancer to Cisplatin by ROS/ERK Signaling and Attenuates Chemotherapy-Related Toxicity. Front Pharmacol. 2022;13:826716. Published 2022 Feb 21. doi:10.3389/fphar.2022.826716(IF:5.811)
[36] Mao Y, Tu R, Huang Y, et al. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development. 2019;146(13):dev174615. Published 2019 Jun 28. doi:10.1242/dev.174615(IF:5.763)
[37] Zhou F, Yuan Q, Zhang W, et al. MiR-663a Stimulates Proliferation and Suppresses Early Apoptosis of Human Spermatogonial Stem Cells by Targeting NFIX and Regulating Cell Cycle. Mol Ther Nucleic Acids. 2018;12:319-336. doi:10.1016/j.omtn.2018.05.015(IF:5.660)
[38] Yang C, Yao C, Tian R, et al. miR-202-3p Regulates Sertoli Cell Proliferation, Synthesis Function, and Apoptosis by Targeting LRP6 and Cyclin D1 of Wnt/β-Catenin Signaling. Mol Ther Nucleic Acids. 2019;14:1-19. doi:10.1016/j.omtn.2018.10.012(IF:5.660)
[39] Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res. 2019;38(1):414. Published 2019 Oct 10. doi:10.1186/s13046-019-1404-8(IF:5.646)
[40] Xing J, Wang M, Hong J, et al. TRPM7 channel inhibition exacerbates pulmonary arterial hypertension through MEK/ERK pathway. Aging (Albany NY). 2019;11(12):4050-4065. doi:10.18632/aging.102036(IF:5.515)
[41] Liu G, Liu Q, Shen Y, et al. Early treatment with Resolvin E1 facilitates myocardial recovery from ischaemia in mice. Br J Pharmacol. 2018;175(8):1205-1216. doi:10.1111/bph.14041(IF:5.491)
[42] Wang Z, Wang Q, Xu G, et al. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol. 2020;17(11):1576-1589. doi:10.1080/15476286.2019.1709296(IF:5.350)
[43] Yang K, Wei M, Yang Z, et al. Activation of dopamine receptor D1 inhibits glioblastoma tumorigenicity by regulating autophagic activity. Cell Oncol (Dordr). 2020;43(6):1175-1190. doi:10.1007/s13402-020-00550-4(IF:5.304)
[44] Zhang L, Yao X, Ma M, et al. Protective Effect of l-Theanine against DSS-Induced Colitis by Regulating the Lipid Metabolism and Reducing Inflammation via the NF-κB Signaling Pathway. J Agric Food Chem. 2021;69(47):14192-14203. doi:10.1021/acs.jafc.1c05839(IF:5.279)
[45] Zhang C, Luo Y, He Q, Liu S, He A, Yan J. A pan-RAF inhibitor LY3009120 inhibits necroptosis by preventing phosphorylation of RIPK1 and alleviates dextran sulfate sodium-induced colitis. Clin Sci (Lond). 2019;133(8):919-932. Published 2019 Apr 16. doi:10.1042/CS20181081(IF:5.237)
[46] Ding X, Wang S, Wang Y, et al. Neonatal Heart Responds to Pressure Overload With Differential Alterations in Various Cardiomyocyte Maturation Programs That Accommodate Simultaneous Hypertrophy and Hyperplasia. Front Cell Dev Biol. 2020;8:596960. Published 2020 Nov 19. doi:10.3389/fcell.2020.596960(IF:5.186)
[47] Gu L, Ren F, Fang X, Yuan L, Liu G, Wang S. Exosomal MicroRNA-181a Derived From Mesenchymal Stem Cells Improves Gut Microbiota Composition, Barrier Function, and Inflammatory Status in an Experimental Colitis Model. Front Med (Lausanne). 2021;8:660614. Published 2021 Jun 24. doi:10.3389/fmed.2021.660614(IF:5.093)
[48] Jiang C, Yang W, Wang C, et al. Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. Published 2019 Aug 14. doi:10.1155/2019/1529520(IF:4.868)
[49] Li Y, Wu Y, Jiang K, et al. Mangiferin Prevents TBHP-Induced Apoptosis and ECM Degradation in Mouse Osteoarthritic Chondrocytes via Restoring Autophagy and Ameliorates Murine Osteoarthritis. Oxid Med Cell Longev. 2019;2019:8783197. Published 2019 Oct 15. doi:10.1155/2019/8783197(IF:4.868)
[50] Fan J, Chen M, Wang X, et al. Targeting Smox Is Neuroprotective and Ameliorates Brain Inflammation in Cerebral Ischemia/Reperfusion Rats. Toxicol Sci. 2019;168(2):381-393. doi:10.1093/toxsci/kfy300(IF:4.849)
[51] Wang Y, Duo D, Yan Y, He R, Wu X. Magnesium lithospermate B ameliorates hypobaric hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and its potential targets. Biomed Pharmacother. 2020;130:110560. doi:10.1016/j.biopha.2020.110560(IF:4.545)
[52] Huang R, Zhu Y, Lin L, Song S, Cheng L, Zhu R. Solid Lipid Nanoparticles Enhanced the Neuroprotective Role of Curcumin against Epilepsy through Activation of Bcl-2 Family and P38 MAPK Pathways. ACS Chem Neurosci. 2020;11(13):1985-1995. doi:10.1021/acschemneuro.0c00242(IF:4.486)
[53] Long J, Liu L, Zhou X, Lu X, Qin L. HLA-DQB1-AS1 Promotes Cell Proliferation, Inhibits Apoptosis, and Binds with ZRANB2 Protein in Hepatocellular Carcinoma. J Oncol. 2022;2022:7130634. Published 2022 May 11. doi:10.1155/2022/7130634(IF:4.375)
[54] Li S, Liu M, Ma H, et al. Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res. 2021;14(1):17. Published 2021 Jan 21. doi:10.1186/s13048-020-00763-z(IF:4.234)
[55] Wen C, Li F, Guo Q, et al. Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets. J Anim Sci Biotechnol. 2020;11:56. Published 2020 Jun 3. doi:10.1186/s40104-020-00463-0(IF:4.167)
[56] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502. doi:10.1016/j.fm.2020.103502(IF:4.155)
[57] Li Z, Zhu J, Wang Y, et al. In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy. Asian J Pharm Sci. 2020;15(4):482-491. doi:10.1016/j.ajps.2019.05.002(IF:4.016)
[58] Tang B, Song M, Xie X, et al. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Secreted by BMSCs Regulates Activated Astrocytes by Inhibiting NF-κB Signaling Pathway to Ameliorate Blood Brain Barrier Damage After Intracerebral Hemorrhage. Neurochem Res. 2021;46(9):2387-2402. doi:10.1007/s11064-021-03375-1(IF:3.996)
[59] Li Y, Han W, Wu Y, et al. Stabilization of Hypoxia Inducible Factor-1α by Dimethyloxalylglycine Promotes Recovery from Acute Spinal Cord Injury by Inhibiting Neural Apoptosis and Enhancing Axon Regeneration. J Neurotrauma. 2019;36(24):3394-3409. doi:10.1089/neu.2018.6364(IF:3.754)
[60] Zhou H, Li L, Sun H, et al. Remote Ischemic Preconditioning Attenuates Hepatic Ischemia/Reperfusion Injury after Hemorrhagic Shock by Increasing Autophagy. Int J Med Sci. 2021;18(4):873-882. Published 2021 Jan 1. doi:10.7150/ijms.51268(IF:3.738)
[61] Li S, Zeng M, Yang L, et al. Hsa_circ_0008934 promotes the proliferation and migration of osteosarcoma cells by targeting miR-145-5p to enhance E2F3 expression. Int J Biochem Cell Biol. 2020;127:105826. doi:10.1016/j.biocel.2020.105826(IF:3.673)
[62] Ma X, Zhou Y, Qiao B, et al. Androgen aggravates liver fibrosis by activation of NLRP3 inflammasome in CCl4-induced liver injury mouse model. Am J Physiol Endocrinol Metab. 2020;318(5):E817-E829. doi:10.1152/ajpendo.00427.2019(IF:3.469)
[63] Zhao J, Zhao X, Tian J, et al. Theanine attenuates hippocampus damage of rat cerebral ischemia-reperfusion injury by inhibiting HO-1 expression and activating ERK1/2 pathway. Life Sci. 2020;241:117160. doi:10.1016/j.lfs.2019.117160(IF:3.448)
[64] Zhang Y, Zhu Z, Huang S, et al. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int. 2019;19:198. Published 2019 Jul 29. doi:10.1186/s12935-019-0909-8(IF:3.439)
[65] Wang H, He F, Liang B, et al. p53-Dependent LincRNA-p21 Protects Against Proliferation and Anti-apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. J Cardiovasc Transl Res. 2021;14(3):426-440. doi:10.1007/s12265-020-10074-9(IF:3.312)
[66] Li Y, Zhou T, Su YF, et al. Prokineticin 2 overexpression induces spermatocyte apoptosis in varicocele in rats. Asian J Androl. 2020;22(5):500-506. doi:10.4103/aja.aja_109_19(IF:3.285)
[67] Li X, Zhan J, Hou Y, et al. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-κB signaling pathway after spinal cord injury in rats. Am J Transl Res. 2019;11(10):6544-6552. Published 2019 Oct 15. (IF:3.266)
[68] Zeng L, Gu N, Chen J, Jin G, Zheng Y. IRX1 hypermethylation promotes heart failure by inhibiting CXCL14 expression. Cell Cycle. 2019;18(23):3251-3262. doi:10.1080/15384101.2019.1673099(IF:3.259)
[69] Li P, Hao L, Guo YY, et al. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons. Life Sci. 2018;202:70-77. doi:10.1016/j.lfs.2018.01.011(IF:3.234)
[70] Hu F, Guo L, Yu J, et al. Using Patient-Derived Xenografts to Explore the Efficacy of Treating Head-and-Neck Squamous Cell Carcinoma With Anlotinib. Pathol Oncol Res. 2021;27:1610008. Published 2021 Dec 9. doi:10.3389/pore.2021.1610008(IF:3.201)
[71] Song XY, Wang YY, Chu SF, et al. A new coumarin derivative, IMM-H004, attenuates okadaic acid-induced spatial memory impairment in rats. Acta Pharmacol Sin. 2016;37(4):444-452. doi:10.1038/aps.2015.132(IF:3.166)
[72] Wei X, Zheng Y, Zhang W, Tan J, Zheng H. Ultrasound‑targeted microbubble destruction‑mediated Galectin‑7‑siRNA promotes the homing of bone marrow mesenchymal stem cells to alleviate acute myocardial infarction in rats. Int J Mol Med. 2021;47(2):677-687. doi:10.3892/ijmm.2020.4830(IF:3.098)
[73] Cai H, Han B, Hu Y, et al. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. Int J Mol Med. 2020;45(3):715-730. doi:10.3892/ijmm.2020.4453(IF:3.098)
[74] Zeng J, Zhao H, Chen B. DJ-1/PARK7 inhibits high glucose-induced oxidative stress to prevent retinal pericyte apoptosis via the PI3K/AKT/mTOR signaling pathway. Exp Eye Res. 2019;189:107830. doi:10.1016/j.exer.2019.107830(IF:2.998)
[75] Li Y, Huang D, Zheng L, Cao H, Fan Z. Effect of microRNA-141 on the development of diabetic nephropathy through regulating AKT/AMPK signaling pathway by targeting insulin receptor substrate 2 [published online ahead of print, 2018 Nov 14]. J Cell Biochem. 2018;10.1002/jcb.28078. doi:10.1002/jcb.28078(IF:2.959)
[76] Lou Y, Huang Z, Wu H, Zhou Y. Tranilast attenuates lipopolysaccharide‑induced lung injury via the CXCR4/JAK2/STAT3 signaling pathway. Mol Med Rep. 2022;26(1):220. doi:10.3892/mmr.2022.12736(IF:2.952)
[77] Fan Y, Wu Y. Tetramethylpyrazine alleviates neural apoptosis in injured spinal cord via the downregulation of miR-214-3p. Biomed Pharmacother. 2017;94:827-833. doi:10.1016/j.biopha.2017.07.162(IF:2.759)
[78] Guo F, Xia T, Zhang Y, et al. Menstrual blood derived mesenchymal stem cells combined with Bushen Tiaochong recipe improved chemotherapy-induced premature ovarian failure in mice by inhibiting GADD45b expression in the cell cycle pathway. Reprod Biol Endocrinol. 2019;17(1):56. Published 2019 Jul 16. doi:10.1186/s12958-019-0499-2(IF:2.589)
[79] Weihong C, Bin C, Jianfeng Y. Transmembrane protein 126B protects against high fat diet (HFD)-induced renal injury by suppressing dyslipidemia via inhibition of ROS. Biochem Biophys Res Commun. 2019;509(1):40-47. doi:10.1016/j.bbrc.2018.12.003(IF:2.559)
[80] Wang Y, Wang Q, Zhang L, et al. Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochem Biophys Res Commun. 2017;490(2):231-238. doi:10.1016/j.bbrc.2017.06.027(IF:2.466)
[81] Zhou T, Liang Y, Jiang L, Yu T, Zeng C, Tao E. Mild hypothermia protects against oxygen glucose deprivation/reoxygenation-induced apoptosis via the Wnt/β-catenin signaling pathway in hippocampal neurons. Biochem Biophys Res Commun. 2017;486(4):1005-1013. doi:10.1016/j.bbrc.2017.03.153(IF:2.466)
[82] Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2 [published online ahead of print, 2022 Mar 1]. Biotechnol Appl Biochem. 2022;10.1002/bab.2332. doi:10.1002/bab.2332(IF:2.431)
[83] Zhang Y, Song Y, Li C, et al. Brother of regulator of imprinted sites inhibits cisplatin-induced DNA damage in non-small cell lung cancer. Oncol Lett. 2020;20(5):251. doi:10.3892/ol.2020.12114(IF:2.311)
[84] Zhang D, Zhou XH, Zhang J, et al. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun. 2015;468(4):561-567. doi:10.1016/j.bbrc.2015.10.129(IF:2.297)
[85] Zhou Q, Song C, Liu X, Qin H, Miao L, Zhang X. Peptidylarginine deiminase 4 overexpression resensitizes MCF-7/ADR breast cancer cells to adriamycin via GSK3β/p53 activation. Cancer Manag Res. 2019;11:625-636. Published 2019 Jan 10. doi:10.2147/CMAR.S191353(IF:2.243)
[86] Su Y, Tian H, Wei L, Fu G, Sun T. Integrin β3 inhibits hypoxia-induced apoptosis in cardiomyocytes. Acta Biochim Biophys Sin (Shanghai). 2018;50(7):658-665. doi:10.1093/abbs/gmy056(IF:2.224)
[87] Zhang W, Yin L, Tao X, et al. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation. Environ Toxicol Pharmacol. 2016;45:193-201. doi:10.1016/j.etap.2016.06.002(IF:2.187)
[88] Li JH, Wei TT, Guo L, et al. Curcumin protects thymus against D-galactose-induced senescence in mice. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(2):411-420. doi:10.1007/s00210-020-01945-8(IF:2.050)
[89] Shang D, Wu Y, Ding Y, et al. Identification of a pyridine derivative inducing senescence in ovarian cancer cell lines via P21 activation. Clin Exp Pharmacol Physiol. 2018;45(5):452-460. doi:10.1111/1440-1681.12891(IF:2.010)
[90] Li P, Liu Q, Wang X, Huang G, Song S. 18F-Deoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography (PET/CT) Monitoring of Dynamic Growth Characteristics of Walker-256 Tumor Models in 3 Different Locations in Rats. Med Sci Monit. 2019;25:558-564. Published 2019 Jan 19. doi:10.12659/MSM.909286(IF:1.980)
[91] Yang R, Cai X, Li J, Liu F, Sun T. Protective Effects of MiR-129-5p on Acute Spinal Cord Injury Rats. Med Sci Monit. 2019;25:8281-8288. Published 2019 Nov 4. doi:10.12659/MSM.916731(IF:1.980)
[92] Huang L, Jin K, Lan H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol Lett. 2019;17(4):3842-3850. doi:10.3892/ol.2019.10052(IF:1.871)
[93] Liao X, Zhou S, Zong J, Wang Z. Sevoflurane exerts protective effects on liver ischemia/reperfusion injury by regulating NFKB3 expression via miR-9-5p. Exp Ther Med. 2019;17(4):2632-2640. doi:10.3892/etm.2019.7272(IF:1.448)
[94] Chen H, Lu Q, Chen C, et al. β-catenin regulates effects of miR-24 on the viability and autophagy of glioma cells. Exp Ther Med. 2019;18(2):1285-1290. doi:10.3892/etm.2019.7680(IF:1.448)
[95] Liu ZC, Meng LQ, Song JH, Gao J. Dynamic protein expression of NF-κB following rat intracerebral hemorrhage and its association with apoptosis. Exp Ther Med. 2018;16(5):3903-3908. doi:10.3892/etm.2018.6715(IF:1.410)
[96] Ma L, Cao Y, Hu J, Chu M. High expression of the CKIP-1 gene might promote apoptosis through downregulation of the Ras/ERK signalling pathway in the intestinal type of gastric cancer. J Int Med Res. 2020;48(3):300060520909025. doi:10.1177/0300060520909025(IF:1.287)
[97] Zhou PH, Shi L, Qiu B. Protective effect of controlled release of cytokine response modifier A from chitosan microspheres on rat chondrocytes from interleukin-1β induced inflammation and apoptosis. Exp Ther Med. 2017;14(4):3170-3178. doi:10.3892/etm.2017.4884(IF:1.261)
[98] Zhang C , Wang K , Li C , et al. Stress-induced cytotoxicity of chiral Ag nanoclusters. J Mater Chem B. 2014;2(40):6931-6938. doi:10.1039/c4tb01067a(IF:0.000)

产品描述

细胞在发生凋亡时,会激活一些DNA内切酶,这些内切酶会切断核小体间的基因组DNA。细胞凋亡时抽提DNA进行电泳检测,可以发现180-200 bp的DNA ladder。 

TUNEL (TdT mediated dUTP Nick End Labeling)细胞凋亡检测试剂盒(FITC)可以用来检测组织细胞在凋亡晚期过程中细胞核DNA的断裂情况。其原理是在末端脱氧核糖核苷酸转移酶(Terminal Deoxynucleotidyl Transferase, TdT)的作用下,在基因组DNA断裂时暴露出的3´-羟基(3´-OH)末端掺入FITC-12-dUTP,从而可以用荧光显微镜或流式细胞仪检测。

本试剂盒对标记反应进行了优化,采用最佳比例的FITC-12-dUTP和未标记dNTP进行3’-OH末端的核苷酸掺入,使得同一个断裂的DNA片段末端可以形成更长的“标记尾巴”。该“标记尾巴”减少了相邻掺入dNTP上标记基团的空间位阻,增加每个断裂片段上的荧光基团数目,降低荧光基团相邻后可能造成的聚集和淬灭,从而提高检测灵敏度,减少非特异性反应。

本试剂盒应用范围广,可以用于检测冷冻或石蜡切片中的细胞凋亡情况,也可以检测培养的贴壁细胞或悬浮细胞的凋亡情况。

 

产品组分

编号

组分

产品编号/规格

40306ES20(20T)

40306ES50(50T)

40306ES60(100T)

40306-A

5×Equilibration Buffer

750 μL

1.25 mL×2

1.25 mL×3

40306-B

FITC-12-dUTP Labeling Mix

100 μL

250 μL

250 μL×2

40306-C

Recombinant TdT Enzyme

20 μL

50 μL

50 μL×2

40306-D

Proteinase K (2 mg/mL)

40 μL

100 μL

100 μL×2

40306-E

DNase I (1 U/ μL)

5 μL

12.5 μL

25 μL

40306-F

10 × DNase I Buffer

100 μL

250 μL

500 μL

 

运输与保存方法

冰袋(wet ice)运输。

本试剂盒储存在-20℃FITC-12-dUTP Labling Mix避光储存于-20℃,保质期为年。

 

注意事项

1)需自备用于洗涤细胞的PBS,用于封片的抗荧光淬灭封片液,用于固定的4%多聚甲醛。

2)如需染核,需自备DAPI(2 μg/mL)或PI(1 μg/mL)

3)如果用流式细胞仪,自备PI(1 μg/mL)DNase Free RNase A。

4)为了您的安全和健康,请穿实验服并戴一次性手套操作。

5)本产品仅作科研用途!

