pIκB-EGFP载体说明书


 pIκB-EGFP

型号 载体名称 出品公司 载体用途
VXC0435 pIκB-EGFP Clontech 信号通路报告载体

Description:

The pIκB-EGFP Vector encodes the IκB-EGFP Signaling Probe, which is a fusion of enhanced green

fluorescent protein (EGFP) and IκB. IκB is an inhibitor of NFκB, a transcription factor involved in the

immune response and inflammatory diseases. When the NFκB pathway is inactive, IκB and NFκB

exist as an inactive complex in the cytosol. Upon stimulation, IκB is degraded. In cells transfected

with pIκB-EGFP, degradation of the IκB-EGFP fusion protein is observed as a decrease in EGFP

fluorescence (1). The IκB-EGFP Signaling Probe is constitutively expressed and resides in the

cytosol.

EGFP is a red-shifted, human codon-optimized variant of GFP (2–6) that has been engineered for

brighter fluorescence and higher expression in mammalian cells. Its excitation maximum is 488 nm

and emission maximum is 509 nm. For more information on the properties of EGFP, please refer to

the BD Living Colors™ User Manual (PT2040-1) included with the vector.

Expression of the IκB-EGFP is driven by the human CMV immediate-early promoter. The SV40 poly-A

sequence directs proper processing of the 3′ end of the fusion construct. The vector backbone also

contains an SV40 origin for replication in mammalian cells expressing the SV40 T-antigen. A

neomycin resistance cassette (Neor

) allows kanamycin selection in E. coli and neomycin (G418)

selection in eukaryotic cells. This cassette consists of the SV40 early promoter, the neomycin/

kanamycin resistance gene of Tn5, and poly-A signals from the Herpes simplex virus thymidine

kinase (HSV TK) gene. The vector backbone also provides a pUC origin of replication for

propagation in E. coli and an f1 origin for single-stranded DNA production.

质粒图谱: 

ozbiosciences PI10100说明书

ozbiosciences PI10100说明书

前传递蛋白

Pro-DeliverIN™转染试剂 是一种创新试剂,可在细胞内递送生物活性蛋白。这种基于脂质的配方是种将功能蛋白传递到活细胞中的血清相容性试剂。细胞内传递的蛋白质保留其生物学功能。

 

  • 功能活性蛋白的细胞内递送

  • 在许多原代细胞和细胞系中高效

  • 血清相容

  • 可生物降解且无毒

  • 简便:简单易用的方案,易于使用(无需化学偶联)。

 

Pro-DeliverIN™随附100µL R-藻红蛋白阳性对照。

尺寸
  • 100µL:50-100次测定
  • 250µL:125-250次检测
  • 500µL:250-500次检测
  • 1 mL:500-1000次测定
 

储存:+ 4°C

运输条件:室温

 

PI10100

100微升

183,00€ 

PI10250

250微升

359,00€ 

PI10500

500微升

639,00€ 

PI11000

1毫升

1 078,00€

 

  • 适用于原代细胞和细胞系

  • 蛋白质输送应用的理想选择:

    • 活细胞中的细胞内定位研究

    • 蛋白质相互作用

    • FRET研究

 

推荐:蛋白质的细胞内递送。

vivitide NES-3863-PI说明书

vivitide NES-3863-PI说明书 

Nesfatin-1 (Human)

  • Unit Size
  •  

产品名称:Nesfatin-1(人类)

商品编号:NES-3863-PI

同义词:NEFA编码的饱腹感和脂肪影响蛋白1,Nucleobindin-2(25-106)(人),NUCB2(25-106)(人),DNA结合蛋白NEFA(25-106)(人) ,胃癌抗原Zg4(25-106)(人类)

应用:NEFA编码的饱腹感和脂肪影响蛋白

分子量(g / mol):9551.95

储存条件:-20°C

参考文献:IS Oh等人,Nature,443,709(2006)。MGMyers,Jr.,Nat Med,12,1248(2006)。

特别说明:仅供研究使用。不适用于人类。

vivitide IGS-3641-PI说明书

 

vivitide是生命科学和生物技术行业定制肽和抗体服务的先进者,它是由New England Peptide(成立于1998年)和Peptides International(成立于1983年)合并而成。

vivitide IGS-3641-PI说明书

(3,5-Difluorophenylacetyl)-Ala-Phg-OtBu

3,5-二氟苯基乙酰基)-Ala-Phg-OtBu

  • 单位大小
  • 每单位价格$ 170.00

 

 

产品名称:(3,5-二氟苯基乙酰基)-Ala-Phg-OtBu

商品编号:IGS-3641-PI

同义词:DAPT N- [N-(3,5-二氟苯乙酰基)-L-丙氨酰)]-S-苯基甘氨酸叔丁基酯

应用:γ-分泌酶抑制剂

CAS号:208255-80-5

分子量(g / mol):432.47

储存条件:-20°C

参考资料:HF Dovey,V。John,JP安德森,LZ Chen,P。de Saint。Andrieu,LY Fang,SB Freedman,B.Folmer,E.Goldbach,EJ Holsztynska,KL胡,KL Johnson-Wood,SL*,D.Kholodenko,JE Knops,LH Latimer,M.Lee,Z.Liao,IM Lieberburg ,RN Motter,LC Mutter,J. Nietz,KP Quinn,KL Sacchi,PA Seubert,GM Shopp,ED Thorsett,JS Tung,Wu.S. Yang,CT尹,DB Schenk,PC May,LD Altstiel,MH Bender,LN Boggs,TC Britton,JC Clemens,DL Czilli,DK Dieckman-McGinty,JJ Droste,KS Fuson,BD Gitter,PA Hyslop,EM Johnstone,怀俄明州。Li,SP Little,TE Mabry,FD Miller,B.Ni,JS Nissen,WJ Porter,BD Potts,JK Reel,D.Stephenson,Y.Su,LA Shipley,CA Whitesitt,T.Yin和JE Audia,J Neurochem。,76,173(2001)。(原始;大脑中的功能性β-分泌酶抑制剂)Kornilova,C。Das和MS Wolfe,J。Biol。Chem.278,16470(2003)。(细胞内活性和无细胞活性的比较)

特别说明:仅供研究使用。不适用于人类。

pepnet BLD-5571-PI说明书

 

Peptides International由已故的Arno教授于1983年创立  。F. Spatola解决了肽合成领域对产品和服务的需求。三十年后,该公司被*为高品质,高质量产品的可靠来源,从创新树脂到复杂的定制肽合成。Peptides International仍然是一家私营公司,  Jacqulyn B. Spatola是其主要所有者。

如今,在其实验室设施中,该公司拥有积极的研发计划,以补充其固相树脂,氨基酸衍生物,多肽和相关产品的生产。它还积极获得多项小企业创新研究(SBIR)资助,这些资助支持开发新产品,如  CLEAR-OX™聚合物支持的氧化剂和靶向组合肽库。

pepnet BLD-5571-PI说明书

Boc-Asp-OFm(α酯)

Boc-Asp-OFm (α Ester)

  • 产品代码: BLD-5571-PI
  • 别名/产品替代名称: 叔丁氧基羰基-L-天冬氨酸-α-9-芴基甲基酯
  • t-Butyloxycarbonyl-L-Aspartic Acid-α-9-Fluorenylmethyl Ester

 

  • CAS号码: 34306-42-8
  • 储存条件: 2-10°C
  • 分子量: 411.46
  • 分子式: C 23 H 25 NO 6
  • CAS号码: 129046-87-3
  •  

 

 

 

 

pepnet2019年价格表

货号

品名

规格

价格

BLX-5366-PI-1g

Boc-5-Ava-OH

1g

1377

BLX-5366-PI-5g

Boc-5-Ava-OH

5g

5372

BLX-5362-PI-1g

Boc-Abu-OH

1g

714

BLX-5362-PI-5g

Boc-Abu-OH

5g

2414

BLX-5362-PI-25g

Boc-Abu-OH

25g

7531

BLX-5340-PI-5g

Boc-Aib-OH

5g

901

BLX-5340-PI-25g

Boc-Aib-OH

25g

2006

BLA-2051-5g

Boc-Ala-OH

5g

510

BLA-2051-25g

Boc-Ala-OH

25g

1275

BLA-2051-100g

Boc-Ala-OH

100g

3825

BLX-5342-PI-1g

Boc-allo-Ile-OH

1g

4488

BLX-5342-PI-5g

Boc-allo-Ile-OH

5g

17850

BLR-2058-5g

Boc-Arg(NO2)-OH

5g

646

BLR-2058-25g

Boc-Arg(NO2)-OH

25g

1921

BLR-2058-100g

Boc-Arg(NO2)-OH

100g

6375

BLN-5351-PI-5g

Boc-Asn(Xan)-OH

5g

918

BLN-5351-PI-25g

Boc-Asn(Xan)-OH

25g

3553

BLN-5351-PI-100g

Boc-Asn(Xan)-OH

100g

11373

BLN-2060-5g

Boc-Asn-OH

5g

459

BLN-2060-25g

Boc-Asn-OH

25g

1105

BLN-2060-100g

Boc-Asn-OH

100g

3094

BLN-2077-5g

Boc-Asn-ONp

5g

2380

BLN-2077-25g

Boc-Asn-ONp

25g

8279

BLD-5662-PI-5g

Boc-Asp(OFm)-OH (Beta Ester)

5g

3553

BLD-5662-PI-25g

Boc-Asp(OFm)-OH (Beta Ester)