 

操作步骤

一、样品准备

A. 石蜡包埋组织切片

1. 室温下将石蜡组织切片放入二甲苯中浸泡5 min,重复一次,以彻底脱掉石蜡。

2. 室温下用100%乙醇浸泡切片5 min,重复一次。

3. 室温下用梯度乙醇(90、80、70%)各浸洗1次,每次3 min。

4. 用PBS轻轻润洗切片,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或疏水笔在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

5. 配制Proteinase K工作液:按1:100的比例,用PBS作为稀释液来稀释2 mg/mL的Proteinase K溶液,使其终浓度为20 μg/mL。

6. 每个样本上滴加100 μL上述Proteinase K工作液,使其被全部覆盖,室温孵育20 min。

注:Proteinase K帮助组织和细胞对后续步骤的染色试剂通透。孵育时间过长会增加组织切片在后续洗涤步骤中从载波片上脱落的风险,过短则可能造成透性处理不充分,影响标记效率。未得到更好的结果,可能需要优化Proteinase K孵育的时间。

7. 用PBS溶液润洗样本,轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

B. 组织冰冻切片

1. 将玻片浸没在4%多聚甲醛溶液(溶于PBS)中固定,室温下孵育15 min。

2. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。

3. 将玻片浸没在PBS溶液中,室温孵育15 min。

4. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或疏水笔在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

5. 配制Proteinase K工作液:按1:100的比例,用PBS作为稀释液来稀释2 mg/mL的Proteinase K溶液,使其终浓度为20 μg/mL。

6. 每个样本上滴加100 μL上述Proteinase K工作液,使其被全部覆盖,室温孵育10 min。

【注】Proteinase K帮助组织和细胞对后续步骤的染色试剂通透。孵育时间过长会增加组织切片在后续洗涤步骤中从载波片上脱落的风险,过短则可能造成透性处理不充分,影响标记效率。未得到更好的结果,可能需要优化Proteinase K孵育的时间。

7. 用PBS溶液润洗样本2-3次。

8. 轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

C. 细胞样品

【细胞爬片的准备】

Lab-Tek载玻片小室(Chamber Slides)上培养贴壁细胞。在凋亡诱导处理之后,用PBS洗2遍载玻片。

【细胞涂片的制备(以多聚赖氨酸包被的载玻片为例)】

1. 准备多聚赖氨酸包被的载玻片:吸取50–100 μL 0.01% (w/v)多聚赖氨酸水溶液,滴至每一片预清洗过的玻璃载玻片的表面。在将要用于固定细胞的区域将多聚赖氨酸溶液涂散为一薄层。待载玻片晾干之后,迅速用去离子水漂洗,然后让包被后的载玻片在空气中晾干30-60 min。包被后的载玻片能在室温储存数月。

2. 以约2×107个细胞/mL的浓度将细胞重悬于PBS中,吸取50-100 μL细胞悬液滴于多聚赖氨酸包被的载玻片上,用一片干净的载玻片轻柔的涂开细胞悬液。

按照以下步骤对细胞样品进行处理:

1. 固定细胞,将载玻片浸入装有4%新鲜配制于PBS中的多聚甲醛的染色缸中,在4℃放置25 min。

2. 洗涤载玻片,将其浸入PBS中,室温放置5 min。重复用PBS洗一次。

3. 轻轻去掉多余液体,并用滤纸小心吸干玻片上样本周围多余的液体。这时,可用石蜡笔或指甲油在样品周围描绘样品分布的轮廓,便于下游透性处理和平衡标记操作。在实验过程中,切勿让样品干燥,处理好的样本放在湿盒中保持样本的湿润。

4. 每个样本上可浸于0.2%配制于PBS中的Triton X-100溶液中,室温孵育5 min进行通透处理Proteinase K处理容易使细胞脱落)

5. 在盛有PBS溶液的敞口烧杯中浸没清洗样本2-3次。

6. 轻轻去掉多余液体,并用滤纸小心吸干载玻片上样本周围的液体。处理后的样本放在湿盒中保存样本的湿润。

二、DNA酶处理阳性对照的步骤(可选)

在样本通透处理后,用DNA酶I处理细胞来准备阳性对照载玻片。该流程通常会引起被处理的大多数细胞显现绿色荧光。

【注】DNA酶I处理固定的细胞会引起染色体DNA的断裂,产生许多可标记的DNA 3’-末端。

1. 按1:10的比例用去离子水稀释10×DNase I Buffer(每个样本需用200 μL 1×DNase I Buffer,即需要用20 μL 10×DNase I Buffer和180 μL去离子水混合稀释),取其中100 μL滴加到已通透的样本上,室温孵育5 min。 向剩余100 μL 1×DNase I Buffer中加1 μL DNase I (1U/μL),使其终浓度为10 U/mL。轻叩掉液体,加入100 μL含5.5-10 units/mL DNase I的缓冲液,室温孵育10 min。

2. 轻轻叩掉液体,加入100 μL 10 U/mL DNase I 的缓冲液,室温孵育10 min。

3. 轻叩载玻片,去掉多余的液体,并将载玻片在装有去离子水的染色缸中彻底洗3-4次。

【注】:阳性对照载玻片必须使用单独的染色缸,否则阳性对照载玻片上残余的DNase I 可能会在实验载玻片上引入高背景。

三、标记与检测

1. 按1:5的比例用去离子水稀释5×Equilibration Buffer。

2. 每个样本滴加100 μL 1×Equilibration Buffer使其全部覆盖待检样本区域,室温孵育10-30 min。或者将载玻片放入一个含有 1×Equilibration Buffer的缸中,保证缓冲液没过样本。在平衡细胞的同时在冰上解冻FITC-12-dUTP Labling Mix,并且依照表1,准备足够量的用于所有实验的和可选阳性对照反应的TdT孵育缓冲液。对于面积小于5 cm2的一个标准反应,其体积是50 μL,用50 μL乘以实验和阳性对照反应的数目来确定所需TdT孵育缓冲液的总体积。对于表面积更大的样本,可成比例的增大试剂体积。

1. 准备用于实验的和可选阳性对照反应的TdT孵育缓冲液

组分

体积(μL /50 μL体系)

ddH2O

34

5×Equilibration Buffer

10

FITC-12-dUTP Labling Mix

5

Recombinant TdT Enzyme

1

阴性对照体系:准备一份不含TdT酶的对照孵育缓冲液,用ddH2O替代TdT酶。

3. 在平衡后的区域周围用吸水纸洗掉100 μL 1×Equilibration Buffer中的大部分,然后在5 cm2面积的细胞上加入50 μL TdT孵育缓冲液。不要让细胞干掉。这之后的操作,载玻片要避光。

4. 把塑料盖玻片盖在细胞上以保证试剂的平均分布,在湿盒的底部放上用水浸湿的纸巾。将载玻片置于湿盒内,在37℃孵育60 min。将湿盒用铝箔纸包裹以避光。

注:塑料盖玻片在使用前可以切成两半。折起盖玻片的边缘以便于移除和操作。

5. 移除塑料盖玻片,并将切片置于PBS溶液中室温孵育5 min。

6. 轻轻去掉多余液体,换用新鲜的PBS溶液室温孵育5 min,重复一次。

7. 用滤纸轻轻擦掉样本周围及背面的PBS溶液。注意:为了降低背景,载玻片在用PBS洗一遍后,可再用含0.1% Triton X-1005 mg/mL BSA的PBS洗3次,每次5 min,这样可将游离的未反应标记物清除干净。

8. 样本在染色缸中染色,在黑暗中将载玻片浸入装有PI溶液(1 μg/mL,用PBS新鲜配制并稀释)的染色缸,室温放置5 min。可选操作:样本在染色缸中染色,在黑暗中将载玻片浸入装有DAPI溶液(2 μg/mL,用PBS新鲜配制并稀释)的染色缸,室温放置5 min。

9. 洗涤样本,将载玻片浸入去离子水中,室温放置5 min,重复2次,总共洗3次。

10. 叩干载玻片上多余的水并且用吸水纸擦拭细胞周边的区域。

11. 立即在荧光显微镜下分析样本,用标准的荧光过滤装置在520±20 nm的荧光下观察绿色荧光;在620 nm下观察PI的红色荧光,或在460 nm观察蓝色的DAPI。如有必要,载玻片能在4℃黑暗条件下存放过夜。PI/DAPI能将凋亡和未凋亡的细胞都染成红色/蓝色,只在凋亡的细胞核中才有FITC-12-dUTP掺入而定位的绿色荧光。

四、利用流式细胞术检测悬浮细胞

1. 将3-5×106个细胞PBS在4℃离心(300×g)洗两次,然后重悬在0.5 mL PBS中

2. 固定细胞,加入5 mL 1%配制于PBS中的多聚甲醛溶液,冰上放置20 min。

3. 细胞在4℃,300×g离心10 min,去上清并且重悬于5mL PBS。重复洗一次,并用0.5 mL PBS重悬细胞。

4. 通透细胞,加入5 mL冰上预冷的70%乙醇,在-20℃孵育4小时。细胞能在70%乙醇中-20℃条件下保存一周,或者,细胞可用配制于PBS中的0.2% Triton X-100溶液通透,室温放置5 min。

5. 细胞在300×g离心10 min,并用5 mL PBS重悬。重复离心,并1 mL PBS重悬。

6. 转移2×106个细胞至一个1.5 mL的微量离心管。

7. 300×g离心10 min,去上清,并用80 μL 1×Equilibration Buffer重悬。室温孵育5 min。

8. 在平衡细胞的同时,在冰上融解FITC-12-dUTP标记混合物,并且依照表1,准备足够量的用于所有反应的TdT孵育缓冲液。对于2×106个细胞的一个标准反应,其体积是50 μL,用50μl乘上反应数目来确定所需TdT孵育缓冲液的总体积。

9. 细胞在300×g离心10 min,去上清并把沉淀重悬在50 μL TdT孵育缓冲液中,37℃孵育60 min,避光。每隔15 min用微量移液器轻轻重悬细胞。

10. 加入1mL ,20 mM EDTA终止反应,用微量移液器轻柔混匀。

11. 300×g离心10 min,去上清并把沉淀重悬在1mL配制于PBS中0.1% Triton X-100溶液,其中含5 mg/mL BSA,重复一次,总共洗2次。

12. 300×g离心10 min,去上清并把细胞沉淀重悬在0.5 mL PI溶液(1 μg/mL)中,其中包含250 μg 无DNA酶的Rnase A。

13. 在黑暗中室温孵育细胞30 min。

14. 用流式细胞仪分析细胞,测量520±20 nm的FITC-12-dUTP的绿色荧光和>620 nm的PI红色荧光。PI将凋亡和未凋亡的细胞都染成红色,只在凋亡细胞核中才有FITC-12-dUTP掺入而定位的绿色荧光。

相关产品

产品名称

产品编号

规格

Annexin V-FITC/PI 细胞凋亡检测试剂盒

40302ES20

20 T

40302ES50

50 T

40302ES60

100 T

Annexin V-EGFP/PI 细胞凋亡检测试剂盒

40303ES20

20 T

40303ES50

50 T

40303ES60

100 T

Annexin V-Alexa Fluor 647/PI 细胞凋亡检测试剂盒

40304ES20

20 T

40304ES50

50 T

40304ES60

100 T

Annexin V-Alexa Fluor 488/PI 细胞凋亡检测试剂盒

40305ES20

20 T

40305ES50

50 T

40305ES60

100 T

TUNEL细胞凋亡检测试剂盒(FITC)

40306ES20

20 T

40306ES50

50 T

40306ES60

100 T

TUNEL细胞凋亡检测试剂盒(Alexa Fluor 488)

40307ES20

20 T

40307ES50

50 T

40307ES60

100 T

TUNEL细胞凋亡检测试剂盒(Alexa Fluor 640)

40308ES20

20 T

40308ES50

50 T

40308ES60

100 T

 

 

   HB210715

Q共染之后TUNEL 的信号就不在核内了,感觉都弥散了。TUNEL 染色就按照说明书来的,DAPI 之前孵育另外的一抗?

A可能是后期洗涤次数过多,建议减少洗涤次数,或者洗涤动作轻柔一些。

QTUNEL 可以和 DAPI 一起染色细胞吗?

A可以。

QAnnexin V 和 JC-1、Tunel 细胞凋亡检测的区别?

A Annexin V 是检测细胞早期凋亡的试剂,JC-1 是检测细胞中期凋亡的试剂、Tunel 是检测细胞晚期凋亡的试剂。

QAnnexin V 和JC-1、Tunel 细胞凋亡检测的可以应用到植物或是细菌(原核生物) 吗?

A可以,但是需要制备原生质体,因为植物细胞或是细菌(原核生物含有细胞壁,具体的染液使用剂量只需浸没细胞即可,染色时间对于不同细胞有一定的不同。

QTunel 细胞凋亡检测,细胞爬片好凋亡处理后需要在固定通透吗?

A需要通透,因为 TdT 酶需要经过通透的细胞才能进入细胞内,而 Annexin V  JC-1 是不能进行染色固定的。

QTunel 细胞凋亡检测时,贴壁细胞必须要先消化下来再染色吗?

A不需要,对于贴壁细胞,要先用PBS 洗 2-3 次,然后直接用多聚甲醛固定细胞, 通透处理,染色观察。

Q:固定时间可以增加吗?

A: 4℃放置25 min左右,选择4%多聚甲醛作固定液,乙醇、甲醇、酸性固定液,会导致标记效率低;固定时间不宜过长,过长导致交联程度过高,进而降低标记效率

[1] Chen J, He W, Hu X, et al. A role for ErbB signaling in the induction of reactive astrogliosis. Cell Discov. 2017;3:17044. Published 2017 Dec 5. doi:10.1038/celldisc.2017.44(IF:10.849)
[2] Pan S, Pei L, Zhang A, et al. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials. 2020;230:119606. doi:10.1016/j.biomaterials.2019.119606(IF:10.273)
[3] Liao Y, Li H, Cao H, et al. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell. 2021;12(3):194-212. doi:10.1007/s13238-020-00750-6(IF:10.164)
[4] Li J, Kong D, Wang Q, et al. Niacin ameliorates ulcerative colitis via prostaglandin D2-mediated D prostanoid receptor 1 activation [published correction appears in EMBO Mol Med. 2020 Dec 7;12(12):e13487]. EMBO Mol Med. 2017;9(5):571-588. doi:10.15252/emmm.201606987(IF:9.249)
[5] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[6] Fu H, Zhang W, Yuan Q, et al. PAK1 Promotes the Proliferation and Inhibits Apoptosis of Human Spermatogonial Stem Cells via PDK1/KDR/ZNF367 and ERK1/2 and AKT Pathways. Mol Ther Nucleic Acids. 2018;12:769-786. doi:10.1016/j.omtn.2018.06.006(IF:8.886)
[7] Aung LHH, Chen X, Cueva Jumbo JC, et al. Cardiomyocyte mitochondrial dynamic-related lncRNA 1 (CMDL-1) may serve as a potential therapeutic target in doxorubicin cardiotoxicity. Mol Ther Nucleic Acids. 2021;25:638-651. Published 2021 Aug 19. doi:10.1016/j.omtn.2021.08.006(IF:8.886)
[8] Qian Y, Wang Y, Jia F, et al. Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials. 2019;188:96-106. doi:10.1016/j.biomaterials.2018.10.003(IF:8.806)
[9] Liu Q, Qian Y, Li P, et al. 131I-Labeled Copper Sulfide-Loaded Microspheres to Treat Hepatic Tumors via Hepatic Artery Embolization. Theranostics. 2018;8(3):785-799. Published 2018 Jan 1. doi:10.7150/thno.21491(IF:8.537)
[10] Wang H, Yuan Q, Niu M, et al. Transcriptional regulation of P63 on the apoptosis of male germ cells and three stages of spermatogenesis in mice. Cell Death Dis. 2018;9(2):76. Published 2018 Jan 23. doi:10.1038/s41419-017-0046-z(IF:8.469)
[11] Huang J, Yu W, He Q, et al. Autophagy facilitates age-related cell apoptosis-a new insight from senile cataract. Cell Death Dis. 2022;13(1):37. Published 2022 Jan 10. doi:10.1038/s41419-021-04489-8(IF:8.469)
[12] Zhou M, Liu X, Qiukai E, et al. Long non-coding RNA Xist regulates oocyte loss via suppressing miR-23b-3p/miR-29a-3p maturation and upregulating STX17 in perinatal mouse ovaries. Cell Death Dis. 2021;12(6):540. Published 2021 May 25. doi:10.1038/s41419-021-03831-4(IF:8.469)
[13] Wang YJ, Liu MG, Wang JH, et al. Restoration of Cingulate Long-Term Depression by Enhancing Non-apoptotic Caspase 3 Alleviates Peripheral Pain Hypersensitivity. Cell Rep. 2020;33(6):108369. doi:10.1016/j.celrep.2020.108369(IF:8.109)
[14] Wan Y, Feng B, You Y, et al. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Rep. 2020;33(5):108346. doi:10.1016/j.celrep.2020.108346(IF:8.109)
[15] Yang X, Zhao X, Zhu Y, et al. FKBP3 Induces Human Immunodeficiency Virus Type 1 Latency by Recruiting Histone Deacetylase 1/2 to the Viral Long Terminal Repeat. mBio. 2021;12(4):e0079521. doi:10.1128/mBio.00795-21(IF:7.867)
[16] Sun Z, Huang J, Su L, et al. Arf6-mediated macropinocytosis-enhanced suicide gene therapy of C16TAB-condensed Tat/pDNA nanoparticles in ovarian cancer. Nanoscale. 2021;13(34):14538-14551. Published 2021 Sep 2. doi:10.1039/d1nr03974a(IF:7.790)
[17] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[18] Tang K, Qin W, Wei R, et al. Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence. Pharmacol Res. 2022;179:106123. doi:10.1016/j.phrs.2022.106123(IF:7.658)
[19] Yang X, Wang Y, Lu P, et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep. 2020;21(11):e49305. doi:10.15252/embr.201949305(IF:7.497)
[20] Liu B, Qiao G, Han Y, et al. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater. 2020;117:361-373. doi:10.1016/j.actbio.2020.09.040(IF:7.242)
[21] Liu Y , Zhi X , Hou W , et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018;10(40):19052-19063. doi:10.1039/c8nr05886e(IF:7.233)
[22] Wu D, Hu Q, Tan B, Rose P, Zhu D, Zhu YZ. Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca2+/calmodulin-dependent protein kinase II. Redox Biol. 2018;19:250-262. doi:10.1016/j.redox.2018.08.008(IF:7.126)
[23] Zhang C, Chen H, He Q, et al. Fibrinogen/AKT/Microfilament Axis Promotes Colitis by Enhancing Vascular Permeability. Cell Mol Gastroenterol Hepatol. 2021;11(3):683-696. doi:10.1016/j.jcmgh.2020.10.007(IF:7.076)
[24] Zeng M, He Y, Gao X, et al. Characteristics and functions of glyceraldehyde 3-phosphate dehydrogenase S-nitrosylation during controlled aging of elm and Arabidopsis seeds. J Exp Bot. 2021;72(20):7020-7034. doi:10.1093/jxb/erab322(IF:6.992)
[25] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[26] Chen H, Guan B, Chen X, et al. Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed t-PA Treatment: Involvement of ONOO-MMP-9 Pathway. Transl Stroke Res. 2018;9(5):515-529. doi:10.1007/s12975-017-0598-3(IF:6.829)
[27] Liu Y, Yang Y, Suo Y, et al. Inducible caspase-9 suicide gene under control of endogenous oct4 to safeguard mouse and human pluripotent stem cell therapy. Mol Ther Methods Clin Dev. 2022;24:332-341. Published 2022 Feb 1. doi:10.1016/j.omtm.2022.01.014(IF:6.698)
[28] Zhang P, Han X, Zhang X, Zhu X. Lactobacillus acidophilus ATCC 4356 Alleviates Renal Ischemia-Reperfusion Injury Through Antioxidant Stress and Anti-inflammatory Responses and Improves Intestinal Microbial Distribution. Front Nutr. 2021;8:667695. Published 2021 May 11. doi:10.3389/fnut.2021.667695(IF:6.576)
[29] Hu Z, Zhang H, Yi B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis. 2020;11(1):73. Published 2020 Jan 29. doi:10.1038/s41419-020-2256-z(IF:6.304)
[30] Liu J, Liu B, Yuan P, et al. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. Ecotoxicol Environ Saf. 2021;214:112005. doi:10.1016/j.ecoenv.2021.112005(IF:6.291)
[31] Liu H, Zhou W, Guo L, et al. Quercetin protects against palmitate-induced pancreatic β-cell apoptosis by restoring lysosomal function and autophagic flux [published online ahead of print, 2022 May 25]. J Nutr Biochem. 2022;107:109060. doi:10.1016/j.jnutbio.2022.109060(IF:6.048)
[32] Xie L, Huang W, Fang Z, et al. CircERCC2 ameliorated intervertebral disc degeneration by regulating mitophagy and apoptosis through miR-182-5p/SIRT1 axis. Cell Death Dis. 2019;10(10):751. Published 2019 Oct 3. doi:10.1038/s41419-019-1978-2(IF:5.959)
[33] Zhang C, He A, Liu S, et al. Inhibition of HtrA2 alleviated dextran sulfate sodium (DSS)-induced colitis by preventing necroptosis of intestinal epithelial cells. Cell Death Dis. 2019;10(5):344. Published 2019 Apr 24. doi:10.1038/s41419-019-1580-7(IF:5.959)
[34] Hu Y, Qian Y, Wei J, et al. The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Front Pharmacol. 2021;12:752825. Published 2021 Nov 23. doi:10.3389/fphar.2021.752825(IF:5.811)
[35] Cen K, Chen M, He M, et al. Sporoderm-Broken Spores of Ganoderma lucidum Sensitizes Ovarian Cancer to Cisplatin by ROS/ERK Signaling and Attenuates Chemotherapy-Related Toxicity. Front Pharmacol. 2022;13:826716. Published 2022 Feb 21. doi:10.3389/fphar.2022.826716(IF:5.811)
[36] Mao Y, Tu R, Huang Y, et al. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development. 2019;146(13):dev174615. Published 2019 Jun 28. doi:10.1242/dev.174615(IF:5.763)
[37] Zhou F, Yuan Q, Zhang W, et al. MiR-663a Stimulates Proliferation and Suppresses Early Apoptosis of Human Spermatogonial Stem Cells by Targeting NFIX and Regulating Cell Cycle. Mol Ther Nucleic Acids. 2018;12:319-336. doi:10.1016/j.omtn.2018.05.015(IF:5.660)
[38] Yang C, Yao C, Tian R, et al. miR-202-3p Regulates Sertoli Cell Proliferation, Synthesis Function, and Apoptosis by Targeting LRP6 and Cyclin D1 of Wnt/β-Catenin Signaling. Mol Ther Nucleic Acids. 2019;14:1-19. doi:10.1016/j.omtn.2018.10.012(IF:5.660)
[39] Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res. 2019;38(1):414. Published 2019 Oct 10. doi:10.1186/s13046-019-1404-8(IF:5.646)
[40] Xing J, Wang M, Hong J, et al. TRPM7 channel inhibition exacerbates pulmonary arterial hypertension through MEK/ERK pathway. Aging (Albany NY). 2019;11(12):4050-4065. doi:10.18632/aging.102036(IF:5.515)
[41] Liu G, Liu Q, Shen Y, et al. Early treatment with Resolvin E1 facilitates myocardial recovery from ischaemia in mice. Br J Pharmacol. 2018;175(8):1205-1216. doi:10.1111/bph.14041(IF:5.491)
[42] Wang Z, Wang Q, Xu G, et al. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol. 2020;17(11):1576-1589. doi:10.1080/15476286.2019.1709296(IF:5.350)
[43] Yang K, Wei M, Yang Z, et al. Activation of dopamine receptor D1 inhibits glioblastoma tumorigenicity by regulating autophagic activity. Cell Oncol (Dordr). 2020;43(6):1175-1190. doi:10.1007/s13402-020-00550-4(IF:5.304)
[44] Zhang L, Yao X, Ma M, et al. Protective Effect of l-Theanine against DSS-Induced Colitis by Regulating the Lipid Metabolism and Reducing Inflammation via the NF-κB Signaling Pathway. J Agric Food Chem. 2021;69(47):14192-14203. doi:10.1021/acs.jafc.1c05839(IF:5.279)
[45] Zhang C, Luo Y, He Q, Liu S, He A, Yan J. A pan-RAF inhibitor LY3009120 inhibits necroptosis by preventing phosphorylation of RIPK1 and alleviates dextran sulfate sodium-induced colitis. Clin Sci (Lond). 2019;133(8):919-932. Published 2019 Apr 16. doi:10.1042/CS20181081(IF:5.237)
[46] Ding X, Wang S, Wang Y, et al. Neonatal Heart Responds to Pressure Overload With Differential Alterations in Various Cardiomyocyte Maturation Programs That Accommodate Simultaneous Hypertrophy and Hyperplasia. Front Cell Dev Biol. 2020;8:596960. Published 2020 Nov 19. doi:10.3389/fcell.2020.596960(IF:5.186)
[47] Gu L, Ren F, Fang X, Yuan L, Liu G, Wang S. Exosomal MicroRNA-181a Derived From Mesenchymal Stem Cells Improves Gut Microbiota Composition, Barrier Function, and Inflammatory Status in an Experimental Colitis Model. Front Med (Lausanne). 2021;8:660614. Published 2021 Jun 24. doi:10.3389/fmed.2021.660614(IF:5.093)
[48] Jiang C, Yang W, Wang C, et al. Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. Published 2019 Aug 14. doi:10.1155/2019/1529520(IF:4.868)
[49] Li Y, Wu Y, Jiang K, et al. Mangiferin Prevents TBHP-Induced Apoptosis and ECM Degradation in Mouse Osteoarthritic Chondrocytes via Restoring Autophagy and Ameliorates Murine Osteoarthritis. Oxid Med Cell Longev. 2019;2019:8783197. Published 2019 Oct 15. doi:10.1155/2019/8783197(IF:4.868)
[50] Fan J, Chen M, Wang X, et al. Targeting Smox Is Neuroprotective and Ameliorates Brain Inflammation in Cerebral Ischemia/Reperfusion Rats. Toxicol Sci. 2019;168(2):381-393. doi:10.1093/toxsci/kfy300(IF:4.849)
[51] Wang Y, Duo D, Yan Y, He R, Wu X. Magnesium lithospermate B ameliorates hypobaric hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and its potential targets. Biomed Pharmacother. 2020;130:110560. doi:10.1016/j.biopha.2020.110560(IF:4.545)
[52] Huang R, Zhu Y, Lin L, Song S, Cheng L, Zhu R. Solid Lipid Nanoparticles Enhanced the Neuroprotective Role of Curcumin against Epilepsy through Activation of Bcl-2 Family and P38 MAPK Pathways. ACS Chem Neurosci. 2020;11(13):1985-1995. doi:10.1021/acschemneuro.0c00242(IF:4.486)
[53] Long J, Liu L, Zhou X, Lu X, Qin L. HLA-DQB1-AS1 Promotes Cell Proliferation, Inhibits Apoptosis, and Binds with ZRANB2 Protein in Hepatocellular Carcinoma. J Oncol. 2022;2022:7130634. Published 2022 May 11. doi:10.1155/2022/7130634(IF:4.375)
[54] Li S, Liu M, Ma H, et al. Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res. 2021;14(1):17. Published 2021 Jan 21. doi:10.1186/s13048-020-00763-z(IF:4.234)
[55] Wen C, Li F, Guo Q, et al. Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets. J Anim Sci Biotechnol. 2020;11:56. Published 2020 Jun 3. doi:10.1186/s40104-020-00463-0(IF:4.167)
[56] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502. doi:10.1016/j.fm.2020.103502(IF:4.155)
[57] Li Z, Zhu J, Wang Y, et al. In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy. Asian J Pharm Sci. 2020;15(4):482-491. doi:10.1016/j.ajps.2019.05.002(IF:4.016)
[58] Tang B, Song M, Xie X, et al. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Secreted by BMSCs Regulates Activated Astrocytes by Inhibiting NF-κB Signaling Pathway to Ameliorate Blood Brain Barrier Damage After Intracerebral Hemorrhage. Neurochem Res. 2021;46(9):2387-2402. doi:10.1007/s11064-021-03375-1(IF:3.996)
[59] Li Y, Han W, Wu Y, et al. Stabilization of Hypoxia Inducible Factor-1α by Dimethyloxalylglycine Promotes Recovery from Acute Spinal Cord Injury by Inhibiting Neural Apoptosis and Enhancing Axon Regeneration. J Neurotrauma. 2019;36(24):3394-3409. doi:10.1089/neu.2018.6364(IF:3.754)
[60] Zhou H, Li L, Sun H, et al. Remote Ischemic Preconditioning Attenuates Hepatic Ischemia/Reperfusion Injury after Hemorrhagic Shock by Increasing Autophagy. Int J Med Sci. 2021;18(4):873-882. Published 2021 Jan 1. doi:10.7150/ijms.51268(IF:3.738)
[61] Li S, Zeng M, Yang L, et al. Hsa_circ_0008934 promotes the proliferation and migration of osteosarcoma cells by targeting miR-145-5p to enhance E2F3 expression. Int J Biochem Cell Biol. 2020;127:105826. doi:10.1016/j.biocel.2020.105826(IF:3.673)
[62] Ma X, Zhou Y, Qiao B, et al. Androgen aggravates liver fibrosis by activation of NLRP3 inflammasome in CCl4-induced liver injury mouse model. Am J Physiol Endocrinol Metab. 2020;318(5):E817-E829. doi:10.1152/ajpendo.00427.2019(IF:3.469)
[63] Zhao J, Zhao X, Tian J, et al. Theanine attenuates hippocampus damage of rat cerebral ischemia-reperfusion injury by inhibiting HO-1 expression and activating ERK1/2 pathway. Life Sci. 2020;241:117160. doi:10.1016/j.lfs.2019.117160(IF:3.448)
[64] Zhang Y, Zhu Z, Huang S, et al. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int. 2019;19:198. Published 2019 Jul 29. doi:10.1186/s12935-019-0909-8(IF:3.439)
[65] Wang H, He F, Liang B, et al. p53-Dependent LincRNA-p21 Protects Against Proliferation and Anti-apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. J Cardiovasc Transl Res. 2021;14(3):426-440. doi:10.1007/s12265-020-10074-9(IF:3.312)
[66] Li Y, Zhou T, Su YF, et al. Prokineticin 2 overexpression induces spermatocyte apoptosis in varicocele in rats. Asian J Androl. 2020;22(5):500-506. doi:10.4103/aja.aja_109_19(IF:3.285)
[67] Li X, Zhan J, Hou Y, et al. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-κB signaling pathway after spinal cord injury in rats. Am J Transl Res. 2019;11(10):6544-6552. Published 2019 Oct 15. (IF:3.266)
[68] Zeng L, Gu N, Chen J, Jin G, Zheng Y. IRX1 hypermethylation promotes heart failure by inhibiting CXCL14 expression. Cell Cycle. 2019;18(23):3251-3262. doi:10.1080/15384101.2019.1673099(IF:3.259)
[69] Li P, Hao L, Guo YY, et al. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons. Life Sci. 2018;202:70-77. doi:10.1016/j.lfs.2018.01.011(IF:3.234)
[70] Hu F, Guo L, Yu J, et al. Using Patient-Derived Xenografts to Explore the Efficacy of Treating Head-and-Neck Squamous Cell Carcinoma With Anlotinib. Pathol Oncol Res. 2021;27:1610008. Published 2021 Dec 9. doi:10.3389/pore.2021.1610008(IF:3.201)
[71] Song XY, Wang YY, Chu SF, et al. A new coumarin derivative, IMM-H004, attenuates okadaic acid-induced spatial memory impairment in rats. Acta Pharmacol Sin. 2016;37(4):444-452. doi:10.1038/aps.2015.132(IF:3.166)
[72] Wei X, Zheng Y, Zhang W, Tan J, Zheng H. Ultrasound‑targeted microbubble destruction‑mediated Galectin‑7‑siRNA promotes the homing of bone marrow mesenchymal stem cells to alleviate acute myocardial infarction in rats. Int J Mol Med. 2021;47(2):677-687. doi:10.3892/ijmm.2020.4830(IF:3.098)
[73] Cai H, Han B, Hu Y, et al. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. Int J Mol Med. 2020;45(3):715-730. doi:10.3892/ijmm.2020.4453(IF:3.098)
[74] Zeng J, Zhao H, Chen B. DJ-1/PARK7 inhibits high glucose-induced oxidative stress to prevent retinal pericyte apoptosis via the PI3K/AKT/mTOR signaling pathway. Exp Eye Res. 2019;189:107830. doi:10.1016/j.exer.2019.107830(IF:2.998)
[75] Li Y, Huang D, Zheng L, Cao H, Fan Z. Effect of microRNA-141 on the development of diabetic nephropathy through regulating AKT/AMPK signaling pathway by targeting insulin receptor substrate 2 [published online ahead of print, 2018 Nov 14]. J Cell Biochem. 2018;10.1002/jcb.28078. doi:10.1002/jcb.28078(IF:2.959)
[76] Lou Y, Huang Z, Wu H, Zhou Y. Tranilast attenuates lipopolysaccharide‑induced lung injury via the CXCR4/JAK2/STAT3 signaling pathway. Mol Med Rep. 2022;26(1):220. doi:10.3892/mmr.2022.12736(IF:2.952)
[77] Fan Y, Wu Y. Tetramethylpyrazine alleviates neural apoptosis in injured spinal cord via the downregulation of miR-214-3p. Biomed Pharmacother. 2017;94:827-833. doi:10.1016/j.biopha.2017.07.162(IF:2.759)
[78] Guo F, Xia T, Zhang Y, et al. Menstrual blood derived mesenchymal stem cells combined with Bushen Tiaochong recipe improved chemotherapy-induced premature ovarian failure in mice by inhibiting GADD45b expression in the cell cycle pathway. Reprod Biol Endocrinol. 2019;17(1):56. Published 2019 Jul 16. doi:10.1186/s12958-019-0499-2(IF:2.589)
[79] Weihong C, Bin C, Jianfeng Y. Transmembrane protein 126B protects against high fat diet (HFD)-induced renal injury by suppressing dyslipidemia via inhibition of ROS. Biochem Biophys Res Commun. 2019;509(1):40-47. doi:10.1016/j.bbrc.2018.12.003(IF:2.559)
[80] Wang Y, Wang Q, Zhang L, et al. Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochem Biophys Res Commun. 2017;490(2):231-238. doi:10.1016/j.bbrc.2017.06.027(IF:2.466)
[81] Zhou T, Liang Y, Jiang L, Yu T, Zeng C, Tao E. Mild hypothermia protects against oxygen glucose deprivation/reoxygenation-induced apoptosis via the Wnt/β-catenin signaling pathway in hippocampal neurons. Biochem Biophys Res Commun. 2017;486(4):1005-1013. doi:10.1016/j.bbrc.2017.03.153(IF:2.466)
[82] Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2 [published online ahead of print, 2022 Mar 1]. Biotechnol Appl Biochem. 2022;10.1002/bab.2332. doi:10.1002/bab.2332(IF:2.431)
[83] Zhang Y, Song Y, Li C, et al. Brother of regulator of imprinted sites inhibits cisplatin-induced DNA damage in non-small cell lung cancer. Oncol Lett. 2020;20(5):251. doi:10.3892/ol.2020.12114(IF:2.311)
[84] Zhang D, Zhou XH, Zhang J, et al. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun. 2015;468(4):561-567. doi:10.1016/j.bbrc.2015.10.129(IF:2.297)
[85] Zhou Q, Song C, Liu X, Qin H, Miao L, Zhang X. Peptidylarginine deiminase 4 overexpression resensitizes MCF-7/ADR breast cancer cells to adriamycin via GSK3β/p53 activation. Cancer Manag Res. 2019;11:625-636. Published 2019 Jan 10. doi:10.2147/CMAR.S191353(IF:2.243)
[86] Su Y, Tian H, Wei L, Fu G, Sun T. Integrin β3 inhibits hypoxia-induced apoptosis in cardiomyocytes. Acta Biochim Biophys Sin (Shanghai). 2018;50(7):658-665. doi:10.1093/abbs/gmy056(IF:2.224)
[87] Zhang W, Yin L, Tao X, et al. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation. Environ Toxicol Pharmacol. 2016;45:193-201. doi:10.1016/j.etap.2016.06.002(IF:2.187)
[88] Li JH, Wei TT, Guo L, et al. Curcumin protects thymus against D-galactose-induced senescence in mice. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(2):411-420. doi:10.1007/s00210-020-01945-8(IF:2.050)
[89] Shang D, Wu Y, Ding Y, et al. Identification of a pyridine derivative inducing senescence in ovarian cancer cell lines via P21 activation. Clin Exp Pharmacol Physiol. 2018;45(5):452-460. doi:10.1111/1440-1681.12891(IF:2.010)
[90] Li P, Liu Q, Wang X, Huang G, Song S. 18F-Deoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography (PET/CT) Monitoring of Dynamic Growth Characteristics of Walker-256 Tumor Models in 3 Different Locations in Rats. Med Sci Monit. 2019;25:558-564. Published 2019 Jan 19. doi:10.12659/MSM.909286(IF:1.980)
[91] Yang R, Cai X, Li J, Liu F, Sun T. Protective Effects of MiR-129-5p on Acute Spinal Cord Injury Rats. Med Sci Monit. 2019;25:8281-8288. Published 2019 Nov 4. doi:10.12659/MSM.916731(IF:1.980)
[92] Huang L, Jin K, Lan H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol Lett. 2019;17(4):3842-3850. doi:10.3892/ol.2019.10052(IF:1.871)
[93] Liao X, Zhou S, Zong J, Wang Z. Sevoflurane exerts protective effects on liver ischemia/reperfusion injury by regulating NFKB3 expression via miR-9-5p. Exp Ther Med. 2019;17(4):2632-2640. doi:10.3892/etm.2019.7272(IF:1.448)
[94] Chen H, Lu Q, Chen C, et al. β-catenin regulates effects of miR-24 on the viability and autophagy of glioma cells. Exp Ther Med. 2019;18(2):1285-1290. doi:10.3892/etm.2019.7680(IF:1.448)
[95] Liu ZC, Meng LQ, Song JH, Gao J. Dynamic protein expression of NF-κB following rat intracerebral hemorrhage and its association with apoptosis. Exp Ther Med. 2018;16(5):3903-3908. doi:10.3892/etm.2018.6715(IF:1.410)
[96] Ma L, Cao Y, Hu J, Chu M. High expression of the CKIP-1 gene might promote apoptosis through downregulation of the Ras/ERK signalling pathway in the intestinal type of gastric cancer. J Int Med Res. 2020;48(3):300060520909025. doi:10.1177/0300060520909025(IF:1.287)
[97] Zhou PH, Shi L, Qiu B. Protective effect of controlled release of cytokine response modifier A from chitosan microspheres on rat chondrocytes from interleukin-1β induced inflammation and apoptosis. Exp Ther Med. 2017;14(4):3170-3178. doi:10.3892/etm.2017.4884(IF:1.261)
[98] Zhang C , Wang K , Li C , et al. Stress-induced cytotoxicity of chiral Ag nanoclusters. J Mater Chem B. 2014;2(40):6931-6938. doi:10.1039/c4tb01067a(IF:0.000)