25g

14467

BLR-2125-5g

Boc-Arg(Tos)-OH

5g

1105

BLR-2125-25g

Boc-Arg(Tos)-OH

25g

3281

BLR-2125-100g

Boc-Arg(Tos)-OH

100g

11475

BLD-2059-5g

Boc-Asp(OBzl)-OH

5g

561

BLD-2059-25g

Boc-Asp(OBzl)-OH

25g

1547

BLD-2059-100g

Boc-Asp(OBzl)-OH

100g

5185

BLD-2132-5g

Boc-Asp(OcHex)-OH

5g

561

BLD-2132-25g

Boc-Asp(OcHex)-OH

25g

1547

BLD-2132-100g

Boc-Asp(OcHex)-OH

100g

5185

BLD-5571-PI-5g

Boc-Asp-OFm (α Ester)

5g

3553

BLD-5571-PI-25g

Boc-Asp-OFm (α Ester)

25g

14467

BBA-2131-5g

Boc-ß-Ala-OH

5g

561

BBA-2131-25g

Boc-ß-Ala-OH

25g

1275

BBA-2131-100g

Boc-ß-Ala-OH

100g

4199

BLC-2129-5g

Boc-Cys(4-CH3Bzl)-OH

5g

918

BLC-2129-25g

Boc-Cys(4-CH3Bzl)-OH

25g

2924

BLC-2129-100g

Boc-Cys(4-CH3Bzl)-OH

100g

9928

BLC-2061-5g

Boc-Cys(Bzl)-OH

5g

918

BLC-2061-25g

Boc-Cys(Bzl)-OH

25g

2737

BLC-2061-100g

Boc-Cys(Bzl)-OH

100g

9010

BLC-2130-5g

Boc-Cys(tBu)-OH

5g

1105

BLC-2130-25g

Boc-Cys(tBu)-OH

25g

3281

BLC-2130-100g

Boc-Cys(tBu)-OH

100g

10200

BLC-2121-5g

Boc-Cys(Acm)-OH

5g

918

BLC-2121-25g

Boc-Cys(Acm)-OH

25g

2737

BLC-2121-100g

Boc-Cys(Acm)-OH

100g

9282

BLC-2078-5g

Boc-Cys(MBzl)-OH

5g

918

BLC-2078-25g

Boc-Cys(MBzl)-OH

25g

2924

BLC-2078-100g

Boc-Cys(MBzl)-OH

100g

9928

BDX-5389-PI-1g

Boc-D-2-Thienylalanine

1g

1513

BDX-5389-PI-5g

Boc-D-2-Thienylalanine

5g

6205

BDX-5339-PI-1g

Boc-D-3-Pal-OH

1g

2465

BDX-5339-PI-5g

Boc-D-3-Pal-OH

5g

9010

BDX-5533-PI-1g

Boc-D-4-Pal-OH

1g

2652

BDX-5533-PI-5g

Boc-D-4-Pal-OH

5g

10557

BLX-5369-PI-1g

Boc-Dab(Fmoc)-OH

1g

2006

BLX-5369-PI-5g

Boc-Dab(Fmoc)-OH

5g

8007

BDX-5365-PI-1g

Boc-D-Abu-OH

1g

1802

BDX-5365-PI-5g

Boc-D-Abu-OH

5g

7004

BDX-5365-PI-25g

Boc-D-Abu-OH

25g

28560

BDX-5360-PI-5g

Boc-D-Abu-OH • DCHA

5g

1819

BDX-5360-PI-25g

Boc-D-Abu-OH • DCHA

25g

7276

BDX-5360-PI-100g

Boc-D-Abu-OH • DCHA

100g

21828

BDA-2606-1g

Boc-D-Ala-OH

1g

561

BDA-2606-5g

Boc-D-Ala-OH

5g

1190

BDA-2606-25g

Boc-D-Ala-OH

25g

4097

BLX-5359-PI-1g

Boc-Dap(Fmoc)-OH

1g

2210

BLX-5359-PI-5g

Boc-Dap(Fmoc)-OH

5g

8806

BLX-5378-PI-1g

Boc-Dap-OH

1g

1292

BLX-5378-PI-5g

Boc-Dap-OH

5g

5168

BLX-5378-PI-25g

Boc-Dap-OH

25g

18700

BDR-2609-1g

Boc-D-Arg(Tos)-OH

1g

1377

BDR-2609-5g

Boc-D-Arg(Tos)-OH

5g

3468

BDR-2609-25g

Boc-D-Arg(Tos)-OH

25g

8738

BDN-2651-PI-1g

Boc-D-Asn(Xan)-OH

1g

1581

BDN-2651-PI-5g

Boc-D-Asn(Xan)-OH

5g

6256

BDN-2626-1g

Boc-D-Asn-OH

1g

1003

BDN-2626-5g

Boc-D-Asn-OH

5g

3366

BDN-2626-25g

Boc-D-Asn-OH

25g

13566

BDN-2620-1g

Boc-D-Asn-ONp

1g

1462

BDN-2620-5g

Boc-D-Asn-ONp

5g

4913

BDN-2620-25g

Boc-D-Asn-ONp

25g

16660

BDD-2616-1g

Boc-D-Asp(OBzl)-OH

1g

918

BDD-2616-5g

Boc-D-Asp(OBzl)-OH

5g

3094

BDD-2616-25g

Boc-D-Asp(OBzl)-OH

25g

12019

BDD-2618-PI-1g

Boc-D-Asp-OFm

1g

2499

BDD-2618-PI-5g

Boc-D-Asp-OFm

5g

9826

BDC-2611-1g

Boc-D-Cys(4-CH3Bzl)-OH

1g

1802

BDC-2611-5g

Boc-D-Cys(4-CH3Bzl)-OH

5g

7191

BDC-2611-25g

Boc-D-Cys(4-CH3Bzl)-OH

25g

19652

BDX-5357-PI-1g

Boc-D-Dab(Fmoc)-OH

1g

4624

BDX-5357-PI-5g

Boc-D-Dab(Fmoc)-OH

5g

18445

BDD-2617-1g

Boc-D-Asp(OcHex)-OH

1g

918

BDD-2617-5g

Boc-D-Asp(OcHex)-OH

5g

3094

BDD-2617-25g

Boc-D-Asp(OcHex)-OH

25g

12019

BDX-5354-PI-1g

Boc-D-Dap(Fmoc)-OH

1g

3825

BDX-5354-PI-5g

Boc-D-Dap(Fmoc)-OH

5g

15283

BDF-5530-PI-1g

Boc-D-Dip-OH

1g

2618

BDF-5530-PI-5g

Boc-D-Dip-OH

5g

10608

BLX-5341-PI-1g

Boc-Deg-OH

1g

1003

BLX-5341-PI-5g

Boc-Deg-OH

5g

3553

BLX-5341-PI-25g

Boc-Deg-OH

25g

14467

BDQ-2623-1g

Boc-D-Gln-OH

1g

1003

BDQ-2623-5g

Boc-D-Gln-OH

5g

3366

BDQ-2623-25g

Boc-D-Gln-OH

25g

13566

BDQ-2621-1g

Boc-D-Gln-ONp

1g

1462

BDQ-2621-5g

Boc-D-Gln-ONp

5g

4913

BDQ-2621-25g

Boc-D-Gln-ONp

25g

16660

BDE-2625-1g

Boc-D-Glu(OBzl)-OH

1g

918

BDE-2625-5g

Boc-D-Glu(OBzl)-OH

5g

3094

BDE-2625-25g

Boc-D-Glu(OBzl)-OH

25g

12019

BDE-5687-PI-1g

Boc-D-Glu(OFm)-OH (γ  Ester)

1g

3043

BDE-5687-PI-5g

Boc-D-Glu(OFm)-OH (γ  Ester)

5g

12325

BDE-5595-PI-1g

Boc-D-Glu-OFm (α Ester)

1g

1734

BDE-5595-PI-5g

Boc-D-Glu-OFm (α Ester)