Imgenex品牌代理

Imgenex

简要描述:

Imgenex提供抗体、ELISA检测试剂盒等免疫学产品、表达系统、RNAi等分子生物学研究产品以及蛋白转染试剂、细胞凋亡、ChIP等研究工具。

Imgenex提供抗体、ELISA检测试剂盒等免疫学产品、表达系统、RNAi等分子生物学研究产品以及蛋白转染试剂、细胞凋亡、ChIP等研究工具。


产品列表:


No.

品牌

货号

名称

规格

1

Imgenex

SP4385P

MC1 Receptor Antibody

0.05mg

2

Imgenex

PA184X

Defensin beta 3 Protein

0.02mg

3

Imgenex

NSB998

PKA 2 beta [phospho Ser114] Antibody

0.1ml

4

Imgenex

NSB992

cAMP Protein Kinase Catalytic subunit beta [phospho Ser338] Antibody

0.05ml

5

Imgenex

NSB955

PKC beta [phospho Thr500] Antibody

0.1ml

6

Imgenex

NSB948

GATA4 [phospho Ser105] Antibody

0.1ml

7

Imgenex

NSB944

NFAT1 [phospho Ser54] Antibody

0.1ml

8

Imgenex

NSB942

PAK1/2/3 [phospho Thr423] Antibody

0.1ml

9

Imgenex

NSB940

PAK1/2/3 [phospho Ser141] Antibody

0.1ml

10

Imgenex

NSB928

RSK1 [phospho Ser380] Antibody

0.1ml

11

Imgenex

NSB918

S6K [phospho Thr229] Antibody

0.1ml

12

Imgenex

NSB912

Src [phospho Tyr522] Antibody

0.1ml

13

Imgenex

NSB910

Hck [phospho Tyr207/Ser211] Antibody

0.1ml

14

Imgenex

NSB909

DAB1 [phospho Ser491] Antibody

0.1ml

15

Imgenex

NSB882

Met (c-Met) [phospho Tyr1003] Antibody

0.1ml

细胞周期与细胞凋亡检测试剂盒说明书

细胞周期与细胞凋亡检测试剂盒说明书

产品详情

货号

规格

价格

78EA10010-100T

100T

询价

产品描述

细胞周期(cell cycle)是指连续分裂的细胞从一次分裂完成开始到下次分裂为止的全过程,分为间期和分裂期(M期),细胞间期又分为休眠期(G0期),DNA合成前期(G1期),DNA合成期(S期),DNA合成后期(G2期)整个周期可以表示为:G0-G1-S-G2-M

本公司生产的细胞周期检测是通过经典的碘化丙啶染色色 (Propidium iodide stainingPI staining)方法进行周期分析的检测试剂盒。PI是一种DNA的荧光染料,可以结合双链DNA产生荧光,其荧光强度与DNA的含量成正比。经碘化丙啶染色后假设G0/G1期细胞的荧光强度为1,那么含有双份基因组DNAG2/M期细胞的荧光强度的理论值为2,正在进行DNA复制的S期细胞的荧光强度为1-2之间。凋亡细胞由于细胞核发生浓缩以及发生DNA片段化导致部分基因组DNA片段在染色过程中丢失,因此凋亡细胞碘化丙啶染色后呈现明显的弱染,即荧光强度小于1,在流式检测的荧光图上出现所谓的sub-G1峰,即凋亡细胞峰。利用流式细胞仪进行荧光分析从而对DNA进行定量,实现细胞周期检测。

产品组成

本试剂盒常用于贴壁细胞或者悬浮细胞的培养,如果检测对象为组织样品,必须消化成单个细胞后在进行染色检测,规格为50T,每T可检测的样本的细胞数量在10-100万之间。

名称

规格

保存条件

染色缓冲液

25 mL

-20℃

碘化丙啶染色液(20X)

1.25 mL

-20℃

RNase A (50X)

0.5 mL

-20℃

运输与保存

冰袋运输,-20℃保存一年。

实验步骤

1. 细胞样品的准备:

a. 对于贴壁细胞:收集培养液上清,PBS润洗细胞一遍,胰酶消化细胞,加入前面收集的培养液终止消化,得到的细胞悬液1000g离心5min收集细胞沉淀备用。

b. 对于悬浮细胞:1000g左右离心3-5 min,沉淀细胞。

(如果细胞沉淀不充分,可以适当延长离心时间或稍稍加大离心力)

2.细胞固定:

1)向步骤1收集得到的沉淀中加入300 μL预冷的PBS,轻柔吹打混匀,轻柔涡旋的过程中滴加700 μL预冷的无水乙醇,最后于4℃固定30 min或更长时间。通常固定2 h或以上更能保证染色效果,固定12-24h可能效果更佳。

21000g左右离心5 min去除固定液,预冷PBS清洗一遍后再次离心,小心吸除上清,可以残留约50微升左右的PBS,以避免吸走细胞。轻轻弹击离心管底以适当分散细胞,避免细胞成团。

3. 细胞染色:

1)参考下表配制碘化丙啶染色液(配置好的碘化丙啶染色液4℃保存,宜当日内使用):

名称

1个样品

染色缓冲液

0.5 mL

碘化丙啶染色液(20X)

25 μL

RNase A (50X)

10 μL

总体积

0.535 mL

2)每个样品中加入0.5 mL的碘化丙啶染色液缓慢并充分重悬细胞沉淀, 37ºC避光孵育30min。随后可以4ºC或冰浴避光存放。染色完成后宜在24 h内完成流式检测。

4.流式检测分析:检测激发波长为488 nm处红色荧光,用流式细胞仪对DNA含量进行分析,确定细胞周期变化情况。

注意事项

(1)需自备PBS70%乙醇,整个过程避光操作。

2)为了您的安全和健康,请穿实验服并戴一次性手套。

3)本产品仅作科研用途!

Dexamethasone地塞米松 抗炎糖皮质素凋亡诱导

Dexamethasone地塞米松 抗炎糖皮质素凋亡诱导

产品说明书

FAQ

COA

已发表文献

产品描述

地塞米松(Dexamethasone),一种抗炎糖皮质素,对细胞存活、细胞信号的转导和基因表达具有一系列的影响,如:可抑制一氧化氮合酶的诱导作用(IC50=5 nM);可通过刺激Na+-K+泵增强大动脉平滑肌细胞阳离子的运输作用;可降低周期蛋白ACdk2的活性;抑制骨细胞G1/S的过渡;抑制Rb蛋白的磷酸化作用;诱导人胸腺细胞凋亡发生。

地塞米松(10 mM),货号:40323ES03,为溶于DMSO的储存液,浓度为10 mM

地塞米松,货号:40323ES2540323ES60,皆为粉末形式供应,需要先配置成10 mM或者更高浓度的DMSO储存液,分装后-20℃冻存。

一般而言,500-1000 nM 的地塞米松于37℃作用6 h足可诱导凋亡发生。

 

产品性质

中文别名(Chinese Synonym

21α-乙酰氧基-9α--11β,17α-二羟基-16α-甲基孕甾-1,4-二烯-3,20-二酮 9α--16α-甲基氢化泼尼松 9--11,17,21-三羟基-16-甲基(11b,16a)-孕甾-1,4-二烯-3,20-二酮 德沙美松

英文别名(English Synonym

9α-Fluoro-16α-methylprednisolone,PrednisoloneF,(11β,16α)-9-Fluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-3,20-dione,9α-Fluoro-16α-methyl-11β,17α,21-trihydroxy-1,4-pregnadiene-3,20-dione

CAS号(CAS NO.

50-02-2

分子式(Formula

C22H29FO5

分子量(Molecular Weight

392.46

结构式(Structure

Dexamethasone地塞米松 抗炎糖皮质素凋亡诱导 

 

运输和保存方法

冰袋运输。粉末4℃干燥保存,5年稳定。储存液-20℃干燥保存,一年稳定。

 

注意事项

1为了您的安全和健康,请穿实验服并戴一次性手套操作。

2本产品仅作科研用途!

HB221011

Q:液体的地塞米松配置成工作液时比较难溶解,有什么方法可以解决?

A:可以 37 度加热并摇晃助溶。

Q:工作液是否可以配置好后放置在 4 度储存?

A:工作液需要现用现配。

[1] Pu J, Zhou X, Liu J, Hou P, Ji M. Therapeutic potential and deleterious effect of glucocorticoids on azoxymethane/dextran sulfate sodium-induced colorectal cancer in mice. Am J Cancer Res. 2021;11(10):4866-4883. Published 2021 Oct 15. (IF:6.166)

产品描述

地塞米松(Dexamethasone),一种抗炎糖皮质素,对细胞存活、细胞信号的转导和基因表达具有一系列的影响,如:可抑制一氧化氮合酶的诱导作用(IC50=5 nM);可通过刺激Na+-K+泵增强大动脉平滑肌细胞阳离子的运输作用;可降低周期蛋白ACdk2的活性;抑制骨细胞G1/S的过渡;抑制Rb蛋白的磷酸化作用;诱导人胸腺细胞凋亡发生。

地塞米松(10 mM),货号:40323ES03,为溶于DMSO的储存液,浓度为10 mM

地塞米松,货号:40323ES2540323ES60,皆为粉末形式供应,需要先配置成10 mM或者更高浓度的DMSO储存液,分装后-20℃冻存。

一般而言,500-1000 nM 的地塞米松于37℃作用6 h足可诱导凋亡发生。

 

产品性质

中文别名(Chinese Synonym

21α-乙酰氧基-9α--11β,17α-二羟基-16α-甲基孕甾-1,4-二烯-3,20-二酮 9α--16α-甲基氢化泼尼松 9--11,17,21-三羟基-16-甲基(11b,16a)-孕甾-1,4-二烯-3,20-二酮 德沙美松

英文别名(English Synonym

9α-Fluoro-16α-methylprednisolone,PrednisoloneF,(11β,16α)-9-Fluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-3,20-dione,9α-Fluoro-16α-methyl-11β,17α,21-trihydroxy-1,4-pregnadiene-3,20-dione

CAS号(CAS NO.

50-02-2

分子式(Formula

C22H29FO5

分子量(Molecular Weight

392.46

结构式(Structure

Dexamethasone地塞米松 抗炎糖皮质素凋亡诱导 

 

运输和保存方法

冰袋运输。粉末4℃干燥保存,5年稳定。储存液-20℃干燥保存,一年稳定。

 

注意事项

1为了您的安全和健康,请穿实验服并戴一次性手套操作。

2本产品仅作科研用途!

HB221011

Q:液体的地塞米松配置成工作液时比较难溶解,有什么方法可以解决?

A:可以 37 度加热并摇晃助溶。

Q:工作液是否可以配置好后放置在 4 度储存?