5g

7191

BDF-5373-PI-1g

Boc-D-Homo-Phe-OH

1g

1377

BDF-5373-PI-5g

Boc-D-Homo-Phe-OH

5g

5372

BDH-2605-1g

Boc-D-His(Tos)-OH • DCHA

1g

1275

BDH-2605-5g

Boc-D-His(Tos)-OH • DCHA

5g

3638

BDH-2605-25g

Boc-D-His(Tos)-OH • DCHA

25g

13107

BLX-5324-PI-1g

Boc-Dhp-OH

1g

5525

BDX-5343-PI-1g

Boc-D-Hydroxy-Tic-OH

1g

11407

BDI-2629-1g

Boc-D-Ile-OH • 1/2 H2O

1g

7106

BDI-2629-5g

Boc-D-Ile-OH • 1/2 H2O

5g

28203

BDI-5318-PI-1g

Boc-D-Ile-OH

1g

4097

BDI-5318-PI-5g

Boc-D-Ile-OH

5g

17289

BDF-5528-PI-1g

Boc-Dip-OH

1g

2618

BDF-5528-PI-5g

Boc-Dip-OH

5g

10608

BDL-2603-1g

Boc-D-Leu-OH • H2O

1g

595

BDL-2603-5g

Boc-D-Leu-OH • H2O

5g

1462

BDL-2603-25g

Boc-D-Leu-OH • H2O

25g

5287

BDX-5375-PI-1g

Boc-D-Lys(Fmoc)-OH

1g

3570

BDX-5375-PI-5g

Boc-D-Lys(Fmoc)-OH

5g

9265

BDM-2608-1g

Boc-D-Met-OH

1g

646

BDM-2608-5g

Boc-D-Met-OH

5g

1921

BDM-2608-25g

Boc-D-Met-OH

25g

7106

BDX-5381-PI-1g

Boc-D-Nal(1')-OH

1g

1802

BDX-5381-PI-5g

Boc-D-Nal(1')-OH

5g

7004

BDX-5319-PI-1g

Boc-D-Nal(2')-OH

1g

1462

BDX-5319-PI-5g

Boc-D-Nal(2')-OH

5g

5831

BDK-2628-1g

Boc-D-Lys(Cl-Z)-OH

1g

1190

BDK-2628-5g

Boc-D-Lys(Cl-Z)-OH

5g

4097

BDK-2628-25g

Boc-D-Lys(Cl-Z)-OH

25g

15657

BDX-5355-PI-1g

Boc-D-Orn(Fmoc)-OH

1g

2278

BDX-5355-PI-5g

Boc-D-Orn(Fmoc)-OH

5g

9010

BDX-5220-PI-1g

Boc-D-Pen(Meb)-OH • DCHA

1g

2907

BDX-5220-PI-5g

Boc-D-Pen(Meb)-OH • DCHA

5g

11407

BDX-5220-PI-25g

Boc-D-Pen(Meb)-OH • DCHA

25g

49266

BDX-2615-PI-1g

Boc-D-Pen(Mob)-OH

1g

2907

BDX-2615-PI-5g

Boc-D-Pen(Mob)-OH

5g

11407

BDF-5385-PI-1g

Boc-Pentafluoro-D-Phe-OH

1g

1513

BDF-5385-PI-5g

Boc-Pentafluoro-D-Phe-OH

5g

6205

BDF-5222-PI-1g

Boc-D-Phe(NO2)-OH

1g

1003

BDF-5222-PI-5g

Boc-D-Phe(NO2)-OH

5g

3570

BDF-2604-1g

Boc-D-Phe-OH

1g

595

BDF-2604-5g

Boc-D-Phe-OH

5g

1275

BDF-2604-25g

Boc-D-Phe-OH

25g

4556

BDP-2600-PI-1g

Boc-D-Phg-OH

1g

714

BDP-2600-PI-5g

Boc-D-Phg-OH

5g

2618

BDP-2610-1g

Boc-D-Pro-OH

1g

1190

BDP-2610-5g

Boc-D-Pro-OH

5g

4097

BDP-2610-25g

Boc-D-Pro-OH

25g

14280

BDS-2627-1g

Boc-D-Ser(Bzl)-OH

1g

1003

BDS-2627-5g

Boc-D-Ser(Bzl)-OH

5g

3468

BDS-2627-25g

Boc-D-Ser(Bzl)-OH

25g

14008

BDT-2624-1g

Boc-D-Thr(Bzl)-OH

1g

1003

BDT-2624-5g

Boc-D-Thr(Bzl)-OH

5g

3468

BDT-2624-25g

Boc-D-Thr(Bzl)-OH

25g

14008

BDX-5346-PI-1g

Boc-D-Tic-OH

1g

1734

BDX-5346-PI-5g

Boc-D-Tic-OH

5g

7191

BDW-2614-1g

Boc-D-Trp(CHO)-OH

1g

1190

BDW-2614-5g

Boc-D-Trp(CHO)-OH

5g

4012

BDW-2614-25g

Boc-D-Trp(CHO)-OH

25g

13566

BDW-2602-1g

Boc-D-Trp-OH

1g

595

BDW-2602-5g

Boc-D-Trp-OH

5g

1462

BDW-2602-25g

Boc-D-Trp-OH

25g

4097

 

pepnet中国代理,pepnet上海代理,pepnet北京代理,pepnet广东代理,pepnet江苏代理pepnet湖北代理,pepnet天津代理,pepnet黑龙江代理,pepnet湖南代理pepnet内蒙古代理,pepnet吉林代理,pepnet福建代理,pepnet江苏代理,pepnet浙江代理,pepnet四川代理,pepnet代理,

 

上海金畔生物科技有限公司是实验试剂一站式采购服务商

1:强大的进口辐射能力,血清、抗体、耗材、大部分限制进口品等。

2:产品种类齐全,经营超过700多品牌,基本涵盖所有生物实验试剂耗材。

3:提供加急服务,货品一般1-2周到货。

4:富有竞争良好的信誉,大部分客户提供货到付款服务。客户包括清华、北大、交大、复旦、中山等100多所高校,ROCHE,阿斯利康、国药、fisher等知药企。

6:我们还是Santa,Advanced Biotechnologies Inc,Athens Research & Technology,bangs,BBInternational,crystalchem,dianova,FD Neurotechnologies,Inc. FormuMax Scientific,Inc, Genebridege, Glycotope Biotechnology GmbH; iduron,Innovative Research of America, Ludger, neuroprobe,omicronbio, Polysciences,prospecbi, QA-BIO,pepnet,RESEARCH DIETS,INC,sterlitech;sysy,TriLink BioTechnologies,Inc;pepnet-biochem,zyagen等几十家国外公司代理。

7:我们还是invitrogen,qiagen,MiraiBioam,sigma;neb,roche,merck, rnd,BD, GE,pierce,BioLegend等知*批发,欢迎合作。

 

 

pepnet BLX-5362-PI说明书

 

Peptides International由已故的Arno教授于1983年创立  。F. Spatola解决了肽合成领域对产品和服务的需求。三十年后,该公司被*为高品质,高质量产品的可靠来源,从创新树脂到复杂的定制肽合成。Peptides International仍然是一家私营公司,  Jacqulyn B. Spatola是其主要所有者。

如今,在其实验室设施中,该公司拥有积极的研发计划,以补充其固相树脂,氨基酸衍生物,多肽和相关产品的生产。它还积极获得多项小企业创新研究(SBIR)资助,这些资助支持开发新产品,如  CLEAR-OX™聚合物支持的氧化剂和靶向组合肽库。

pepnet BLX-5362-PI说明书

Boc-Abu-OH

 

  • Product Code: BLX-5362-PI
  • Synonyms/Product
  • Alternate Names: t-Butyloxycarbonyl-L-α-Aminobutyric Acid
  • 别名/产品替代名称: 叔丁氧基羰基-L-α-氨基丁酸
  • 储存条件: 2-10°C
  • 分子量: 203.24
  • 分子式: C 10 H 19 NO 4
  • CAS号码: 34306-42-8

 

 

 

 

pepnet2019年价格表

货号

品名

规格

价格

BLX-5366-PI-1g

Boc-5-Ava-OH

1g

1377

BLX-5366-PI-5g

Boc-5-Ava-OH

5g

5372

BLX-5362-PI-1g

Boc-Abu-OH

1g

714

BLX-5362-PI-5g

Boc-Abu-OH

5g

2414

BLX-5362-PI-25g

Boc-Abu-OH

25g

7531

BLX-5340-PI-5g

Boc-Aib-OH

5g

901

BLX-5340-PI-25g

Boc-Aib-OH

25g

2006

BLA-2051-5g

Boc-Ala-OH

5g

510

BLA-2051-25g

Boc-Ala-OH

25g

1275

BLA-2051-100g

Boc-Ala-OH

100g

3825

BLX-5342-PI-1g

Boc-allo-Ile-OH

1g

4488

BLX-5342-PI-5g

Boc-allo-Ile-OH

5g

17850

BLR-2058-5g

Boc-Arg(NO2)-OH

5g

646

BLR-2058-25g

Boc-Arg(NO2)-OH

25g

1921

BLR-2058-100g

Boc-Arg(NO2)-OH

100g

6375

BLN-5351-PI-5g

Boc-Asn(Xan)-OH

5g

918

BLN-5351-PI-25g

Boc-Asn(Xan)-OH

25g

3553

BLN-5351-PI-100g

Boc-Asn(Xan)-OH

100g

11373

BLN-2060-5g

Boc-Asn-OH

5g

459

BLN-2060-25g

Boc-Asn-OH

25g

1105

BLN-2060-100g

Boc-Asn-OH

100g

3094

BLN-2077-5g

Boc-Asn-ONp

5g

2380

BLN-2077-25g

Boc-Asn-ONp

25g

8279

BLD-5662-PI-5g

Boc-Asp(OFm)-OH (Beta Ester)

5g

3553

BLD-5662-PI-25g

Boc-Asp(OFm)-OH (Beta Ester)

25g

14467

BLR-2125-5g

Boc-Arg(Tos)-OH

5g

1105

BLR-2125-25g

Boc-Arg(Tos)-OH

25g

3281

BLR-2125-100g

Boc-Arg(Tos)-OH

100g

11475

BLD-2059-5g

Boc-Asp(OBzl)-OH

5g

561

BLD-2059-25g

Boc-Asp(OBzl)-OH

25g

1547

BLD-2059-100g

Boc-Asp(OBzl)-OH

100g

5185

BLD-2132-5g

Boc-Asp(OcHex)-OH

5g

561

BLD-2132-25g

Boc-Asp(OcHex)-OH

25g

1547

BLD-2132-100g

Boc-Asp(OcHex)-OH

100g

5185

BLD-5571-PI-5g

Boc-Asp-OFm (α Ester)

5g

3553

BLD-5571-PI-25g

Boc-Asp-OFm (α Ester)