A:工作液需要现用现配。

[1] Pu J, Zhou X, Liu J, Hou P, Ji M. Therapeutic potential and deleterious effect of glucocorticoids on azoxymethane/dextran sulfate sodium-induced colorectal cancer in mice. Am J Cancer Res. 2021;11(10):4866-4883. Published 2021 Oct 15. (IF:6.166)

细胞凋亡产品


细胞凋亡产品

简要描述:上海金畔生物科技有限公司细胞凋亡产品专业代理,具体产品信息欢迎电询:021-50837765

订购

详细介绍

产品咨询

上海金畔生物科技有限公司细胞凋亡产品专业代理,具体产品信息欢迎电询:

细胞凋亡产品订购

细胞凋亡(apoptosis)一般是指机体细胞在发育过程中或在某些因素作用下,通过细胞内

基因及其产物的调控而发生的一种程序性细胞死亡(programmed cell death)。细胞凋亡对

胚胎发育及形态发生(morphogenesis)、组织内正常细胞群的稳定、机体的防御和免疫反

应、疾病或中毒时引起的细胞损伤、老化、肿瘤的发生进展起着重要作用,并具有潜在的治

疗意义。

细胞凋亡途径中各事件的发生是有时序性的,即各事件按先后顺序依次发生,zui终导致凋亡

小体的出现,细胞随着发生凋亡。典型特征为:细胞膜PS(磷脂酰丝氨酸)的外翻;线粒体

膜电位的丧失;细胞核凝缩和断裂。

 

 

三、TUNEL(Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling

细胞凋亡晚期, 染色体DNA双链断裂或单链断裂而产生大量的粘性3-OH末端,可在脱氧核糖

核苷酸末端转移酶(TdT)的作用下,将荧光素/酶标记的dUTP结合到DNA的3-末端,从而可

进行凋亡细胞的检测,这类方法称为脱氧核糖核苷酸末端转移酶介导的缺口末端标记法

(terminal -deoxynucleotidyl transferase mediated nick end labeling, TUNEL)。

由于正常的或正在增殖的细胞几乎没有DNA的断裂,因而没有3-OH形成,很少能够被染色。

TUNEL实际上是分子生物学与形态学相结合的研究方法,对完整的单个凋亡细胞核或凋亡小

体进行原位染色,能准确地反应细胞凋亡典型的生物化学和形态特征,可用于石蜡包埋组织

切片、冰冻组织切片、培养的细胞和从组织中分离的细胞的细胞形态测定,并可检测出极少

量的凋亡细胞,因而在细胞凋亡的研究中被广泛采用。



产品编号 产品名称 规格
40306ES20 TUNEL 细胞凋亡检测试剂盒(FITC) 20T
40306ES50 TUNEL 细胞凋亡检测试剂盒(FITC) 50T
40306ES60 TUNEL 细胞凋亡检测试剂盒(FITC) 100T
40307ES20 TUNEL 细胞凋亡检测试剂盒( Alexa Fluor 488) 20T
40307ES50 TUNEL 细胞凋亡检测试剂盒( Alexa Fluor 488) 50T
40307ES60 TUNEL细胞凋亡检测试剂盒( Alexa Fluor 488) 100T
40308ES20 TUNEL细胞凋亡检测试剂盒(Alexa Fluor 647) 20T
40308ES50 TUNEL 细胞凋亡检测试剂盒(Alexa Fluor 647) 50T
40308ES60 TUNEL细胞凋亡检测试剂盒(Alexa Fluor 647) 100T
     
其他相关产品:    
     
产品编号 产品名称 规格
40301ES50 细胞周期与细胞凋亡检测试剂盒 50T
40301ES60 细胞周期与细胞凋亡检测试剂盒 100T
40711ES10 PI(Propidium iodide)碘化丙啶 10mg
40711ES60 PI(Propidium iodide)碘化丙啶 100mg
40712ES08 Rhodamine 123 罗丹明123 5mg
40727ES10 DAPI 10mg
40728ES10 DAPI溶液 10ml
40728ES50 DAPI溶液 50ml
40729ES25 Hoechst 33258 25mg
40730ES10 Hoechst 33258 溶液 10ml
40730ES50 Hoechst 33258 溶液 50ml
40731ES25 Hoechst 33342 25mg
40732ES10 Hoechst 33342 溶液 10ml
40732ES50 Hoechst 33342 溶液 50ml

上海金畔生物科技有限公司

细胞周期检测试剂盒 细胞凋亡检测试剂盒|Cell Cycle and Apoptosis Analysis Kit

细胞周期检测试剂盒 细胞凋亡检测试剂盒|Cell Cycle and Apoptosis Analysis Kit

产品说明书

FAQ

COA

已发表文献

产品描述

 

细胞周期与细胞凋亡检测试剂盒(Cell Cycle and Apoptosis Analysis Kit)采用了经典的碘化丙啶染色(Propidium staining,即PI staining)方法对细胞周期与细胞凋亡进行分析。

碘化丙啶 (PropidiumPI) 是一种双链DNA荧光染料,其嵌入双链DNA后可以产生荧光,并且荧光强度和双链DNA的含量成正比。细胞内的DNAPI染色后,可以用流式细胞仪对细胞进行DNA含量测定,根据DNA含量的分布情况,进行细胞周期和细胞凋亡分析。

PI染色后,假设G0/G1期细胞的荧光强度为1,那么含有双份基因组DNAG2/M期细胞的荧光强度的理论值为2,正在进行DNA复制的S期细胞的荧光强度为1-2之间。凋亡细胞由于细胞核发生浓缩以及发生DNA片段化 (DNA fragmentation) 导致部分基因组DNA片断在染色过程中丢失,因此凋亡细胞PI染色后呈现明显的弱染,即荧光强度小于1,在流式检测的荧光图上出现所谓的sub-G1峰,即凋亡细胞峰。

细胞凋亡也可以用流式细胞仪观察细胞光散射的变化来检测。 细胞发生凋亡时,由于胞浆和染色质浓缩、核碎裂,产生凋亡小体,使细胞的光散射性质发生变化。凋亡前期,染色质皱缩,细胞密度增加,前向角光散射色显著降低。凋亡后期,细胞产生凋亡小体,前向角光散射和侧向角光散色都显著降低。

本试剂盒通常应用于贴壁或悬浮细胞的细胞周期与细胞凋亡检测。如果用于组织的细胞周期与细胞凋亡检测,则必须把组织消化成单细胞状态,才可以进行检测。

 

产品组分

 

编号

组分

产品编号/规格

40301ES5050 T

40301ES60(100 T)

40301-A

RNase A Solution

0.5 mL

1 mL

40301-B

PI Solution

0.5 mL

1 mL

40301-C

Staining Solution

25 mL

25 mL*2

 

运输与保存方法

 

运输:冰袋(wet ice)运输。

保存方法:-20℃避光保存,有效期为2年。

【注】如果需要在短时间内多次重复使用,可以于4℃避光保存2个月内有效。

 

注意事项

 

1)本试剂盒需要使用流式细胞仪进行检测。

2)细胞处理需轻柔,尽量避免人为的损伤细胞。

3)为防止不同批次细胞在实验时所处周期不同导致重复性差,可以在实验前进行细胞的同步化处理。实验细胞应处于对数

生长期,贴壁细胞一般在5080%汇合度时收集为宜。

4400目筛网过滤是用来将粘在一起的细胞团滤掉,留下单细胞,否则会出现人为的多倍体干扰。如果没有条件过滤,请在染色之前将细胞轻弹以分散,再进行染色。

5)荧光染料均存在淬灭问题,保存和使用过程中请尽量注意避光,以减缓荧光淬灭。

6)操作碘化丙啶时,应注意防护,保护眼睛、避免吸入。

7为了您的安全和健康,请穿实验服并戴一次性手套操作。

8) 本产品仅作科研用途!

 

使用方法

 

1)细胞样品制备:细胞数量控制在1×105~1 × 106个。

a)贴壁细胞:小心吸除细胞培养液,用胰酶消化细胞,制备成单细胞悬液。1000 g离心5 min沉淀细胞,弃上清,用1 mL预冷的PBS润洗细胞一次,离心收集细胞。

b)悬浮细胞:1000 g离心5 min,沉淀细胞,小心吸除上清。加入1 mL预冷的PBS,重悬细胞,再次离心收集细胞。

c)组织细胞:将组织块用剪刀剪成尽量小的小块后,用0.25%的胰酶消化0.5-1 h,经过200-400目筛网过滤得到单细胞悬液。1000 g离心5 min,沉淀细胞。加入约1 mL预冷的PBS,重悬细胞,再次离心沉淀细胞。如组织难以消化,可加入适量胶原酶。

2)细胞固定:细胞沉淀用1 mL预冷的70%乙醇轻轻混匀,4℃固定2 h以上或者过夜。接下来1000 g,离心5 min沉淀细

胞后,用1 mL预冷的PBS重悬。然后再次1000 g离心5 min沉淀细胞。

3)染色:

0.5 mL染色缓冲液(40301-C)中加入10 μL 碘化丙啶储液40301-B10 μLRNase A40301-A溶液,混匀待用。每个细胞样品加入0.5 mL配置好的碘化丙啶染色液,轻轻混匀重悬细胞。37℃避光孵育30 min就可以进行流式检测流式检测最好在5 h内完成。

【注】:配置好的PI染色液在短时间内可以4℃保存,宜当日使用。

4.流式检测和分析:细胞用400目筛网过滤,用流式细胞仪进行检测,在激发波长488 nm波长处检测,同时检测光散射情况。采用适当分析软件进行细胞DNA含量分析和光散射分析。

HB221122

Q:这款试剂盒是不是凋亡和周期均可以检测?

A:这款试剂盒是检测细胞周期的,细胞周期检测中细胞内的DNA被PI染色后,可以用流式细胞仪对细胞进行DNA含量测定,根据DNA含量的分布情况,进行细胞周期和细胞凋亡分析。

 

Q:Staining Solution能否使用PBS或DPBS代替?

A:可以

 

Q:流式周期结果如何分析?G1,S,G2-M数据分析。G2/G1的数据是有意义吗?

A:一般是G1期数据都基本没有变化,抑制细胞周期的药物处理就是G2/M期增加,S期减少。一般是看各个时期的比值

 

Q:流式周期固定的时候能否直接加70-75%的乙醇重悬细胞固定?

A:不可以,如果直接用70-75%的乙醇,会导致固定效果差或者出现细胞固定后无沉淀的现象。建议先用PBS重悬细胞后,再加入无水乙醇稀释到70-75%。

 

Q:做流式周期的时候,只出现单峰是什么原因?是不是你们的试剂有问题?

A:试剂是没有问题的,能出现峰说明试剂是可以和核酸结合的,只出现单峰或没有G2期,可能原因有以下几点:1.细胞状态,是不是细胞状态较差,建议调整细胞状态之后进行实验。2.细胞密度过密,如果细胞接种的时候过密会导致细胞接触抑制。3.原代细胞,有些原代细胞是没有增值能力的。4.圈门没圈好,建议正确圈门

 

Q:流式分析细胞周期,收集了10的6次方细胞,但细胞在乙醇固定之后,还可以看到细胞沉淀的,但PBS洗涤两次之后,就基本没什么细胞沉淀了,上机发现看不到细胞了。这是怎么回事啊?怎么解决这个问题啊?

A:1. 先用冷PBS悬浮细胞,充分悬浮,使细胞充分分散成单细胞。之后缓慢加入预冷的无水乙醇,终浓度为70-75%乙醇。不直接加75%乙醇的原因是:直接加入乙醇会导致细胞团聚的现象,很难重悬成单细胞。乙醇固定之后没有细胞沉淀。

2.很可能是洗细胞的过程中丢失了,解决办法有:采用尖底的离心管和水平离心机。离心后尽量用吸管吸取上清,不要倾倒;吸上清时残留1mm左右的水膜,不要吸完。离心的转速或时间可稍微增加一点儿。每次加溶液时,吸头最好不要接触液面;混匀时最好不要用吸头吹打,以免吸头挂壁带走部分细胞。

 

Q:试剂盒的 RNase A和 PI的浓度是多少,Staining Solution成分是什么?

A:RNase A和 PI的浓度都是1mg/ml,Staining Solution成分是一些盐溶液配方,配方不告知,用完了可以暂用PBS替代。

 

Q:周期的各个时期加起来不足100%是什么原因呢?