25g

14467

BBA-2131-5g

Boc-ß-Ala-OH

5g

561

BBA-2131-25g

Boc-ß-Ala-OH

25g

1275

BBA-2131-100g

Boc-ß-Ala-OH

100g

4199

BLC-2129-5g

Boc-Cys(4-CH3Bzl)-OH

5g

918

BLC-2129-25g

Boc-Cys(4-CH3Bzl)-OH

25g

2924

BLC-2129-100g

Boc-Cys(4-CH3Bzl)-OH

100g

9928

BLC-2061-5g

Boc-Cys(Bzl)-OH

5g

918

BLC-2061-25g

Boc-Cys(Bzl)-OH

25g

2737

BLC-2061-100g

Boc-Cys(Bzl)-OH

100g

9010

BLC-2130-5g

Boc-Cys(tBu)-OH

5g

1105

BLC-2130-25g

Boc-Cys(tBu)-OH

25g

3281

BLC-2130-100g

Boc-Cys(tBu)-OH

100g

10200

BLC-2121-5g

Boc-Cys(Acm)-OH

5g

918

BLC-2121-25g

Boc-Cys(Acm)-OH

25g

2737

BLC-2121-100g

Boc-Cys(Acm)-OH

100g

9282

BLC-2078-5g

Boc-Cys(MBzl)-OH

5g

918

BLC-2078-25g

Boc-Cys(MBzl)-OH

25g

2924

BLC-2078-100g

Boc-Cys(MBzl)-OH

100g

9928

BDX-5389-PI-1g

Boc-D-2-Thienylalanine

1g

1513

BDX-5389-PI-5g

Boc-D-2-Thienylalanine

5g

6205

BDX-5339-PI-1g

Boc-D-3-Pal-OH

1g

2465

BDX-5339-PI-5g

Boc-D-3-Pal-OH

5g

9010

BDX-5533-PI-1g

Boc-D-4-Pal-OH

1g

2652

BDX-5533-PI-5g

Boc-D-4-Pal-OH

5g

10557

BLX-5369-PI-1g

Boc-Dab(Fmoc)-OH

1g

2006

BLX-5369-PI-5g

Boc-Dab(Fmoc)-OH

5g

8007

BDX-5365-PI-1g

Boc-D-Abu-OH

1g

1802

BDX-5365-PI-5g

Boc-D-Abu-OH

5g

7004

BDX-5365-PI-25g

Boc-D-Abu-OH

25g

28560

BDX-5360-PI-5g

Boc-D-Abu-OH • DCHA

5g

1819

BDX-5360-PI-25g

Boc-D-Abu-OH • DCHA

25g

7276

BDX-5360-PI-100g

Boc-D-Abu-OH • DCHA

100g

21828

BDA-2606-1g

Boc-D-Ala-OH

1g

561

BDA-2606-5g

Boc-D-Ala-OH

5g

1190

BDA-2606-25g

Boc-D-Ala-OH

25g

4097

BLX-5359-PI-1g

Boc-Dap(Fmoc)-OH

1g

2210

BLX-5359-PI-5g

Boc-Dap(Fmoc)-OH

5g

8806

BLX-5378-PI-1g

Boc-Dap-OH

1g

1292

BLX-5378-PI-5g

Boc-Dap-OH

5g

5168

BLX-5378-PI-25g

Boc-Dap-OH

25g

18700

BDR-2609-1g

Boc-D-Arg(Tos)-OH

1g

1377

BDR-2609-5g

Boc-D-Arg(Tos)-OH

5g

3468

BDR-2609-25g

Boc-D-Arg(Tos)-OH

25g

8738

BDN-2651-PI-1g

Boc-D-Asn(Xan)-OH

1g

1581

BDN-2651-PI-5g

Boc-D-Asn(Xan)-OH

5g

6256

BDN-2626-1g

Boc-D-Asn-OH

1g

1003

BDN-2626-5g

Boc-D-Asn-OH

5g

3366

BDN-2626-25g

Boc-D-Asn-OH

25g

13566

BDN-2620-1g

Boc-D-Asn-ONp

1g

1462

BDN-2620-5g

Boc-D-Asn-ONp

5g

4913

BDN-2620-25g

Boc-D-Asn-ONp

25g

16660

BDD-2616-1g

Boc-D-Asp(OBzl)-OH

1g

918

BDD-2616-5g

Boc-D-Asp(OBzl)-OH

5g

3094

BDD-2616-25g

Boc-D-Asp(OBzl)-OH

25g

12019

BDD-2618-PI-1g

Boc-D-Asp-OFm

1g

2499

BDD-2618-PI-5g

Boc-D-Asp-OFm

5g

9826

BDC-2611-1g

Boc-D-Cys(4-CH3Bzl)-OH

1g

1802

BDC-2611-5g

Boc-D-Cys(4-CH3Bzl)-OH

5g

7191

BDC-2611-25g

Boc-D-Cys(4-CH3Bzl)-OH

25g

19652

BDX-5357-PI-1g

Boc-D-Dab(Fmoc)-OH

1g

4624

BDX-5357-PI-5g

Boc-D-Dab(Fmoc)-OH

5g

18445

BDD-2617-1g

Boc-D-Asp(OcHex)-OH

1g

918

BDD-2617-5g

Boc-D-Asp(OcHex)-OH

5g

3094

BDD-2617-25g

Boc-D-Asp(OcHex)-OH

25g

12019

BDX-5354-PI-1g

Boc-D-Dap(Fmoc)-OH

1g

3825

BDX-5354-PI-5g

Boc-D-Dap(Fmoc)-OH

5g

15283

BDF-5530-PI-1g

Boc-D-Dip-OH

1g

2618

BDF-5530-PI-5g

Boc-D-Dip-OH

5g

10608

BLX-5341-PI-1g

Boc-Deg-OH

1g

1003

BLX-5341-PI-5g

Boc-Deg-OH

5g

3553

BLX-5341-PI-25g

Boc-Deg-OH

25g

14467

BDQ-2623-1g

Boc-D-Gln-OH

1g

1003

BDQ-2623-5g

Boc-D-Gln-OH

5g

3366

BDQ-2623-25g

Boc-D-Gln-OH

25g

13566

BDQ-2621-1g

Boc-D-Gln-ONp

1g

1462

BDQ-2621-5g

Boc-D-Gln-ONp

5g

4913

BDQ-2621-25g

Boc-D-Gln-ONp

25g

16660

BDE-2625-1g

Boc-D-Glu(OBzl)-OH

1g

918

BDE-2625-5g

Boc-D-Glu(OBzl)-OH

5g

3094

BDE-2625-25g

Boc-D-Glu(OBzl)-OH

25g

12019

BDE-5687-PI-1g

Boc-D-Glu(OFm)-OH (γ  Ester)

1g

3043

BDE-5687-PI-5g

Boc-D-Glu(OFm)-OH (γ  Ester)

5g

12325

BDE-5595-PI-1g

Boc-D-Glu-OFm (α Ester)

1g

1734

BDE-5595-PI-5g

Boc-D-Glu-OFm (α Ester)

5g

7191

BDF-5373-PI-1g

Boc-D-Homo-Phe-OH

1g

1377

BDF-5373-PI-5g

Boc-D-Homo-Phe-OH

5g

5372

BDH-2605-1g

Boc-D-His(Tos)-OH • DCHA

1g

1275

BDH-2605-5g

Boc-D-His(Tos)-OH • DCHA

5g

3638

BDH-2605-25g

Boc-D-His(Tos)-OH • DCHA

25g

13107

BLX-5324-PI-1g

Boc-Dhp-OH

1g

5525

BDX-5343-PI-1g

Boc-D-Hydroxy-Tic-OH

1g

11407

BDI-2629-1g

Boc-D-Ile-OH • 1/2 H2O

1g

7106

BDI-2629-5g

Boc-D-Ile-OH • 1/2 H2O

5g

28203

BDI-5318-PI-1g

Boc-D-Ile-OH

1g

4097

BDI-5318-PI-5g

Boc-D-Ile-OH

5g

17289

BDF-5528-PI-1g

Boc-Dip-OH

1g

2618

BDF-5528-PI-5g

Boc-Dip-OH

5g

10608

BDL-2603-1g

Boc-D-Leu-OH • H2O

1g

595

BDL-2603-5g

Boc-D-Leu-OH • H2O

5g

1462

BDL-2603-25g

Boc-D-Leu-OH • H2O

25g

5287

BDX-5375-PI-1g

Boc-D-Lys(Fmoc)-OH

1g

3570

BDX-5375-PI-5g

Boc-D-Lys(Fmoc)-OH

5g

9265

BDM-2608-1g

Boc-D-Met-OH

1g

646

BDM-2608-5g

Boc-D-Met-OH

5g

1921

BDM-2608-25g

Boc-D-Met-OH

25g

7106

BDX-5381-PI-1g

Boc-D-Nal(1')-OH

1g

1802

BDX-5381-PI-5g

Boc-D-Nal(1')-OH

5g

7004

BDX-5319-PI-1g

Boc-D-Nal(2')-OH

1g

1462

BDX-5319-PI-5g

Boc-D-Nal(2')-OH

5g

5831

BDK-2628-1g

Boc-D-Lys(Cl-Z)-OH

1g

1190

BDK-2628-5g

Boc-D-Lys(Cl-Z)-OH

5g

4097

BDK-2628-25g

Boc-D-Lys(Cl-Z)-OH

25g

15657

BDX-5355-PI-1g

Boc-D-Orn(Fmoc)-OH

1g

2278

BDX-5355-PI-5g

Boc-D-Orn(Fmoc)-OH

5g

9010

BDX-5220-PI-1g

Boc-D-Pen(Meb)-OH • DCHA

1g

2907

BDX-5220-PI-5g

Boc-D-Pen(Meb)-OH • DCHA

5g

11407

BDX-5220-PI-25g

Boc-D-Pen(Meb)-OH • DCHA

25g

49266

BDX-2615-PI-1g

Boc-D-Pen(Mob)-OH

1g

2907

BDX-2615-PI-5g

Boc-D-Pen(Mob)-OH

5g

11407

BDF-5385-PI-1g

Boc-Pentafluoro-D-Phe-OH

1g

1513

BDF-5385-PI-5g

Boc-Pentafluoro-D-Phe-OH

5g

6205

BDF-5222-PI-1g

Boc-D-Phe(NO2)-OH

1g

1003

BDF-5222-PI-5g

Boc-D-Phe(NO2)-OH

5g

3570

BDF-2604-1g

Boc-D-Phe-OH

1g

595

BDF-2604-5g

Boc-D-Phe-OH

5g

1275

BDF-2604-25g

Boc-D-Phe-OH

25g

4556

BDP-2600-PI-1g

Boc-D-Phg-OH

1g

714

BDP-2600-PI-5g

Boc-D-Phg-OH

5g

2618

BDP-2610-1g

Boc-D-Pro-OH

1g

1190

BDP-2610-5g

Boc-D-Pro-OH

5g

4097

BDP-2610-25g

Boc-D-Pro-OH

25g

14280

BDS-2627-1g

Boc-D-Ser(Bzl)-OH

1g

1003

BDS-2627-5g

Boc-D-Ser(Bzl)-OH

5g

3468

BDS-2627-25g

Boc-D-Ser(Bzl)-OH

25g

14008

BDT-2624-1g

Boc-D-Thr(Bzl)-OH

1g

1003

BDT-2624-5g

Boc-D-Thr(Bzl)-OH

5g

3468

BDT-2624-25g

Boc-D-Thr(Bzl)-OH

25g

14008

BDX-5346-PI-1g

Boc-D-Tic-OH

1g

1734

BDX-5346-PI-5g

Boc-D-Tic-OH

5g

7191

BDW-2614-1g

Boc-D-Trp(CHO)-OH

1g

1190

BDW-2614-5g

Boc-D-Trp(CHO)-OH

5g

4012

BDW-2614-25g

Boc-D-Trp(CHO)-OH

25g

13566

BDW-2602-1g

Boc-D-Trp-OH

1g

595

BDW-2602-5g

Boc-D-Trp-OH

5g

1462

BDW-2602-25g

Boc-D-Trp-OH

25g

4097

 

pepnet中国代理,pepnet上海代理,pepnet北京代理,pepnet广东代理,pepnet江苏代理pepnet湖北代理,pepnet天津代理,pepnet黑龙江代理,pepnet湖南代理pepnet内蒙古代理,pepnet吉林代理,pepnet福建代理,pepnet江苏代理,pepnet浙江代理,pepnet四川代理,pepnet代理,

 

上海金畔生物科技有限公司是实验试剂一站式采购服务商

1:强大的进口辐射能力,血清、抗体、耗材、大部分限制进口品等。

2:产品种类齐全,经营超过700多品牌,基本涵盖所有生物实验试剂耗材。

3:提供加急服务,货品一般1-2周到货。

4:富有竞争良好的信誉,大部分客户提供货到付款服务。客户包括清华、北大、交大、复旦、中山等100多所高校,ROCHE,阿斯利康、国药、fisher等知药企。

6:我们还是Santa,Advanced Biotechnologies Inc,Athens Research & Technology,bangs,BBInternational,crystalchem,dianova,FD Neurotechnologies,Inc. FormuMax Scientific,Inc, Genebridege, Glycotope Biotechnology GmbH; iduron,Innovative Research of America, Ludger, neuroprobe,omicronbio, Polysciences,prospecbi, QA-BIO,pepnet,RESEARCH DIETS,INC,sterlitech;sysy,TriLink BioTechnologies,Inc;pepnet-biochem,zyagen等几十家国外公司代理。

7:我们还是invitrogen,qiagen,MiraiBioam,sigma;neb,roche,merck, rnd,BD, GE,pierce,BioLegend等知*批发,欢迎合作。

 

 

Annexin V-FITC/PI细胞凋亡检测试剂盒|Annexin V-FITC/PI Apoptosis Detection Kit

Annexin V-FITC/PI细胞凋亡检测试剂盒|Annexin V-FITC/PI Apoptosis Detection Kit

产品说明书

FAQ

COA

已发表文献

产品描述

Annexin V-FITC/PI细胞凋亡检测试剂盒是用FITC标记的Annexin V作为探针,来检测细胞早期凋亡的发生。

其检测原理为:在正常的活细胞中,磷脂酰丝氨酸(phosphotidylserine,PS)位于细胞膜的内侧,但在早期凋亡的细胞中,PS 从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中。Annexin-Ⅴ(膜联蛋白-V)是一种分子量为35-36 kDaCa2+ 依赖性磷脂结合蛋白,能与PS高亲和力结合可通过细胞外侧暴露的磷脂酰丝氨酸与凋亡早期细胞的胞膜结合。

另外,本试剂盒中还提供了碘化丙啶(Propidium Iodide,PI)用来区分存活的早期细胞和坏死或晚期凋亡细胞。PI是一种核酸染料,它不能透过正常细胞或早期凋亡细胞的完整的细胞膜,但可以透过凋亡晚期和坏死细胞的细胞膜而使细胞核染红。因此,将Annexin V与PI联合使用时,PI 则被排除在活细胞(Annexin V-/PI-)和早期凋亡细胞(Annexin V+/PI-)之外,而晚期凋亡细胞和坏死细胞同时被FITC 和PI 结合染色呈现双阳性(Annexin V+/PI+)。

本试剂盒可用于流式细胞仪、荧光显微镜进行检测。

 

产品组分

编号

组分

产品编号/规格

40302ES20(20T)

40302ES50(50T)

40302ES60(100T)

40302-A

Annexin V-FITC

100 μL

250 μL

500 μL

40302-B

PI Staining Solution

200 μL

500 μL

1.0 mL

40302-C

1×Binding Buffer

10 mL

25 mL

50 mL

 

运输与保存方法

冰袋(wet ice)运输。-20℃避光保存,避免反复冻融,一年有效。

【注】:如果需要在短时间内多次重复使用,可以在4℃避光保存,半年有效。

 

注意事项

1)由于细胞凋亡是一个快速的过程,建议样品在染色后1小时之内进行分析。

2) 对于贴壁细胞,消化是一个关键步骤。贴壁细胞诱导细胞凋亡时如有漂浮细胞,需收集漂浮细胞和贴壁细胞后合并染色。处理贴壁细胞时要小心操作,尽量避免人为的损伤。胰酶消化时间过短,细胞需要用力吹打才能脱落,容易造成细胞膜的损伤;PI摄入过多,消化时间过长,细胞膜同样易造成损伤,甚至会影响细胞膜上磷脂酰丝氨酸与Annexin V-FITC的结合。消化时将胰酶铺满孔板底后,轻摇使胰酶与细胞充分接触,然后倒掉大部分胰酶,利用剩余少量胰酶再消化一段时间,待细胞间空隙增大,瓶底呈花斑状即可终止。在消化液中尽量不用EDTA,EDTA会影响Annexin V与PS的结合。

3)如果样品来源于血液,请务必除去血液中的血小板。因为血小板含有PS,能与Annexin V结合,从而干扰实验结果。可以使用含有EDTA的缓冲剂并在200 g离心洗去血小板。

4)试剂在开盖前请短暂离心,将盖内壁上的液体甩至管底,避免开盖时液体洒落。

5Annexin V-FITC和PI是光敏物质,在操作时请注意避光。

6)本产品仅作科研用途!

 

操作方法

1.1 样品染色

1)悬浮细胞300 g,4℃离心5 min收集细胞。

贴壁细胞:用不含EDTA的胰酶消化后,300 g,4℃离心5 min收集细胞。胰酶消化时间不宜过长,以防引起假阳性。

2)用预冷的PBS洗涤细胞2次,每次均需300 g,4℃离心5 min。收集1~5×105细胞。

3)吸弃PBS,加入100 μL 1×Binding Buffer重悬细胞。

4)加入5 μL Annexin V-FITC和10 μLPI Staining Solution,轻轻混匀。

5)避光、室温反应10-15 min。

6)加入400 μL 1×Binding Buffer,混匀后放置于冰上,样品在1小时内用流式细胞仪或荧光显微镜检测。

【注】:为了避免洗涤细胞时损失细胞,在吸液时可以用大的Tip头套上小的Tip头吸液。

1.2 样品分析

A.流式细胞仪分析:

FITC最大激发波长为488 nm,最大发射波长525 nm,FITC的绿色荧光在FL1通道检测;PI-DNA复合物的最大激发波长为535 nm,最大发射波长为615 nm,PI的红色荧光在FL2或FL3通道检测。用CellQuest等软件进行分析,绘制双色散点图(two-color dot plot),FITC为横坐标,PI为纵坐标。典型的实验中,细胞可以分成三个亚群,活细胞仅有很低强度的背景荧光,早期凋亡细胞仅有较强的绿色荧光,晚期凋亡细胞有绿色和红色荧光双重染色。

B.荧光显微镜分析:

1)滴一滴用Annexin V-FITC/PI双染的细胞悬液于载玻片上,并用盖玻片盖上细胞。

【注】:对于贴壁细胞,可直接用盖玻片培养细胞并诱导细胞凋亡。

2)在荧光显微镜下用双色滤光片观察。Annexin V-FITC荧光信号呈绿色,PI荧光信号呈红色。

 

相关产品

产品名称

货号

规格

Cell Cycle and Apoptosis Analysis Kit

细胞周期与细胞凋亡检测试剂盒

40301ES50

50 T

40301ES60

100 T

Annexin V-EGFP/PI 细胞凋亡检测试剂盒

Annexin V-EGFP/PI Apoptosis Detection Kit

40303ES20

20 T

40303ES50

50 T

40303ES60

100 T

Annexin V-Alexa Fluor 647/PI 细胞凋亡检测试剂盒

Annexin V-Alexa Fluor 647/PI Apoptosis Detection Kit

40304ES20

20 T

40304ES50

50 T

40304ES60

100 T

Annexin V-Alexa Fluor 488/PI 细胞凋亡检测试剂盒

Annexin V-Alexa Fluor 488/PI Apoptosis Detection Kit

40305ES20

20 T

40305ES50

50 T

40305ES60

100 T

Annexin V-PE/7-AAD细胞凋亡检测试剂盒

Annexin V-PE/7-AAD Apoptosis Detection Kit

40310ES20

20 T

40310ES50

50 T

40310ES60

100 T

 

 

HB220609

QAnnexin V 和 JC-1、Tunel 细胞凋亡检测的区别?