A:应该是没调好,因为流式是一个动态的过程,首位有点偏差是正常的,差的大可能是圈了一些黏连的细胞,需要去掉这些细胞,或者选择不同的拟合公式,可以调整圈门看看。

[1] Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022;13(1):791. Published 2022 Feb 10. doi:10.1038/s41467-022-28452-z(IF:14.919)
[2] Zhao J, Lu P, Wan C, et al. Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nat Commun. 2021;12(1):6839. Published 2021 Nov 25. doi:10.1038/s41467-021-27172-0(IF:14.919)
[3] Xia YK, Zeng YR, Zhang ML, et al. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell. 2021;12(7):557-577. doi:10.1007/s13238-020-00754-2(IF:10.164)
[4] Luo Q, Lin L, Huang Q, et al. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022;143:320-332. doi:10.1016/j.actbio.2022.02.033(IF:8.947)
[5] Zhou Z, Fan T, Yan Y, et al. One stone with two birds: Phytic acid-capped platinum nanoparticles for targeted combination therapy of bone tumors. Biomaterials. 2019;194:130-138. doi:10.1016/j.biomaterials.2018.12.024(IF:8.806)
[6] Du P, Wang T, Wang H, Yang M, Yin H. Mucin-fused myeloid-derived growth factor (MYDGF164) exhibits a prolonged serum half-life and alleviates fibrosis in chronic kidney disease. Br J Pharmacol. 2022;179(16):4136-4156. doi:10.1111/bph.15851(IF:8.740)
[7] Wang J, Du X, Wang X, et al. Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett. 2022;526:76-90. doi:10.1016/j.canlet.2021.11.017(IF:8.679)
[8] Chen L, Su Y, Yin B, et al. LARP6 Regulates Keloid Fibroblast Proliferation, Invasion, and Ability to Synthesize Collagen [published online ahead of print, 2022 Feb 15]. J Invest Dermatol. 2022;S0022-202X(22)00116-6. doi:10.1016/j.jid.2022.01.028(IF:8.551)
[9] Chen W, Song J, Liu S, et al. USP9X promotes apoptosis in cholangiocarcinoma by modulation expression of KIF1Bβ via deubiquitinating EGLN3. J Biomed Sci. 2021;28(1):44. Published 2021 Jun 10. doi:10.1186/s12929-021-00738-2(IF:8.410)
[10] Duan Z , Luo Q , Gu L , et al. A co-delivery nanoplatform for a lignan-derived compound and perfluorocarbon tuning IL-25 secretion and the oxygen level in tumor microenvironments for meliorative tumor radiotherapy. Nanoscale. 2021;13(32):13681-13692. doi:10.1039/d1nr03738b(IF:7.790)
[11] Lu T, Lu H, Duan Z, et al. Discovery of High-Affinity Inhibitors of the BPTF Bromodomain. J Med Chem. 2021;64(16):12075-12088. doi:10.1021/acs.jmedchem.1c00721(IF:7.446)
[12] Zhang L, Zhao J, Dong J, Liu Y, Xuan K, Liu W. GSK3β rephosphorylation rescues ALPL deficiency-induced impairment of odontoblastic differentiation of DPSCs. Stem Cell Res Ther. 2021;12(1):225. Published 2021 Apr 6. doi:10.1186/s13287-021-02235-7(IF:6.832)
[13] Yu H, Yang X, Xiao X, et al. Human Adipose Mesenchymal Stem Cell-derived Exosomes Protect Mice from DSS-Induced Inflammatory Bowel Disease by Promoting Intestinal-stem-cell and Epithelial Regeneration. Aging Dis. 2021;12(6):1423-1437. Published 2021 Sep 1. doi:10.14336/AD.2021.0601(IF:6.745)
[14] Wang Y, Zhao M, Li W, et al. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol. 2021;9:656153. Published 2021 Apr 1. doi:10.3389/fcell.2021.656153(IF:6.684)
[15] Zhang Y, Chen G, Zhuang X, Guo M. Inhibition of Growth of Colon Tumors and Proliferation of HT-29 Cells by Warburgia ugandensis Extract through Mediating G0/G1 Cell Cycle Arrest, Cell Apoptosis, and Intracellular ROS Generation. Oxid Med Cell Longev. 2021;2021:8807676. Published 2021 Dec 29. doi:10.1155/2021/8807676(IF:6.543)
[16] Pan X, Liu N, Liu Y, et al. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors. Eur J Med Chem. 2022;238:114425. doi:10.1016/j.ejmech.2022.114425(IF:6.514)
[17] Wang CJ, Guo X, Zhai RQ, et al. Discovery of penipanoid C-inspired 2-(3,4,5-trimethoxybenzoyl)quinazolin-4(3H)-one derivatives as potential anticancer agents by inhibiting cell proliferation and inducing apoptosis in hepatocellular carcinoma cells. Eur J Med Chem. 2021;224:113671. doi:10.1016/j.ejmech.2021.113671(IF:6.514)
[18] Qin X, Dang W, Yang X, Wang K, Kebreab E, Lyu L. Neddylation inactivation affects cell cycle and apoptosis in sheep follicular granulosa cells [published online ahead of print, 2022 May 16]. J Cell Physiol. 2022;10.1002/jcp.30777. doi:10.1002/jcp.30777(IF:6.384)
[19] Zhang YL, Chen GL, Liu Y, Zhuang XC, Guo MQ. Stimulation of ROS Generation by Extract of Warburgia ugandensis Leading to G0/G1 Cell Cycle Arrest and Antiproliferation in A549 Cells. Antioxidants (Basel). 2021;10(10):1559. Published 2021 Sep 30. doi:10.3390/antiox10101559(IF:6.313)
[20] Xue J, Li S, Shi P, et al. The ETS Inhibitor YK-4-279 Suppresses Thyroid Cancer Progression Independent of TERT Promoter Mutations. Front Oncol. 2021;11:649323. Published 2021 Jun 16. doi:10.3389/fonc.2021.649323(IF:6.244)
[21] Han L, Wu Y, Liu F, Zhang H. eIF4A1 Inhibitor Suppresses Hyperactive mTOR-Associated Tumors by Inducing Necroptosis and G2/M Arrest. Int J Mol Sci. 2022;23(13):6932. Published 2022 Jun 22. doi:10.3390/ijms23136932(IF:5.924)
[22] Xu X, Yuan X, Ni J, et al. MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2. J Cell Physiol. 2021;236(2):1116-1130. doi:10.1002/jcp.29922(IF:5.546)
[23] Chen X, Lin S, Lin Y, et al. BRAF-activated WT1 contributes to cancer growth and regulates autophagy and apoptosis in papillary thyroid carcinoma. J Transl Med. 2022;20(1):79. Published 2022 Feb 5. doi:10.1186/s12967-022-03260-7(IF:5.531)
[24] Sun W, Sun F, Meng J, et al. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem. 2022;126:105906. doi:10.1016/j.bioorg.2022.105906(IF:5.275)
[25] Ma Y, Yang X, Han H, et al. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem. 2021;111:104872. doi:10.1016/j.bioorg.2021.104872(IF:5.275)
[26] Luo Z , Xue K , Zhang X , et al. Thermogelling chitosan-based polymers for the treatment of oral mucosa ulcers. Biomater Sci. 2020;8(5):1364-1379. doi:10.1039/c9bm01754b(IF:5.251)
[27] Sun C, Wei J, Long Z, et al. Spindle pole body component 24 homolog potentiates tumor progression via regulation of SRY-box transcription factor 2 in clear cell renal cell carcinoma. FASEB J. 2022;36(2):e22086. doi:10.1096/fj.202101310R(IF:5.192)
[28] Quan JH, Gao FF, Ismail HAHA, et al. Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation. Int J Nanomedicine. 2020;15:3695-3716. Published 2020 May 26. doi:10.2147/IJN.S244785(IF:5.115)
[29] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[30] Liu J, Tan F, Liu X, Yi R, Zhao X. Exploring the Antioxidant Effects and Periodic Regulation of Cancer Cells by Polyphenols Produced by the Fermentation of Grape Skin by Lactobacillus plantarum KFY02. Biomolecules. 2019;9(10):575. Published 2019 Oct 6. doi:10.3390/biom9100575(IF:4.694)
[31] Chen X, Tang Y, Yan J, Li L, Jiang L, Chen Y. Circ_0062270 upregulates EPHA2 to facilitate melanoma progression via sponging miR-331-3p. J Dermatol Sci. 2021;103(3):176-182. doi:10.1016/j.jdermsci.2021.08.005(IF:4.563)
[32] Xu A, Wang Q, Lin T. Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells. Int J Mol Sci. 2020;21(8):2952. Published 2020 Apr 22. doi:10.3390/ijms21082952(IF:4.556)
[33] Wang J, Teng F, Chai H, Zhang C, Liang X, Yang Y. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2. BMC Cancer. 2021;21(1):456. Published 2021 Apr 23. doi:10.1186/s12885-021-08202-y(IF:4.430)
[34] Sang L, Wu X, Yan T, et al. The m6A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia. J Cancer. 2022;13(3):1019-1030. Published 2022 Jan 4. doi:10.7150/jca.60381(IF:4.207)
[35] Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther. 2021;14:3151-3165. Published 2021 May 13. doi:10.2147/OTT.S291823(IF:4.147)
[36] Liu Z, Li Y, Li X, et al. Overexpression of YBX1 Promotes Pancreatic Ductal Adenocarcinoma Growth via the GSK3B/Cyclin D1/Cyclin E1 Pathway. Mol Ther Oncolytics. 2020;17:21-30. Published 2020 Mar 29. doi:10.1016/j.omto.2020.03.006(IF:4.115)
[37] Jiang L, Wang Y, Liu G, et al. C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells. Cancer Cell Int. 2018;18:12. Published 2018 Jan 25. doi:10.1186/s12935-018-0511-5(IF:3.960)
[38] Wang RQ, He FZ, Meng Q, et al. Tribbles pseudokinase 3 (TRIB3) contributes to the progression of hepatocellular carcinoma by activating the mitogen-activated protein kinase pathway. Ann Transl Med. 2021;9(15):1253. doi:10.21037/atm-21-2820(IF:3.932)
[39] Li MT, Pi XX, Cai XL, et al. Ferredoxin reductase regulates proliferation, differentiation, cell cycle and lipogenesis but not apoptosis in SZ95 sebocytes. Exp Cell Res. 2021;405(2):112680. doi:10.1016/j.yexcr.2021.112680(IF:3.905)
[40] Wu H, Chen L, Zhu F, Han X, Sun L, Chen K. The Cytotoxicity Effect of Resveratrol: Cell Cycle Arrest and Induced Apoptosis of Breast Cancer 4T1 Cells. Toxins (Basel). 2019;11(12):731. Published 2019 Dec 13. doi:10.3390/toxins11120731(IF:3.895)
[41] Wang X, Zhang R, Wu T, et al. Successive treatment with naltrexone induces epithelial-mesenchymal transition and facilitates the malignant biological behaviors of bladder cancer cells. Acta Biochim Biophys Sin (Shanghai). 2021;53(2):238-248. doi:10.1093/abbs/gmaa169(IF:3.848)
[42] Ye F, Zhang W, Ye X, Jin J, Lv Z, Luo C. Identification of Selective, Cell Active Inhibitors of Protein Arginine Methyltransferase 5 through Structure-Based Virtual Screening and Biological Assays. J Chem Inf Model. 2018;58(5):1066-1073. doi:10.1021/acs.jcim.8b00050(IF:3.804)
[43] Shi G, Wang TT, Quan JH, et al. Sox9 facilitates proliferation, differentiation and lipogenesis in primary cultured human sebocytes. J Dermatol Sci. 2017;85(1):44-50. doi:10.1016/j.jdermsci.2016.10.005(IF:3.739)
[44] Liu J, Tan F, Liu X, Yi R, Zhao X. Grape skin fermentation by Lactobacillus fermentum CQPC04 has anti-oxidative effects on human embryonic kidney cells and apoptosis-promoting effects on human hepatoma cells. RSC Adv. 2020;10(8):4607-4620. Published 2020 Jan 29. doi:10.1039/c9ra09863a(IF:3.119)
[45] Liu J, Jiang C, Ma X, Feng L, Wang J. Notoginsenoside Fc Accelerates Reendothelialization following Vascular Injury in Diabetic Rats by Promoting Endothelial Cell Autophagy. J Diabetes Res. 2019;2019:9696521. Published 2019 Sep 3. doi:10.1155/2019/9696521(IF:3.040)
[46] Feng Q, Wang D, Guo P, Zhang Z, Feng J. Long non-coding RNA HOTAIR promotes the progression of synovial sarcoma through microRNA-126/stromal cell-derived factor-1 regulation. Oncol Lett. 2021;21(6):444. doi:10.3892/ol.2021.12705(IF:2.967)
[47] Chai B, Guo Y, Zhu N, et al. Pleckstrin 2 is a potential drug target for colorectal carcinoma with activation of APC/β‑catenin. Mol Med Rep. 2021;24(6):862. doi:10.3892/mmr.2021.12502(IF:2.952)
[48] An J, Wang H, Ma X, et al. Musk ketone induces apoptosis of gastric cancer cells via downregulation of sorbin and SH3 domain containing 2. Mol Med Rep. 2021;23(6):450. doi:10.3892/mmr.2021.12089(IF:2.952)
[49] Hassan RN, Luo H, Jiang W. Effects of Nicotinamide on Cervical Cancer-Derived Fibroblasts: Evidence for Therapeutic Potential. Cancer Manag Res. 2020;12:1089-1100. Published 2020 Feb 12. doi:10.2147/CMAR.S229395(IF:2.886)
[50] Li J, Jiang S, Chen Y, et al. Benzene metabolite hydroquinone induces apoptosis of bone marrow mononuclear cells through inhibition of β-catenin signaling. Toxicol In Vitro. 2018;46:361-369. doi:10.1016/j.tiv.2017.08.018(IF:2.866)
[51] Fang G, Wu Y, Zhang X. CircASXL1 knockdown represses the progression of colorectal cancer by downregulating GRIK3 expression by sponging miR-1205. World J Surg Oncol. 2021;19(1):176. Published 2021 Jun 14. doi:10.1186/s12957-021-02275-6(IF:2.754)
[52] Zhang Y, Sun C, Xiao G, Gu Y. Host defense peptide Hymenochirin-1B induces lung cancer cell apoptosis and cell cycle arrest through the mitochondrial pathway. Biochem Biophys Res Commun. 2019;512(2):269-275. doi:10.1016/j.bbrc.2019.03.029(IF:2.705)
[53] Liu XH, Zou J, Li YJ, et al. Isosteroidal alkaloids from Fritillaria hupehensis Hsiao et K.C.Hsia: Synthesis and biological evaluation of alkaloid derivatives as potential cytotoxic agents. Steroids. 2021;176:108929. doi:10.1016/j.steroids.2021.108929(IF:2.668)
[54] Shi G, Liao PY, Cai XL, et al. FoxO1 enhances differentiation and apoptosis in human primary keratinocytes. Exp Dermatol. 2018;27(11):1254-1260. doi:10.1111/exd.13775(IF:2.608)
[55] Zhang MF, Cai XL, Jing KP, et al. Differentiation Model Establishment and Differentiation-Related Protein Screening in Primary Cultured Human Sebocytes. Biomed Res Int. 2018;2018:7174561. Published 2018 Apr 5. doi:10.1155/2018/7174561(IF:2.583)
[56] Cheng YY, Yang X, Gao X, Song SX, Yang MF, Xie FM. LGR6 promotes glioblastoma malignancy and chemoresistance by activating the Akt signaling pathway. Exp Ther Med. 2021;22(6):1364. doi:10.3892/etm.2021.10798(IF:2.447)
[57] Chai M, Jiang M, Gu C, et al. Osteogenically differentiated mesenchymal stem cells promote the apoptosis of human umbilical vein endothelial cells in vitro [published online ahead of print, 2021 Oct 25]. Biotechnol Appl Biochem. 2021;10.1002/bab.2274. doi:10.1002/bab.2274(IF:2.431)
[58] Cheng Y, Yin Z, Jiang F, Xu J, Chen H, Gu Q. Two new lignans from the aerial parts of Saururus chinensis with cytotoxicity toward nasopharyngeal carcinoma. Fitoterapia. 2020;141:104344. doi:10.1016/j.fitote.2019.104344(IF:2.431)
[59] Lin C, Sun L, Huang S, Weng X, Wu Z. STC2 Is a Potential Prognostic Biomarker for Pancreatic Cancer and Promotes Migration and Invasion by Inducing Epithelial-Mesenchymal Transition. Biomed Res Int. 2019;2019:8042489. Published 2019 Jul 15. doi:10.1155/2019/8042489(IF:2.197)
[60] Wang B, Zhang XL, Li CX, Liu NN, Hu M, Gong ZC. ANLN promotes carcinogenesis in oral cancer by regulating the PI3K/mTOR signaling pathway. Head Face Med. 2021;17(1):18. Published 2021 Jun 3. doi:10.1186/s13005-021-00269-z(IF:2.151)
[61] Chen X, Xing M. Effects of 5-Aza-2'-deoxycytidine on hormone secretion and epigenetic regulation in sika deer ovarian granulosa cells. Reprod Domest Anim. 2021;56(2):360-369. doi:10.1111/rda.13873(IF:1.641)
[62] Wu S, Yang S, Qu H. circ_CHFR regulates ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by miR-15a-5p/EGFR axis in human brain microvessel endothelial cells. Open Life Sci. 2021;16(1):1053-1063. Published 2021 Sep 29. doi:10.1515/biol-2021-0082(IF:0.938)

产品描述

 

细胞周期与细胞凋亡检测试剂盒(Cell Cycle and Apoptosis Analysis Kit)采用了经典的碘化丙啶染色(Propidium staining,即PI staining)方法对细胞周期与细胞凋亡进行分析。

碘化丙啶 (PropidiumPI) 是一种双链DNA荧光染料,其嵌入双链DNA后可以产生荧光,并且荧光强度和双链DNA的含量成正比。细胞内的DNAPI染色后,可以用流式细胞仪对细胞进行DNA含量测定,根据DNA含量的分布情况,进行细胞周期和细胞凋亡分析。

PI染色后,假设G0/G1期细胞的荧光强度为1,那么含有双份基因组DNAG2/M期细胞的荧光强度的理论值为2,正在进行DNA复制的S期细胞的荧光强度为1-2之间。凋亡细胞由于细胞核发生浓缩以及发生DNA片段化 (DNA fragmentation) 导致部分基因组DNA片断在染色过程中丢失,因此凋亡细胞PI染色后呈现明显的弱染,即荧光强度小于1,在流式检测的荧光图上出现所谓的sub-G1峰,即凋亡细胞峰。

细胞凋亡也可以用流式细胞仪观察细胞光散射的变化来检测。 细胞发生凋亡时,由于胞浆和染色质浓缩、核碎裂,产生凋亡小体,使细胞的光散射性质发生变化。凋亡前期,染色质皱缩,细胞密度增加,前向角光散射色显著降低。凋亡后期,细胞产生凋亡小体,前向角光散射和侧向角光散色都显著降低。

本试剂盒通常应用于贴壁或悬浮细胞的细胞周期与细胞凋亡检测。如果用于组织的细胞周期与细胞凋亡检测,则必须把组织消化成单细胞状态,才可以进行检测。

 

产品组分

 

编号

组分

产品编号/规格

40301ES5050 T

40301ES60(100 T)

40301-A

RNase A Solution

0.5 mL

1 mL

40301-B

PI Solution

0.5 mL

1 mL

40301-C

Staining Solution

25 mL

25 mL*2

 

运输与保存方法

 

运输:冰袋(wet ice)运输。

保存方法:-20℃避光保存,有效期为2年。

【注】如果需要在短时间内多次重复使用,可以于4℃避光保存2个月内有效。

 

注意事项

 

1)本试剂盒需要使用流式细胞仪进行检测。

2)细胞处理需轻柔,尽量避免人为的损伤细胞。

3)为防止不同批次细胞在实验时所处周期不同导致重复性差,可以在实验前进行细胞的同步化处理。实验细胞应处于对数

生长期,贴壁细胞一般在5080%汇合度时收集为宜。

4400目筛网过滤是用来将粘在一起的细胞团滤掉,留下单细胞,否则会出现人为的多倍体干扰。如果没有条件过滤,请在染色之前将细胞轻弹以分散,再进行染色。

5)荧光染料均存在淬灭问题,保存和使用过程中请尽量注意避光,以减缓荧光淬灭。

6)操作碘化丙啶时,应注意防护,保护眼睛、避免吸入。

7为了您的安全和健康,请穿实验服并戴一次性手套操作。

8) 本产品仅作科研用途!

 

使用方法

 

1)细胞样品制备:细胞数量控制在1×105~1 × 106个。

a)贴壁细胞:小心吸除细胞培养液,用胰酶消化细胞,制备成单细胞悬液。1000 g离心5 min沉淀细胞,弃上清,用1 mL预冷的PBS润洗细胞一次,离心收集细胞。

b)悬浮细胞:1000 g离心5 min,沉淀细胞,小心吸除上清。加入1 mL预冷的PBS,重悬细胞,再次离心收集细胞。

c)组织细胞:将组织块用剪刀剪成尽量小的小块后,用0.25%的胰酶消化0.5-1 h,经过200-400目筛网过滤得到单细胞悬液。1000 g离心5 min,沉淀细胞。加入约1 mL预冷的PBS,重悬细胞,再次离心沉淀细胞。如组织难以消化,可加入适量胶原酶。

2)细胞固定:细胞沉淀用1 mL预冷的70%乙醇轻轻混匀,4℃固定2 h以上或者过夜。接下来1000 g,离心5 min沉淀细

胞后,用1 mL预冷的PBS重悬。然后再次1000 g离心5 min沉淀细胞。

3)染色:

0.5 mL染色缓冲液(40301-C)中加入10 μL 碘化丙啶储液40301-B10 μLRNase A40301-A溶液,混匀待用。每个细胞样品加入0.5 mL配置好的碘化丙啶染色液,轻轻混匀重悬细胞。37℃避光孵育30 min就可以进行流式检测流式检测最好在5 h内完成。

【注】:配置好的PI染色液在短时间内可以4℃保存,宜当日使用。

4.流式检测和分析:细胞用400目筛网过滤,用流式细胞仪进行检测,在激发波长488 nm波长处检测,同时检测光散射情况。采用适当分析软件进行细胞DNA含量分析和光散射分析。

HB221122

Q:这款试剂盒是不是凋亡和周期均可以检测?

A:这款试剂盒是检测细胞周期的,细胞周期检测中细胞内的DNA被PI染色后,可以用流式细胞仪对细胞进行DNA含量测定,根据DNA含量的分布情况,进行细胞周期和细胞凋亡分析。

 

Q:Staining Solution能否使用PBS或DPBS代替?

A:可以

 

Q:流式周期结果如何分析?G1,S,G2-M数据分析。G2/G1的数据是有意义吗?

A:一般是G1期数据都基本没有变化,抑制细胞周期的药物处理就是G2/M期增加,S期减少。一般是看各个时期的比值

 

Q:流式周期固定的时候能否直接加70-75%的乙醇重悬细胞固定?

A:不可以,如果直接用70-75%的乙醇,会导致固定效果差或者出现细胞固定后无沉淀的现象。建议先用PBS重悬细胞后,再加入无水乙醇稀释到70-75%。

 

Q:做流式周期的时候,只出现单峰是什么原因?是不是你们的试剂有问题?

A:试剂是没有问题的,能出现峰说明试剂是可以和核酸结合的,只出现单峰或没有G2期,可能原因有以下几点:1.细胞状态,是不是细胞状态较差,建议调整细胞状态之后进行实验。2.细胞密度过密,如果细胞接种的时候过密会导致细胞接触抑制。3.原代细胞,有些原代细胞是没有增值能力的。4.圈门没圈好,建议正确圈门

 

Q:流式分析细胞周期,收集了10的6次方细胞,但细胞在乙醇固定之后,还可以看到细胞沉淀的,但PBS洗涤两次之后,就基本没什么细胞沉淀了,上机发现看不到细胞了。这是怎么回事啊?怎么解决这个问题啊?

A:1. 先用冷PBS悬浮细胞,充分悬浮,使细胞充分分散成单细胞。之后缓慢加入预冷的无水乙醇,终浓度为70-75%乙醇。不直接加75%乙醇的原因是:直接加入乙醇会导致细胞团聚的现象,很难重悬成单细胞。乙醇固定之后没有细胞沉淀。

2.很可能是洗细胞的过程中丢失了,解决办法有:采用尖底的离心管和水平离心机。离心后尽量用吸管吸取上清,不要倾倒;吸上清时残留1mm左右的水膜,不要吸完。离心的转速或时间可稍微增加一点儿。每次加溶液时,吸头最好不要接触液面;混匀时最好不要用吸头吹打,以免吸头挂壁带走部分细胞。

 

Q:试剂盒的 RNase A和 PI的浓度是多少,Staining Solution成分是什么?

A:RNase A和 PI的浓度都是1mg/ml,Staining Solution成分是一些盐溶液配方,配方不告知,用完了可以暂用PBS替代。

 

Q:周期的各个时期加起来不足100%是什么原因呢?