A: Annexin V 是检测细胞早期凋亡的试剂,JC-1 是检测细胞中期凋亡的试剂、Tunel 是检测细胞晚期凋亡的试剂。

QAnnexin V 和JC-1、Tunel 细胞凋亡检测的可以应用到植物或是细菌(原核生物) 吗?

A可以,但是需要制备原生质体,因为植物细胞或是细菌(原核生物)含有细胞壁,具体的染液使用剂量只需浸没细胞即可,染色时间对于不同细胞有一定的不同。

Q:40302ES Annexin V-FITC/PI 细胞凋亡检测试剂盒里的PI的浓度是多少呢?

A:20ug/ml。

Q:实验结果如何判断?

A:活细胞(Annexin V-/PI-)

  早期凋亡细胞(Annexin V+/PI-)

  晚期凋亡细胞和坏死细胞呈现双阳性(Annexin V+/PI+)

  裸核(Annexin V-/PI+)

Q: Annexin VTUNEL有什么区别?

A:末端脱氧核苷酸转移酶 dUTP 缺口末端标记 (TUNEL) 是一种染色方法,用于识别细胞内 DNA 片段化位点——晚期细胞凋亡的标志性特征。 它使用酶末端脱氧核苷酸转移酶 (TdT) 将修饰的 dNTP(例如 dUTP)连接到片段化 DNA 链的 3'-羟基末端。 dNTPs 通常用荧光团修饰以促进量化和/或可视化。

Annexin V 染色通过结合由于细胞膜不对称性丧失而暴露在细胞外的 PS 残基来识别细胞凋亡的早期阶段。 Annexin V 通常用 FITC 等荧光团标记,以促进凋亡细胞的检测。

Annexin V-FITC/PI细胞凋亡检测试剂盒|Annexin V-FITC/PI Apoptosis Detection Kit

 

 

[1] Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med. 2022;28(2):272-282. doi:10.1038/s41591-021-01645-7(IF:53.440)
[2] Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247-258. doi:10.1038/s41422-020-0389-3(IF:25.617)
[3] Wang Z, Yu L, Wang Y, et al. Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy. Adv Sci (Weinh). 2022;9(8):e2104793. doi:10.1002/advs.202104793(IF:16.806)
[4] Zhang M, Shao W, Yang T, et al. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication [published online ahead of print, 2022 Jun 4]. Adv Sci (Weinh). 2022;e2201135. doi:10.1002/advs.202201135(IF:16.806)
[5] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)
[6] Li Y, Cui K, Zhang Q, et al. FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death Differ. 2021;28(7):2112-2125. doi:10.1038/s41418-021-00739-6(IF:15.828)
[7] Li X, Yong T, Wei Z, et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat Commun. 2022;13(1):2794. Published 2022 May 19. doi:10.1038/s41467-022-30306-7(IF:14.919)
[8] Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022;13(1):791. Published 2022 Feb 10. doi:10.1038/s41467-022-28452-z(IF:14.919)
[9] Wang XS, Zeng JY, Li MJ, Li QR, Gao F, Zhang XZ. Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS Nano. 2020;14(8):9848-9860. doi:10.1021/acsnano.0c02516(IF:14.588)
[10] Wang M, Zhang L, Cai Y, et al. Bioengineered Human Serum Albumin Fusion Protein as Target/Enzyme/pH Three-Stage Propulsive Drug Vehicle for Tumor Therapy [published online ahead of print, 2020 Nov 17]. ACS Nano. 2020;10.1021/acsnano.0c07610. doi:10.1021/acsnano.0c07610(IF:14.588)
[11] Deng RH, Zou MZ, Zheng D, et al. Nanoparticles from Cuttlefish Ink Inhibit Tumor Growth by Synergizing Immunotherapy and Photothermal Therapy. ACS Nano. 2019;13(8):8618-8629. doi:10.1021/acsnano.9b02993(IF:13.903)
[12] Zhao H, Xu J, Huang W, et al. Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano. 2019;13(6):6647-6661. doi:10.1021/acsnano.9b00972(IF:13.903)
[13] Zhang C, Gao F, Wu W, et al. Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. ACS Nano. 2019;13(10):11249-11262. doi:10.1021/acsnano.9b04315(IF:13.903)
[14] Wan SS, Cheng Q, Zeng X, Zhang XZ. A Mn(III)-Sealed Metal-Organic Framework Nanosystem for Redox-Unlocked Tumor Theranostics. ACS Nano. 2019;13(6):6561-6571. doi:10.1021/acsnano.9b00300(IF:13.903)
[15] Wei JL, Wu SY, Yang YS, et al. GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer. J Immunother Cancer. 2021;9(7):e002383. doi:10.1136/jitc-2021-002383(IF:13.751)
[16] Wang L, Qin W, Xu W, et al. Bacteria-Mediated Tumor Therapy via Photothermally-Programmed Cytolysin A Expression. Small. 2021;17(40):e2102932. doi:10.1002/smll.202102932(IF:13.281)
[17] Wan SS, Zhang L, Zhang XZ. An ATP-Regulated Ion Transport Nanosystem for Homeostatic Perturbation Therapy and Sensitizing Photodynamic Therapy by Autophagy Inhibition of Tumors. ACS Cent Sci. 2019;5(2):327-340. doi:10.1021/acscentsci.8b00822(IF:12.837)
[18] Sun D, Zou Y, Song L, et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B. 2022;12(1):378-393. doi:10.1016/j.apsb.2021.06.005(IF:11.614)
[19] Yang Y, Hu D, Lu Y, et al. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B. 2022;12(6):2710-2730. doi:10.1016/j.apsb.2021.08.021(IF:11.614)
[20] Hu Q, Jia L, Zhang X, Zhu A, Wang S, Xie X. Accurate construction of cell membrane biomimetic graphene nanodecoys via purposeful surface engineering to improve screening efficiency of active components of traditional Chinese medicine. Acta Pharm Sin B. 2022;12(1):394-405. doi:10.1016/j.apsb.2021.05.021(IF:11.614)
[21] Wang M, Xu Y, Zhang Y, et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics. 2021;11(10):5010-5027. Published 2021 Mar 5. doi:10.7150/thno.55645(IF:11.556)
[22] Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics. 2021;11(13):6477-6490. Published 2021 Apr 19. doi:10.7150/thno.55708(IF:11.556)
[23] Fan Q, Zuo J, Tian H, et al. Nanoengineering a metal-organic framework for osteosarcoma chemo-immunotherapy by modulating indoleamine-2,3-dioxygenase and myeloid-derived suppressor cells. J Exp Clin Cancer Res. 2022;41(1):162. Published 2022 May 3. doi:10.1186/s13046-022-02372-8(IF:11.161)
[24] Lei X, Cao K, Chen Y, et al. Nuclear Transglutaminase 2 interacts with topoisomerase II⍺ to promote DNA damage repair in lung cancer cells. J Exp Clin Cancer Res. 2021;40(1):224. Published 2021 Jul 5. doi:10.1186/s13046-021-02009-2(IF:11.161)
[25] Xu L, Wang Y, Song E, Song Y. Nucleophilic and redox properties of polybrominated diphenyl ether derived-quinone/hydroquinone metabolites are responsible for their neurotoxicity. J Hazard Mater. 2021;420:126697. doi:10.1016/j.jhazmat.2021.126697(IF:10.588)
[26] Zhang C, Peng SY, Hong S, et al. Biomimetic carbon monoxide nanogenerator ameliorates streptozotocin induced type 1 diabetes in mice. Biomaterials. 2020;245:119986. doi:10.1016/j.biomaterials.2020.119986(IF:10.317)
[27] Zhang L, Cheng Q, Li C, Zeng X, Zhang XZ. Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination. Biomaterials. 2020;248:120029. doi:10.1016/j.biomaterials.2020.120029(IF:10.317)
[28] Zhang C, Zheng DW, Li CX, et al. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials. 2019;223:119472. doi:10.1016/j.biomaterials.2019.119472(IF:10.273)
[29] Cheng Q, Yu W, Ye J, et al. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials. 2019;224:119500. doi:10.1016/j.biomaterials.2019.119500(IF:10.273)
[30] Zhong H, Huang PY, Yan P, et al. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater. 2021;10(19):e2100770. doi:10.1002/adhm.202100770(IF:9.933)
[31] Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release. 2022;341:892-903. doi:10.1016/j.jconrel.2021.12.026(IF:9.776)
[32] Hu X, Tian H, Jiang W, Song A, Li Z, Luan Y. Rational Design of IR820- and Ce6-Based Versatile Micelle for Single NIR Laser-Induced Imaging and Dual-Modal Phototherapy. Small. 2018;14(52):e1802994. doi:10.1002/smll.201802994(IF:9.598)
[33] Yao Y, Li P, He J, Wang D, Hu J, Yang X. Albumin-Templated Bi2Se3-MnO2 Nanocomposites with Promoted Catalase-Like Activity for Enhanced Radiotherapy of Cancer. ACS Appl Mater Interfaces. 2021;13(24):28650-28661. doi:10.1021/acsami.1c05669(IF:9.229)
[34] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[35] Liu J, Zhou B, Guo Y, et al. SR-A-Targeted Nanoplatform for Sequential Photothermal/Photodynamic Ablation of Activated Macrophages to Alleviate Atherosclerosis [published online ahead of print, 2021 Jun 16]. ACS Appl Mater Interfaces. 2021;10.1021/acsami.1c06380. doi:10.1021/acsami.1c06380(IF:9.229)
[36] Ye R, Zheng Y, Chen Y, et al. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS Appl Mater Interfaces. 2021;13(47):55902-55912. doi:10.1021/acsami.1c17618(IF:9.229)
[37] Luo Q, Lin L, Huang Q, et al. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022;143:320-332. doi:10.1016/j.actbio.2022.02.033(IF:8.947)
[38] Sun J, Liu J, Gao C, et al. Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury. Acta Biomater. 2022;140:573-585. doi:10.1016/j.actbio.2021.12.023(IF:8.947)
[39] Gao J, Liu J, Meng Z, et al. Ultrasound-assisted C3F8-filled PLGA nanobubbles for enhanced FGF21 delivery and improved prophylactic treatment of diabetic cardiomyopathy. Acta Biomater. 2021;130:395-408. doi:10.1016/j.actbio.2021.06.015(IF:8.947)
[40] Xia F, Hou W, Liu Y, et al. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials. 2018;170:1-11. doi:10.1016/j.biomaterials.2018.03.048(IF:8.806)
[41] Xu M, Zhao X, Zhao S, et al. Landscape analysis of lncRNAs shows that DDX11-AS1 promotes cell-cycle progression in liver cancer through the PARP1/p53 axis. Cancer Lett. 2021;520:282-294. doi:10.1016/j.canlet.2021.08.001(IF:8.679)
[42] Hu XK, Rao SS, Tan YJ, et al. Fructose-coated Angstrom silver inhibits osteosarcoma growth and metastasis via promoting ROS-dependent apoptosis through the alteration of glucose metabolism by inhibiting PDK. Theranostics. 2020;10(17):7710-7729. Published 2020 Jun 19. doi:10.7150/thno.45858(IF:8.579)
[43] Wu D, Zhu ZQ, Tang HX, et al. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Theranostics. 2020;10(21):9808-9829. Published 2020 Aug 2. doi:10.7150/thno.43631(IF:8.579)
[44] Hong Y, Han Y, Wu J, et al. Chitosan modified Fe3O4/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics. 2020;10(12):5565-5577. Published 2020 Apr 15. doi:10.7150/thno.43569(IF:8.579)
[45] Ding MH, Wang Z, Jiang L, et al. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials. 2015;56:165-178. doi:10.1016/j.biomaterials.2015.03.058(IF:8.557)
[46] Liang H, Zhou Z, Luo R, et al. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics. 2018;8(18):5059-5071. Published 2018 Oct 5. doi:10.7150/thno.28344(IF:8.537)
[47] Zhou Z, Zhang Q, Zhang M, et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics. 2018;8(17):4604-4619. Published 2018 Sep 9. doi:10.7150/thno.26889(IF:8.537)
[48] Qi HZ, Ye YL, Suo Y, et al. Wnt/β-catenin signaling mediates the abnormal osteogenic and adipogenic capabilities of bone marrow mesenchymal stem cells from chronic graft-versus-host disease patients. Cell Death Dis. 2021;12(4):308. Published 2021 Mar 23. doi:10.1038/s41419-021-03570-6(IF:8.469)
[49] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[50] Xia J, Zhang J, Wang L, et al. Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation. Cell Death Dis. 2021;12(9):833. Published 2021 Sep 4. doi:10.1038/s41419-021-04126-4(IF:8.469)
[51] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[52] Zhang D, Zhang J, Li Q, Song A, Li Z, Luan Y. Cold to Hot: Rational Design of a Minimalist Multifunctional Photo-immunotherapy Nanoplatform toward Boosting Immunotherapy Capability. ACS Appl Mater Interfaces. 2019;11(36):32633-32646. doi:10.1021/acsami.9b09568(IF:8.456)
[53] Zhang J, Zhang D, Li Q, et al. Task-Specific Design of Immune-Augmented Nanoplatform to Enable High-Efficiency Tumor Immunotherapy. ACS Appl Mater Interfaces. 2019;11(46):42904-42916. doi:10.1021/acsami.9b13556(IF:8.456)
[54] Ke R, Zhen X, Wang HS, et al. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci. 2022;609:307-319. doi:10.1016/j.jcis.2021.12.009(IF:8.128)
[55] Jiang W, Zhang H, Wu J, et al. CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo-Photothermal Therapy. ACS Appl Mater Interfaces. 2018;10(40):34513-34523. doi:10.1021/acsami.8b13487(IF:8.097)
[56] Zhang A, Pan S, Zhang Y, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 2019;9(12):3443-3458. Published 2019 May 24. doi:10.7150/thno.33266(IF:8.063)
[57] Liu Y, Pan Y, Cao W, et al. A tumor microenvironment responsive biodegradable CaCO3/MnO2– based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics. 2019;9(23):6867-6884. Published 2019 Sep 21. doi:10.7150/thno.37586(IF:8.063)
[58] Zhang C, Zhou Z, Zhi X, et al. Insights into the distinguishing stress-induced cytotoxicity of chiral gold nanoclusters and the relationship with GSTP1. Theranostics. 2015;5(2):134-149. Published 2015 Jan 1. doi:10.7150/thno.10363(IF:8.022)
[59] Jiang K, Zhao D, Ye R, et al. Transdermal delivery of poly-hyaluronic acid-based spherical nucleic acids for chemogene therapy. Nanoscale. 2022;14(5):1834-1846. Published 2022 Feb 3. doi:10.1039/d1nr06353g(IF:7.790)
[60] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[61] Chen J , Li S , Liu X , et al. Transforming growth factor-β blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy. Nanoscale. 2021;13(22):9989-10001. doi:10.1039/d1nr01552d(IF:7.790)
[62] Gao R, Liu D, Guo W, et al. Meprin-α (Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms. Br J Pharmacol. 2020;177(12):2872-2885. doi:10.1111/bph.15019(IF:7.730)