A:应该是没调好,因为流式是一个动态的过程,首位有点偏差是正常的,差的大可能是圈了一些黏连的细胞,需要去掉这些细胞,或者选择不同的拟合公式,可以调整圈门看看。

[1] Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022;13(1):791. Published 2022 Feb 10. doi:10.1038/s41467-022-28452-z(IF:14.919)
[2] Zhao J, Lu P, Wan C, et al. Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nat Commun. 2021;12(1):6839. Published 2021 Nov 25. doi:10.1038/s41467-021-27172-0(IF:14.919)
[3] Xia YK, Zeng YR, Zhang ML, et al. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell. 2021;12(7):557-577. doi:10.1007/s13238-020-00754-2(IF:10.164)
[4] Luo Q, Lin L, Huang Q, et al. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022;143:320-332. doi:10.1016/j.actbio.2022.02.033(IF:8.947)
[5] Zhou Z, Fan T, Yan Y, et al. One stone with two birds: Phytic acid-capped platinum nanoparticles for targeted combination therapy of bone tumors. Biomaterials. 2019;194:130-138. doi:10.1016/j.biomaterials.2018.12.024(IF:8.806)
[6] Du P, Wang T, Wang H, Yang M, Yin H. Mucin-fused myeloid-derived growth factor (MYDGF164) exhibits a prolonged serum half-life and alleviates fibrosis in chronic kidney disease. Br J Pharmacol. 2022;179(16):4136-4156. doi:10.1111/bph.15851(IF:8.740)
[7] Wang J, Du X, Wang X, et al. Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett. 2022;526:76-90. doi:10.1016/j.canlet.2021.11.017(IF:8.679)
[8] Chen L, Su Y, Yin B, et al. LARP6 Regulates Keloid Fibroblast Proliferation, Invasion, and Ability to Synthesize Collagen [published online ahead of print, 2022 Feb 15]. J Invest Dermatol. 2022;S0022-202X(22)00116-6. doi:10.1016/j.jid.2022.01.028(IF:8.551)
[9] Chen W, Song J, Liu S, et al. USP9X promotes apoptosis in cholangiocarcinoma by modulation expression of KIF1Bβ via deubiquitinating EGLN3. J Biomed Sci. 2021;28(1):44. Published 2021 Jun 10. doi:10.1186/s12929-021-00738-2(IF:8.410)
[10] Duan Z , Luo Q , Gu L , et al. A co-delivery nanoplatform for a lignan-derived compound and perfluorocarbon tuning IL-25 secretion and the oxygen level in tumor microenvironments for meliorative tumor radiotherapy. Nanoscale. 2021;13(32):13681-13692. doi:10.1039/d1nr03738b(IF:7.790)
[11] Lu T, Lu H, Duan Z, et al. Discovery of High-Affinity Inhibitors of the BPTF Bromodomain. J Med Chem. 2021;64(16):12075-12088. doi:10.1021/acs.jmedchem.1c00721(IF:7.446)
[12] Zhang L, Zhao J, Dong J, Liu Y, Xuan K, Liu W. GSK3β rephosphorylation rescues ALPL deficiency-induced impairment of odontoblastic differentiation of DPSCs. Stem Cell Res Ther. 2021;12(1):225. Published 2021 Apr 6. doi:10.1186/s13287-021-02235-7(IF:6.832)
[13] Yu H, Yang X, Xiao X, et al. Human Adipose Mesenchymal Stem Cell-derived Exosomes Protect Mice from DSS-Induced Inflammatory Bowel Disease by Promoting Intestinal-stem-cell and Epithelial Regeneration. Aging Dis. 2021;12(6):1423-1437. Published 2021 Sep 1. doi:10.14336/AD.2021.0601(IF:6.745)
[14] Wang Y, Zhao M, Li W, et al. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol. 2021;9:656153. Published 2021 Apr 1. doi:10.3389/fcell.2021.656153(IF:6.684)
[15] Zhang Y, Chen G, Zhuang X, Guo M. Inhibition of Growth of Colon Tumors and Proliferation of HT-29 Cells by Warburgia ugandensis Extract through Mediating G0/G1 Cell Cycle Arrest, Cell Apoptosis, and Intracellular ROS Generation. Oxid Med Cell Longev. 2021;2021:8807676. Published 2021 Dec 29. doi:10.1155/2021/8807676(IF:6.543)
[16] Pan X, Liu N, Liu Y, et al. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors. Eur J Med Chem. 2022;238:114425. doi:10.1016/j.ejmech.2022.114425(IF:6.514)
[17] Wang CJ, Guo X, Zhai RQ, et al. Discovery of penipanoid C-inspired 2-(3,4,5-trimethoxybenzoyl)quinazolin-4(3H)-one derivatives as potential anticancer agents by inhibiting cell proliferation and inducing apoptosis in hepatocellular carcinoma cells. Eur J Med Chem. 2021;224:113671. doi:10.1016/j.ejmech.2021.113671(IF:6.514)
[18] Qin X, Dang W, Yang X, Wang K, Kebreab E, Lyu L. Neddylation inactivation affects cell cycle and apoptosis in sheep follicular granulosa cells [published online ahead of print, 2022 May 16]. J Cell Physiol. 2022;10.1002/jcp.30777. doi:10.1002/jcp.30777(IF:6.384)
[19] Zhang YL, Chen GL, Liu Y, Zhuang XC, Guo MQ. Stimulation of ROS Generation by Extract of Warburgia ugandensis Leading to G0/G1 Cell Cycle Arrest and Antiproliferation in A549 Cells. Antioxidants (Basel). 2021;10(10):1559. Published 2021 Sep 30. doi:10.3390/antiox10101559(IF:6.313)
[20] Xue J, Li S, Shi P, et al. The ETS Inhibitor YK-4-279 Suppresses Thyroid Cancer Progression Independent of TERT Promoter Mutations. Front Oncol. 2021;11:649323. Published 2021 Jun 16. doi:10.3389/fonc.2021.649323(IF:6.244)
[21] Han L, Wu Y, Liu F, Zhang H. eIF4A1 Inhibitor Suppresses Hyperactive mTOR-Associated Tumors by Inducing Necroptosis and G2/M Arrest. Int J Mol Sci. 2022;23(13):6932. Published 2022 Jun 22. doi:10.3390/ijms23136932(IF:5.924)
[22] Xu X, Yuan X, Ni J, et al. MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2. J Cell Physiol. 2021;236(2):1116-1130. doi:10.1002/jcp.29922(IF:5.546)
[23] Chen X, Lin S, Lin Y, et al. BRAF-activated WT1 contributes to cancer growth and regulates autophagy and apoptosis in papillary thyroid carcinoma. J Transl Med. 2022;20(1):79. Published 2022 Feb 5. doi:10.1186/s12967-022-03260-7(IF:5.531)
[24] Sun W, Sun F, Meng J, et al. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem. 2022;126:105906. doi:10.1016/j.bioorg.2022.105906(IF:5.275)
[25] Ma Y, Yang X, Han H, et al. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem. 2021;111:104872. doi:10.1016/j.bioorg.2021.104872(IF:5.275)
[26] Luo Z , Xue K , Zhang X , et al. Thermogelling chitosan-based polymers for the treatment of oral mucosa ulcers. Biomater Sci. 2020;8(5):1364-1379. doi:10.1039/c9bm01754b(IF:5.251)
[27] Sun C, Wei J, Long Z, et al. Spindle pole body component 24 homolog potentiates tumor progression via regulation of SRY-box transcription factor 2 in clear cell renal cell carcinoma. FASEB J. 2022;36(2):e22086. doi:10.1096/fj.202101310R(IF:5.192)
[28] Quan JH, Gao FF, Ismail HAHA, et al. Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation. Int J Nanomedicine. 2020;15:3695-3716. Published 2020 May 26. doi:10.2147/IJN.S244785(IF:5.115)
[29] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[30] Liu J, Tan F, Liu X, Yi R, Zhao X. Exploring the Antioxidant Effects and Periodic Regulation of Cancer Cells by Polyphenols Produced by the Fermentation of Grape Skin by Lactobacillus plantarum KFY02. Biomolecules. 2019;9(10):575. Published 2019 Oct 6. doi:10.3390/biom9100575(IF:4.694)
[31] Chen X, Tang Y, Yan J, Li L, Jiang L, Chen Y. Circ_0062270 upregulates EPHA2 to facilitate melanoma progression via sponging miR-331-3p. J Dermatol Sci. 2021;103(3):176-182. doi:10.1016/j.jdermsci.2021.08.005(IF:4.563)
[32] Xu A, Wang Q, Lin T. Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells. Int J Mol Sci. 2020;21(8):2952. Published 2020 Apr 22. doi:10.3390/ijms21082952(IF:4.556)
[33] Wang J, Teng F, Chai H, Zhang C, Liang X, Yang Y. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2. BMC Cancer. 2021;21(1):456. Published 2021 Apr 23. doi:10.1186/s12885-021-08202-y(IF:4.430)
[34] Sang L, Wu X, Yan T, et al. The m6A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia. J Cancer. 2022;13(3):1019-1030. Published 2022 Jan 4. doi:10.7150/jca.60381(IF:4.207)
[35] Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther. 2021;14:3151-3165. Published 2021 May 13. doi:10.2147/OTT.S291823(IF:4.147)
[36] Liu Z, Li Y, Li X, et al. Overexpression of YBX1 Promotes Pancreatic Ductal Adenocarcinoma Growth via the GSK3B/Cyclin D1/Cyclin E1 Pathway. Mol Ther Oncolytics. 2020;17:21-30. Published 2020 Mar 29. doi:10.1016/j.omto.2020.03.006(IF:4.115)
[37] Jiang L, Wang Y, Liu G, et al. C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells. Cancer Cell Int. 2018;18:12. Published 2018 Jan 25. doi:10.1186/s12935-018-0511-5(IF:3.960)
[38] Wang RQ, He FZ, Meng Q, et al. Tribbles pseudokinase 3 (TRIB3) contributes to the progression of hepatocellular carcinoma by activating the mitogen-activated protein kinase pathway. Ann Transl Med. 2021;9(15):1253. doi:10.21037/atm-21-2820(IF:3.932)
[39] Li MT, Pi XX, Cai XL, et al. Ferredoxin reductase regulates proliferation, differentiation, cell cycle and lipogenesis but not apoptosis in SZ95 sebocytes. Exp Cell Res. 2021;405(2):112680. doi:10.1016/j.yexcr.2021.112680(IF:3.905)
[40] Wu H, Chen L, Zhu F, Han X, Sun L, Chen K. The Cytotoxicity Effect of Resveratrol: Cell Cycle Arrest and Induced Apoptosis of Breast Cancer 4T1 Cells. Toxins (Basel). 2019;11(12):731. Published 2019 Dec 13. doi:10.3390/toxins11120731(IF:3.895)
[41] Wang X, Zhang R, Wu T, et al. Successive treatment with naltrexone induces epithelial-mesenchymal transition and facilitates the malignant biological behaviors of bladder cancer cells. Acta Biochim Biophys Sin (Shanghai). 2021;53(2):238-248. doi:10.1093/abbs/gmaa169(IF:3.848)
[42] Ye F, Zhang W, Ye X, Jin J, Lv Z, Luo C. Identification of Selective, Cell Active Inhibitors of Protein Arginine Methyltransferase 5 through Structure-Based Virtual Screening and Biological Assays. J Chem Inf Model. 2018;58(5):1066-1073. doi:10.1021/acs.jcim.8b00050(IF:3.804)
[43] Shi G, Wang TT, Quan JH, et al. Sox9 facilitates proliferation, differentiation and lipogenesis in primary cultured human sebocytes. J Dermatol Sci. 2017;85(1):44-50. doi:10.1016/j.jdermsci.2016.10.005(IF:3.739)
[44] Liu J, Tan F, Liu X, Yi R, Zhao X. Grape skin fermentation by Lactobacillus fermentum CQPC04 has anti-oxidative effects on human embryonic kidney cells and apoptosis-promoting effects on human hepatoma cells. RSC Adv. 2020;10(8):4607-4620. Published 2020 Jan 29. doi:10.1039/c9ra09863a(IF:3.119)
[45] Liu J, Jiang C, Ma X, Feng L, Wang J. Notoginsenoside Fc Accelerates Reendothelialization following Vascular Injury in Diabetic Rats by Promoting Endothelial Cell Autophagy. J Diabetes Res. 2019;2019:9696521. Published 2019 Sep 3. doi:10.1155/2019/9696521(IF:3.040)
[46] Feng Q, Wang D, Guo P, Zhang Z, Feng J. Long non-coding RNA HOTAIR promotes the progression of synovial sarcoma through microRNA-126/stromal cell-derived factor-1 regulation. Oncol Lett. 2021;21(6):444. doi:10.3892/ol.2021.12705(IF:2.967)
[47] Chai B, Guo Y, Zhu N, et al. Pleckstrin 2 is a potential drug target for colorectal carcinoma with activation of APC/β‑catenin. Mol Med Rep. 2021;24(6):862. doi:10.3892/mmr.2021.12502(IF:2.952)
[48] An J, Wang H, Ma X, et al. Musk ketone induces apoptosis of gastric cancer cells via downregulation of sorbin and SH3 domain containing 2. Mol Med Rep. 2021;23(6):450. doi:10.3892/mmr.2021.12089(IF:2.952)
[49] Hassan RN, Luo H, Jiang W. Effects of Nicotinamide on Cervical Cancer-Derived Fibroblasts: Evidence for Therapeutic Potential. Cancer Manag Res. 2020;12:1089-1100. Published 2020 Feb 12. doi:10.2147/CMAR.S229395(IF:2.886)
[50] Li J, Jiang S, Chen Y, et al. Benzene metabolite hydroquinone induces apoptosis of bone marrow mononuclear cells through inhibition of β-catenin signaling. Toxicol In Vitro. 2018;46:361-369. doi:10.1016/j.tiv.2017.08.018(IF:2.866)
[51] Fang G, Wu Y, Zhang X. CircASXL1 knockdown represses the progression of colorectal cancer by downregulating GRIK3 expression by sponging miR-1205. World J Surg Oncol. 2021;19(1):176. Published 2021 Jun 14. doi:10.1186/s12957-021-02275-6(IF:2.754)
[52] Zhang Y, Sun C, Xiao G, Gu Y. Host defense peptide Hymenochirin-1B induces lung cancer cell apoptosis and cell cycle arrest through the mitochondrial pathway. Biochem Biophys Res Commun. 2019;512(2):269-275. doi:10.1016/j.bbrc.2019.03.029(IF:2.705)
[53] Liu XH, Zou J, Li YJ, et al. Isosteroidal alkaloids from Fritillaria hupehensis Hsiao et K.C.Hsia: Synthesis and biological evaluation of alkaloid derivatives as potential cytotoxic agents. Steroids. 2021;176:108929. doi:10.1016/j.steroids.2021.108929(IF:2.668)
[54] Shi G, Liao PY, Cai XL, et al. FoxO1 enhances differentiation and apoptosis in human primary keratinocytes. Exp Dermatol. 2018;27(11):1254-1260. doi:10.1111/exd.13775(IF:2.608)
[55] Zhang MF, Cai XL, Jing KP, et al. Differentiation Model Establishment and Differentiation-Related Protein Screening in Primary Cultured Human Sebocytes. Biomed Res Int. 2018;2018:7174561. Published 2018 Apr 5. doi:10.1155/2018/7174561(IF:2.583)
[56] Cheng YY, Yang X, Gao X, Song SX, Yang MF, Xie FM. LGR6 promotes glioblastoma malignancy and chemoresistance by activating the Akt signaling pathway. Exp Ther Med. 2021;22(6):1364. doi:10.3892/etm.2021.10798(IF:2.447)
[57] Chai M, Jiang M, Gu C, et al. Osteogenically differentiated mesenchymal stem cells promote the apoptosis of human umbilical vein endothelial cells in vitro [published online ahead of print, 2021 Oct 25]. Biotechnol Appl Biochem. 2021;10.1002/bab.2274. doi:10.1002/bab.2274(IF:2.431)
[58] Cheng Y, Yin Z, Jiang F, Xu J, Chen H, Gu Q. Two new lignans from the aerial parts of Saururus chinensis with cytotoxicity toward nasopharyngeal carcinoma. Fitoterapia. 2020;141:104344. doi:10.1016/j.fitote.2019.104344(IF:2.431)
[59] Lin C, Sun L, Huang S, Weng X, Wu Z. STC2 Is a Potential Prognostic Biomarker for Pancreatic Cancer and Promotes Migration and Invasion by Inducing Epithelial-Mesenchymal Transition. Biomed Res Int. 2019;2019:8042489. Published 2019 Jul 15. doi:10.1155/2019/8042489(IF:2.197)
[60] Wang B, Zhang XL, Li CX, Liu NN, Hu M, Gong ZC. ANLN promotes carcinogenesis in oral cancer by regulating the PI3K/mTOR signaling pathway. Head Face Med. 2021;17(1):18. Published 2021 Jun 3. doi:10.1186/s13005-021-00269-z(IF:2.151)
[61] Chen X, Xing M. Effects of 5-Aza-2'-deoxycytidine on hormone secretion and epigenetic regulation in sika deer ovarian granulosa cells. Reprod Domest Anim. 2021;56(2):360-369. doi:10.1111/rda.13873(IF:1.641)
[62] Wu S, Yang S, Qu H. circ_CHFR regulates ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by miR-15a-5p/EGFR axis in human brain microvessel endothelial cells. Open Life Sci. 2021;16(1):1053-1063. Published 2021 Sep 29. doi:10.1515/biol-2021-0082(IF:0.938)

SM-164 Smac类似物/XIAP拮抗剂/肿瘤细胞凋亡诱导剂|CAS 957135-43-2

SM-164 Smac类似物/XIAP拮抗剂/肿瘤细胞凋亡诱导剂|CAS 957135-43-2

产品说明书

FAQ

COA

已发表文献

产品描述

SM-164是一种有效的细胞通透性Smac类似物,能与XIAP蛋白结合(Ki=0.56 nM),并与cIAP-1和cIAP-2蛋白结合,Ki分别为0.31和1.1 nM。SM-164拮抗XIAP,诱导完全的cIAP-1降解,并诱导TNF-alpha依赖的肿瘤细胞凋亡。在MDA-MB-231移植瘤小鼠中,SM-164有效降解cIAP-1水平,并诱导肿瘤细胞凋亡,引起肿瘤衰退,但对正常小鼠组织没有毒性。

【该产品仅用于科研实验,不能用于人体】

产品性质

英文别名(English Synonym)

SM164

化学名(Chemical Name)

(3S,6R,10aR)-6-((S)-2-(methylamino)propanamido)-N-((R)-(1-(4-(4-(4-(4-((S)-((3S,6S,10aS)-

6-((S)-2-(methylamino)propanamido)-5-oxodecahydropyrrolo[1,2-a]azocine-3-carboxamido)

(phenyl)methyl)-1H-1,2,3-triazol-1-yl)butyl)phenyl)butyl)-1H-1,2,3-triazol-4-yl)

靶点(Target)

IAP

CAS 号(CAS NO.)

957135-43-2

分子式(Molecular Formula)

C62H84N14O6

分子量(Molecular Weight)

1121.42

外观(Appearance)

粉末

纯度(Purity)

>98%

溶解性(Solubility)

溶于DMSO (10 mM)

结构式(Structure)

SM-164 Smac类似物/XIAP拮抗剂/肿瘤细胞凋亡诱导剂|CAS 957135-43-2 

运输与保存方法

冰袋运输。粉末直接保存于-20 ºC,有效期2年。溶于DMSO。建议分装后-20ºC避光保存,避免反复冻存,至少可存放6个月。

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作。

2)粉末溶解前请先短暂离心,以保证产品全在管底。

3)本产品仅用于科研用途,禁止用于人身上。

使用浓度

【具体使用浓度请参考相关文献,并根据自身实验条件(如实验目的,细胞种类,培养特性等)进行摸索和优化。】

相关实验(数据来自于公开发表的文献,仅供参考)

(一)细胞实验(体外研究)

在SM-164对IAP家族蛋白的亲和力研究中,SM-164作用于XIAP、cIAP-1和cIAP-2蛋白,Ki分别为0.56 nM、0.31和1.1 nM。另外,SM-164剂量依赖性地拮抗XIAP,并诱导caspase活性,诱导细胞凋亡和细胞死亡。[2]

(二)动物实验(体内研究)

在体内实验中,给MDA-MB-231移植瘤小鼠静脉注射5 mg/kg SM-164,SM-164明显降低cIAP-1蛋白水平,而且SM-164诱导明显的细胞凋亡。[2]

参考文献

[1] Zhang S, et al. Smac mimetic SM-164 potentiates APO2L/TRAIL- and doxorubicin-mediated anticancer activity in human hepatocellular carcinoma cells. PLoS One. 7(12): e51461 (2012).

[2] Lu J, et al. SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res. 68(22):9384-9393 (2008).

[3] Yang J, et al. Radiosensitization of head and neck squamous cell carcinoma by a SMAC-mimetic compound, SM-164, requires activation of caspases. Mol Cancer Ther. 10(4): 658-669 (2011).

HB181129

SM-164 Smac类似物/XIAP拮抗剂/肿瘤细胞凋亡诱导剂|CAS 957135-43-2

暂无内容

SM-164 Smac类似物/XIAP拮抗剂/肿瘤细胞凋亡诱导剂|CAS 957135-43-2

暂无内容

产品描述

SM-164是一种有效的细胞通透性Smac类似物,能与XIAP蛋白结合(Ki=0.56 nM),并与cIAP-1和cIAP-2蛋白结合,Ki分别为0.31和1.1 nM。SM-164拮抗XIAP,诱导完全的cIAP-1降解,并诱导TNF-alpha依赖的肿瘤细胞凋亡。在MDA-MB-231移植瘤小鼠中,SM-164有效降解cIAP-1水平,并诱导肿瘤细胞凋亡,引起肿瘤衰退,但对正常小鼠组织没有毒性。

【该产品仅用于科研实验,不能用于人体】

产品性质

英文别名(English Synonym)

SM164

化学名(Chemical Name)

(3S,6R,10aR)-6-((S)-2-(methylamino)propanamido)-N-((R)-(1-(4-(4-(4-(4-((S)-((3S,6S,10aS)-

6-((S)-2-(methylamino)propanamido)-5-oxodecahydropyrrolo[1,2-a]azocine-3-carboxamido)

(phenyl)methyl)-1H-1,2,3-triazol-1-yl)butyl)phenyl)butyl)-1H-1,2,3-triazol-4-yl)

靶点(Target)

IAP

CAS 号(CAS NO.)

957135-43-2

分子式(Molecular Formula)

C62H84N14O6

分子量(Molecular Weight)

1121.42

外观(Appearance)

粉末

纯度(Purity)

>98%

溶解性(Solubility)

溶于DMSO (10 mM)

结构式(Structure)

SM-164 Smac类似物/XIAP拮抗剂/肿瘤细胞凋亡诱导剂|CAS 957135-43-2 

运输与保存方法

冰袋运输。粉末直接保存于-20 ºC,有效期2年。溶于DMSO。建议分装后-20ºC避光保存,避免反复冻存,至少可存放6个月。

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作。

2)粉末溶解前请先短暂离心,以保证产品全在管底。

3)本产品仅用于科研用途,禁止用于人身上。

使用浓度

【具体使用浓度请参考相关文献,并根据自身实验条件(如实验目的,细胞种类,培养特性等)进行摸索和优化。】

相关实验(数据来自于公开发表的文献,仅供参考)

(一)细胞实验(体外研究)

在SM-164对IAP家族蛋白的亲和力研究中,SM-164作用于XIAP、cIAP-1和cIAP-2蛋白,Ki分别为0.56 nM、0.31和1.1 nM。另外,SM-164剂量依赖性地拮抗XIAP,并诱导caspase活性,诱导细胞凋亡和细胞死亡。[2]

(二)动物实验(体内研究)

在体内实验中,给MDA-MB-231移植瘤小鼠静脉注射5 mg/kg SM-164,SM-164明显降低cIAP-1蛋白水平,而且SM-164诱导明显的细胞凋亡。[2]

参考文献

[1] Zhang S, et al. Smac mimetic SM-164 potentiates APO2L/TRAIL- and doxorubicin-mediated anticancer activity in human hepatocellular carcinoma cells. PLoS One. 7(12): e51461 (2012).

[2] Lu J, et al. SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res. 68(22):9384-9393 (2008).

[3] Yang J, et al. Radiosensitization of head and neck squamous cell carcinoma by a SMAC-mimetic compound, SM-164, requires activation of caspases. Mol Cancer Ther. 10(4): 658-669 (2011).

HB181129

SM-164 Smac类似物/XIAP拮抗剂/肿瘤细胞凋亡诱导剂|CAS 957135-43-2

暂无内容

SM-164 Smac类似物/XIAP拮抗剂/肿瘤细胞凋亡诱导剂|CAS 957135-43-2

暂无内容

ApexBio品牌代理

ApexBio

简要描述:

ApexBio Technology LLC 在生物研究肽和实验室试剂中。ApexBio在许多研究领域都具有广泛的产品线,例如:遗传学,细胞凋亡,肿瘤生物学等。ApexBio还提供各种定制服务,包括肽的合成,抗体的产生和发展分析。

ApexBio Technology LLC 在生物研究肽和实验室试剂中ApexBio在许多研究领域都具有广泛的产品线,例如:遗传学,细胞凋亡,肿瘤生物学等。ApexBio还提供各种定制服务,包括肽的合成,抗体的产生和发展分析。

ApexBio is a premier provider of peptides and lab reagents for biological research. We carry a broad product line in research areas such as Apoptosis, Epigenetics, Cancer Biology and so on. Apexbio also provides custom services including peptide synthesis, antibody production and assay development.

品牌

名称

1

A8882

5mg/10mg/25mg

ApexBio

Caspase-3/7 Inhibitor I

3

A1902

5mg/10mg/25mg

ApexBio

Bromodomain Inhibitor, (+)-JQ1

5

A2585

10mg/25mg/100mg

ApexBio

Q-VD-OPh hydrate

7

B1250

5mg/10mg/25mg

ApexBio

Atazanavir

9

A8206

5mg/50mg

ApexBio

UM 171

11

A3840

1mg/5mg/10mg

ApexBio

WEHI-539

13

A2606

1mg/5mg/20mg

ApexBio

Gap 26

15

A8802

5mg/50mg

Smac凋亡蛋白抑制剂|AT-406(SM-406 ARRY-334543) IAP拮抗剂|CAS 1071992-99-8

Smac凋亡蛋白抑制剂|AT-406(SM-406 ARRY-334543) IAP拮抗剂|CAS 1071992-99-8

产品说明书

FAQ

COA

已发表文献

产品描述

AT-406又称为SM-406、ARRY-334543,是一种有效的、口服生物活性的拟Smac的凋亡蛋白抑制剂(IAP)拮抗剂,与XIAP-BIR3、cIAP1-BIR3和cIAP2-BIR3结合,Ki分别为66.4 nM、1.9 nM和5.1 nM。AT-406可抑制多种癌细胞生长,并诱导小鼠体内移植瘤凋亡。

目前,AT-406已用于临床Phase 1研究阶段。

【该产品仅用于科研实验,不能用于人体】

产品性质

英文别名(English Synonym)

SM-406, ARRY-334543

化学名(Chemical Name)

(5S,8S,10aR)-N-(diphenylmethyl)decahydro-5-[[(2S)-2-(methylamino)-1-oxopropyl]amino]-

3-(3-methyl-1-oxobutyl)-6-oxo-pyrrolo[1,2-a][1,5]diazocine-8-carboxamide

靶点(Target)

XIAP

CAS 号(CAS NO.)

1071992-99-8

分子式(Molecular Formula)

C32H43N5O4

分子量(Molecular Weight)

561.71

外观(Appearance)

粉末

纯度(Purity)

≥95%

溶解性(Solubility)

溶于DMSO(100 mg/ml)或乙醇(100 mg/ml)

结构式(Structure)

Smac凋亡蛋白抑制剂|AT-406(SM-406 ARRY-334543) IAP拮抗剂|CAS 1071992-99-8 

运输与保存方法

冰袋运输。粉末直接保存于-20 ºC,有效期2年。易溶于DMSO和乙醇。建议分装后-20ºC避光保存,避免反复冻存,至少可存放6个月。

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作。

2)粉末溶解前请先短暂离心,以保证产品全在管底。

3)本产品仅用于科研用途,禁止用于人身上。

使用浓度

【具体使用浓度请参考相关文献,并根据自身实验条件(如实验目的,细胞种类,培养特性等)进行摸索和优化。】

相关实验(数据来自于公开发表的文献,仅供参考)

(一)细胞实验(体外研究)

为检测AT-406对癌细胞的作用,用不同剂量AT-406(0-500 μg/ml)处理卵巢癌细胞系,60%卵巢癌细胞对AT-406敏感,IC50<10 μg/ml。另外,AT-406激活细胞凋亡通路,以剂量依赖的方式促进PARP分裂。[2]

参考文献

[1] Cai Q, et al. A Potent and Orally Active Antagonist (SM-406/AT-406) of Multiple Inhibitor of Apoptosis Proteins (IAPs) in Clinical Development for Cancer Treatment. Journal of Medicinal Chemistry 54(8): 2714-2726 (2011).

[2] Brunckhorst MK, et al. AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer. Cancer Biol Ther. 13(9):804-811 (2012).

[3] Miura K, et al. Inhibitor of apoptosis protein family as diagnostic markers and therapeutic targets of colorectal cancer. Surg Today. 41(2):175-182 (2011).

HB181128

Smac凋亡蛋白抑制剂|AT-406(SM-406 ARRY-334543) IAP拮抗剂|CAS 1071992-99-8

暂无内容

Smac凋亡蛋白抑制剂|AT-406(SM-406 ARRY-334543) IAP拮抗剂|CAS 1071992-99-8

暂无内容

产品描述

AT-406又称为SM-406、ARRY-334543,是一种有效的、口服生物活性的拟Smac的凋亡蛋白抑制剂(IAP)拮抗剂,与XIAP-BIR3、cIAP1-BIR3和cIAP2-BIR3结合,Ki分别为66.4 nM、1.9 nM和5.1 nM。AT-406可抑制多种癌细胞生长,并诱导小鼠体内移植瘤凋亡。

目前,AT-406已用于临床Phase 1研究阶段。

【该产品仅用于科研实验,不能用于人体】

产品性质

英文别名(English Synonym)

SM-406, ARRY-334543

化学名(Chemical Name)

(5S,8S,10aR)-N-(diphenylmethyl)decahydro-5-[[(2S)-2-(methylamino)-1-oxopropyl]amino]-

3-(3-methyl-1-oxobutyl)-6-oxo-pyrrolo[1,2-a][1,5]diazocine-8-carboxamide

靶点(Target)

XIAP

CAS 号(CAS NO.)

1071992-99-8

分子式(Molecular Formula)

C32H43N5O4

分子量(Molecular Weight)

561.71

外观(Appearance)

粉末

纯度(Purity)

≥95%

溶解性(Solubility)

溶于DMSO(100 mg/ml)或乙醇(100 mg/ml)

结构式(Structure)

Smac凋亡蛋白抑制剂|AT-406(SM-406 ARRY-334543) IAP拮抗剂|CAS 1071992-99-8 

运输与保存方法

冰袋运输。粉末直接保存于-20 ºC,有效期2年。易溶于DMSO和乙醇。建议分装后-20ºC避光保存,避免反复冻存,至少可存放6个月。

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作。

2)粉末溶解前请先短暂离心,以保证产品全在管底。

3)本产品仅用于科研用途,禁止用于人身上。

使用浓度

【具体使用浓度请参考相关文献,并根据自身实验条件(如实验目的,细胞种类,培养特性等)进行摸索和优化。】

相关实验(数据来自于公开发表的文献,仅供参考)

(一)细胞实验(体外研究)

为检测AT-406对癌细胞的作用,用不同剂量AT-406(0-500 μg/ml)处理卵巢癌细胞系,60%卵巢癌细胞对AT-406敏感,IC50<10 μg/ml。另外,AT-406激活细胞凋亡通路,以剂量依赖的方式促进PARP分裂。[2]

参考文献

[1] Cai Q, et al. A Potent and Orally Active Antagonist (SM-406/AT-406) of Multiple Inhibitor of Apoptosis Proteins (IAPs) in Clinical Development for Cancer Treatment. Journal of Medicinal Chemistry 54(8): 2714-2726 (2011).

[2] Brunckhorst MK, et al. AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer. Cancer Biol Ther. 13(9):804-811 (2012).

[3] Miura K, et al. Inhibitor of apoptosis protein family as diagnostic markers and therapeutic targets of colorectal cancer. Surg Today. 41(2):175-182 (2011).

HB181128

Smac凋亡蛋白抑制剂|AT-406(SM-406 ARRY-334543) IAP拮抗剂|CAS 1071992-99-8

暂无内容

Smac凋亡蛋白抑制剂|AT-406(SM-406 ARRY-334543) IAP拮抗剂|CAS 1071992-99-8

暂无内容

BioVision品牌代理

BioVision 品牌介绍

简要描述:

BioVision. Inc. 位于美国加州的Palo Alto,是世界上专著于凋亡和细胞信号研究的公司。其产品质优、价廉、包装使用方便。BioVision致力于为研究者们提供好、研究工具而不断扩大产品及服务质量。该公司提供用于检测早、中、晚期凋亡的试剂,可以检测凋亡发生的不同区域,包括:线粒体、胞浆、胞膜及胞核。

BioVision. Inc. 位于美国加州的Palo Alto,是世界上专著于凋亡和细胞信号研究的公司。其产品质优、价廉、包装使用方便。BioVision致力于为研究者们提供好、研究工具而不断扩大产品及服务质量。该公司提供用于检测早、中、晚期凋亡的试剂,可以检测凋亡发生的不同区域,包括:线粒体、胞浆、胞膜及胞核。

 

Biovision was founded in 1998 by Swiss World Food Prize recipient Dr. Hans Rudolf Herren, with the aim of sustainably improving life for people in Africa while conserving the environment as the basis for all life.

 

In the 1980s, the world renowned entomologist Hans Rudolf Herren saved millions of people in Africa from starving to death by devising organic control methods for a devastating cassava pest. He was awarded the World Food Prize in 1995 for his work – he is the first, and so far only, Swiss person to have received it.

 

Biovision Foundation combats hunger and poverty, and is committed to the dissemination and application of ecological methods that sustainably improve living conditions in Africa whilst also conserving the environment. Biovision renders ‚help for self-help‘ and promotes ecological thought and action in both North and South.

 

In 2012, Biovision became the first Swiss Foundation to be granted General Consultative Status at ECOSOC of the United Nations. This allows Biovision to take part in UN Conferences, participate in official discussions and organize side events in order to argue its case.

 

In 2013, Biovision and its founder Hans Rudolf Herren won the Right Livelihood Award, also known as the Alternative Nobel Prize.

 

Biovision Foundation is a charitable organization in Switzerland (ZEWO certified) and has a legal opinion for 501(c)(3) public charity equivalency in the United States.

产品列表:

BioVision

K101-100

Annexin V-FITC Apoptosis Kit

100 assays

BioVision

K101-25

Annexin V-FITC Apoptosis Kit

25 assays

BioVision

K101-400

Annexin V-FITC Apoptosis Kit

400 assays

BioVision

K102-100

Annexin V-Cy3 Apoptosis Kit

100 assays

BioVision

K102-25

Annexin V-Cy3 Apoptosis Kit

25 assays

BioVision

K102-400

Annexin V-Cy3 Apoptosis Kit

400 assays

BioVision

K103-100

Annexin V-Cy5 Apoptosis Kit

100 assays

BioVision

K103-25

Annexin V-Cy5 Apoptosis Kit

25 assays

BioVision

K103-400

Annexin V-Cy5 Apoptosis Kit

400 assays

BioVision

K104-100

Annexin V-EGFP Apoptosis Kit

100 assays

BioVision

K104-25

Annexin V-EGFP Apoptosis Kit

25 assays

BioVision

K104-400

Annexin V-EGFP Apoptosis Kit

400 assays

BioVision

K105-100

Caspase-3 Fluorometric Assay Kit

100 assays

BioVision

K105-200

Caspase-3 Fluorometric Assay Kit

200 assays

BioVision

K105-25

Caspase-3 Fluorometric Assay Kit

25 assays

BioVision

K105-400

Caspase-3 Fluorometric Assay Kit

400 assays

BioVision

K106-100

Caspase-3 Colorimetric Assay Kit

100 assays

BioVision

K106-200

Caspase-3 Colorimetric Assay Kit

200 assays

BioVision

K106-25

Caspase-3 Colorimetric Assay Kit

25 assays

BioVision

K106-400

Caspase-3 Colorimetric Assay Kit

400 assays

BioVision

K109-100

Annexin V-Biotin Apoptosis Kit

100 assays

BioVision

K109-25

Annexin V-Biotin Apoptosis Kit

25 assays

BioVision

K109-400

Annexin V-Biotin Apoptosis Kit

400 assays

BioVision

K110-100

Caspase-1 Fluorometric Assay Kit

100 assays

BioVision

K110-200

Caspase-1 Fluorometric Assay Kit

200 assays

BioVision

K110-25

Caspase-1 Fluorometric Assay Kit

25 assays

BioVision

K110-400

Caspase-1 Fluorometric Assay Kit

400 assays

BioVision

K111-100

Caspase-1 Colorimetric Assay Kit

100 assays

BioVision

K111-200

Caspase-1 Colorimetric Assay Kit

200 assays

BioVision

K111-25

Caspase-1 Colorimetric Assay Kit

25 assays

BioVision

K111-400

Caspase-1 Colorimetric Assay Kit

400 assays

BioVision

K112-100

Caspase-8 Fluorometric Assay Kit

100 assays