[63] Yang X, Gao F, Zhang W, et al. "Star" miR-34a and CXCR4 antagonist based nanoplex for binary cooperative migration treatment against metastatic breast cancer. J Control Release. 2020;326:615-627. doi:10.1016/j.jconrel.2020.07.029(IF:7.727)
[64] Wu T, Liang X, Liu X, et al. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol. 2020;17(1):30. Published 2020 Jul 11. doi:10.1186/s12989-020-00363-1(IF:7.546)
[65] Yan Y, Zhao W, Liu W, et al. CCL19 enhances CD8+ T-cell responses and accelerates HBV clearance. J Gastroenterol. 2021;56(8):769-785. doi:10.1007/s00535-021-01799-8(IF:7.527)
[66] Fan RZ, Chen L, Su T, et al. Discovery of 8,9-seco-ent-Kaurane Diterpenoids as Potential Leads for the Treatment of Triple-Negative Breast Cancer. J Med Chem. 2021;64(14):9926-9942. doi:10.1021/acs.jmedchem.1c00166(IF:7.446)
[67] Xu M, Zhao C, Zhu B, et al. Discovering High Potent Hsp90 Inhibitors as Antinasopharyngeal Carcinoma Agents through Fragment Assembling Approach. J Med Chem. 2021;64(4):2010-2023. doi:10.1021/acs.jmedchem.0c01521(IF:7.446)
[68] Hou W, Zhao X, Qian X, et al. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale. 2016;8(1):104-116. doi:10.1039/c5nr06842h(IF:7.394)
[69] Gao W, Liu Y, Zhang H, Wang Z. Electrochemiluminescence Biosensor for Nucleolin Imaging in a Single Tumor Cell Combined with Synergetic Therapy of Tumor. ACS Sens. 2020;5(4):1216-1222. doi:10.1021/acssensors.0c00292(IF:7.333)
[70] Yin M, Zhang J, Zeng X, Zhang H, Gao Y. Target identification and drug discovery by data-driven hypothesis and experimental validation in ovarian endometriosis. Fertil Steril. 2021;116(2):478-492. doi:10.1016/j.fertnstert.2021.01.027(IF:7.329)
[71] Chen CY, Du W, Rao SS, et al. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1. Acta Biomater. 2020;111:208-220. doi:10.1016/j.actbio.2020.05.020(IF:7.242)
[72] Shang D, Sun D, Shi C, et al. Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines. Aging Cell. 2020;19(5):e13145. doi:10.1111/acel.13145(IF:7.238)
[73] Liu Y , Zhi X , Hou W , et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018;10(40):19052-19063. doi:10.1039/c8nr05886e(IF:7.233)
[74] Zhou J , Li T , Zhang C , Xiao J , Cui D , Cheng Y . Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging. Nanoscale. 2018;10(20):9707-9719. doi:10.1039/c8nr00994e(IF:7.233)
[75] Chen MM, Hu ZL, Ding JH, Du RH, Hu G. Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson's disease via astrocyte-neuron cross talk through complement C3-C3R signaling. Brain Behav Immun. 2021;95:310-320. doi:10.1016/j.bbi.2021.04.003(IF:7.217)
[76] Tian Y, Gao S, Wu M, et al. Tobacco Mosaic Virus-Based 1D Nanorod-Drug Carrier via the Integrin-Mediated Endocytosis Pathway. ACS Appl Mater Interfaces. 2016;8(17):10800-10807. doi:10.1021/acsami.6b02801(IF:7.145)
[77] Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D. MMP2-Targeting and Redox-Responsive PEGylated Chlorin e6 Nanoparticles for Cancer Near-Infrared Imaging and Photodynamic Therapy. ACS Appl Mater Interfaces. 2016;8(2):1447-1457. doi:10.1021/acsami.5b10772(IF:7.145)
[78] Zheng Y, Liu L, Wang Y, et al. Glioblastoma stem cell (GSC)-derived PD-L1-containing exosomes activates AMPK/ULK1 pathway mediated autophagy to increase temozolomide-resistance in glioblastoma. Cell Biosci. 2021;11(1):63. Published 2021 Mar 31. doi:10.1186/s13578-021-00575-8(IF:7.133)
[79] Wang H, Liu YC, Zhu CY, et al. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway. J Exp Clin Cancer Res. 2020;39(1):278. Published 2020 Dec 9. doi:10.1186/s13046-020-01792-8(IF:7.068)
[80] Hong W, Xue M, Jiang J, Zhang Y, Gao X. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2020;39(1):149. Published 2020 Aug 3. doi:10.1186/s13046-020-01648-1(IF:7.068)
[81] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[82] Chen Q , Chen Y , Sun Y , et al. Leukocyte-mimicking Pluronic-lipid nanovesicle hybrids inhibit the growth and metastasis of breast cancer. Nanoscale. 2019;11(12):5377-5394. doi:10.1039/c8nr08936a(IF:6.970)
[83] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[84] Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600. Published 2021 Jun 17. doi:10.2147/JIR.S304336(IF:6.922)
[85] Liu J, Gao J, Zhang A, et al. Carbon nanocage-based nanozyme as an endogenous H2O2-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale. 2020;12(42):21674-21686. doi:10.1039/d0nr05945e(IF:6.895)
[86] Zhang Q, Huang Y, Yang R, Mu J, Zhou Z, Sun M. Poly-antioxidants for enhanced anti-miR-155 delivery and synergistic therapy of metastatic breast cancer. Biomater Sci. 2022;10(13):3637-3646. Published 2022 Jun 28. doi:10.1039/d1bm02022f(IF:6.843)
[87] Zhang L, Zhao J, Dong J, Liu Y, Xuan K, Liu W. GSK3β rephosphorylation rescues ALPL deficiency-induced impairment of odontoblastic differentiation of DPSCs. Stem Cell Res Ther. 2021;12(1):225. Published 2021 Apr 6. doi:10.1186/s13287-021-02235-7(IF:6.832)
[88] Du X, Chen S, Cui H, et al. Circular RNA hsa_circ_0083756 promotes intervertebral disc degeneration by sponging miR-558 and regulating TREM1 expression. Cell Prolif. 2022;55(4):e13205. doi:10.1111/cpr.13205(IF:6.831)
[89] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[90] Kang RR, Sun Q, Chen KG, et al. Resveratrol prevents benzo(a)pyrene-induced disruption of mitochondrial homeostasis via the AMPK signaling pathway in primary cultured neurons [published correction appears in Environ Pollut. 2020 Oct;265(Pt A):115331]. Environ Pollut. 2020;261:114207. doi:10.1016/j.envpol.2020.114207(IF:6.793)
[91] Huang D, Guo Y, Li X, et al. Vitamin D3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai [published online ahead of print, 2021 Oct 12]. Cell Biol Toxicol. 2021;10.1007/s10565-021-09647-4. doi:10.1007/s10565-021-09647-4(IF:6.691)
[92] Li K, Zhu X, Yuan C. Inhibition of miR-185-3p Confers Erlotinib Resistance Through Upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biol. 2021;9:677860. Published 2021 Jul 21. doi:10.3389/fcell.2021.677860(IF:6.684)
[93] Tang X, Sun Y, Xu C, et al. Caffeine Induces Autophagy and Apoptosis in Auditory Hair Cells via the SGK1/HIF-1α Pathway. Front Cell Dev Biol. 2021;9:751012. Published 2021 Nov 16. doi:10.3389/fcell.2021.751012(IF:6.684)
[94] Hu B, Zeng LP, Yang XL, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13(11):e1006698. Published 2017 Nov 30. doi:10.1371/journal.ppat.1006698(IF:6.608)
[95] Jin T, Lin J, Gong Y, et al. iPLA2β Contributes to ER Stress-Induced Apoptosis during Myocardial Ischemia/Reperfusion Injury. Cells. 2021;10(6):1446. Published 2021 Jun 9. doi:10.3390/cells10061446(IF:6.600)
[96] Wang B, Ke W, Wang K, et al. Mechanosensitive Ion Channel Piezo1 Activated by Matrix Stiffness Regulates Oxidative Stress-Induced Senescence and Apoptosis in Human Intervertebral Disc Degeneration. Oxid Med Cell Longev. 2021;2021:8884922. Published 2021 Feb 10. doi:10.1155/2021/8884922(IF:6.543)
[97] Jiang H, Gao X, Gong J, et al. Downregulated Expression of Solute Carrier Family 26 Member 6 in NRK-52E Cells Attenuates Oxalate-Induced Intracellular Oxidative Stress. Oxid Med Cell Longev. 2018;2018:1724648. Published 2018 Oct 10. doi:10.1155/2018/1724648(IF:6.543)
[98] Ma X, Li X, Di Q, et al. Natural molecule Munronoid I attenuates LPS-induced acute lung injury by promoting the K48-linked ubiquitination and degradation of TAK1. Biomed Pharmacother. 2021;138:111543. doi:10.1016/j.biopha.2021.111543(IF:6.530)
[99] Yao M, Han W, Feng L, et al. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem. 2022;233:114236. doi:10.1016/j.ejmech.2022.114236(IF:6.514)
[100] Wang XR, Wang S, Li WB, et al. Design, synthesis and biological evaluation of novel 2-(4-(1H-indazol-6-yl)-1H-pyrazol-1-yl)acetamide derivatives as potent VEGFR-2 inhibitors. Eur J Med Chem. 2021;213:113192. doi:10.1016/j.ejmech.2021.113192(IF:6.514)
[101] Zou Y, Mei D, Yuan J, et al. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. Int J Nanomedicine. 2021;16:1127-1141. Published 2021 Feb 12. doi:10.2147/IJN.S290466(IF:6.400)
[102] Liu H, Jiapaer Z, Meng F, et al. Construction Of High Loading Natural Active Substances Nanoplatform and Application in Synergistic Tumor Therapy. Int J Nanomedicine. 2022;17:2647-2659. Published 2022 Jun 15. doi:10.2147/IJN.S364108(IF:6.400)
[103] Yang X, Zhou Y, Li H, et al. Autophagic flux inhibition, apoptosis, and mitochondrial dysfunction in bile acids-induced impairment of human placental trophoblast. J Cell Physiol. 2022;237(7):3080-3094. doi:10.1002/jcp.30774(IF:6.384)
[104] Liu Y, Liu N, Xu D, et al. Hsa-miR-599 inhibits breast cancer progression via BRD4/Jagged1/Notch1 axis. J Cell Physiol. 2022;237(1):523-531. doi:10.1002/jcp.30548(IF:6.384)
[105] Wu J, Hu X, Liu R, Zhang J, Song A, Luan Y. pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. J Colloid Interface Sci. 2019;547:30-39. doi:10.1016/j.jcis.2019.03.087(IF:6.361)
[106] Cheng C, Chen X, Wang Y, et al. MSCs‑derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med. 2021;27(1):67. Published 2021 Jul 2. doi:10.1186/s10020-021-00324-0(IF:6.354)
[107] Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-Microscopy for microRNA Imaging in Single Cancer Cell Combined with Chemotherapy-Photothermal Therapy. Anal Chem. 2019;91(19):12581-12586. doi:10.1021/acs.analchem.9b03694(IF:6.350)
[108] Xia F, Hou W, Zhang C, et al. pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. Acta Biomater. 2018;68:308-319. doi:10.1016/j.actbio.2017.12.034(IF:6.319)
[109] Wang Y, Liu B, Wu P, et al. Dietary Selenium Alleviated Mouse Liver Oxidative Stress and NAFLD Induced by Obesity by Regulating the KEAP1/NRF2 Pathway. Antioxidants (Basel). 2022;11(2):349. Published 2022 Feb 10. doi:10.3390/antiox11020349(IF:6.313)
[110] Wang Y, Ding Y, Sun P, et al. Empagliflozin-Enhanced Antioxidant Defense Attenuates Lipotoxicity and Protects Hepatocytes by Promoting FoxO3a- and Nrf2-Mediated Nuclear Translocation via the CAMKK2/AMPK Pathway. Antioxidants (Basel). 2022;11(5):799. Published 2022 Apr 19. doi:10.3390/antiox11050799(IF:6.313)
[111] Xu J, Wang J, Wang X, et al. Soluble PD-L1 improved direct ARDS by reducing monocyte-derived macrophages. Cell Death Dis. 2020;11(10):934. Published 2020 Oct 30. doi:10.1038/s41419-020-03139-9(IF:6.304)
[112] Zhao Y, Fan K, Zhu Y, Zhao Y, Cai J, Jin L. Gestational exposure to BDE-209 induces placental injury via the endoplasmic reticulum stress-mediated PERK/ATF4/CHOP signaling pathway. Ecotoxicol Environ Saf. 2022;233:113307. doi:10.1016/j.ecoenv.2022.113307(IF:6.291)
[113] Peng Z, Yang X, Zhang H, Yin M, Luo Y, Xie C. MiR-29b-3p aggravates NG108-15 cell apoptosis triggered by fluorine combined with aluminum [published online ahead of print, 2021 Aug 20]. Ecotoxicol Environ Saf. 2021;224:112658. doi:10.1016/j.ecoenv.2021.112658(IF:6.291)
[114] Chen Y, Deng J, Liu F, et al. Energy-Free, Singlet Oxygen-Based Chemodynamic Therapy for Selective Tumor Treatment without Dark Toxicity. Adv Healthc Mater. 2019;8(18):e1900366. doi:10.1002/adhm.201900366(IF:6.270)
[115] Li T, Zhou J, Wang L, et al. Photo-Fenton-like Metal-Protein Self-Assemblies as Multifunctional Tumor Theranostic Agent. Adv Healthc Mater. 2019;8(15):e1900192. doi:10.1002/adhm.201900192(IF:6.270)
[116] Yi X, Dai J, Han Y, et al. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun Biol. 2018;1:202. Published 2018 Nov 21. doi:10.1038/s42003-018-0204-6(IF:6.268)
[117] Wu J, He X, Xiong Z, et al. Bruceine H Mediates EGFR-TKI Drug Persistence in NSCLC by Notch3-Dependent β-Catenin Activating FOXO3a Signaling. Front Oncol. 2022;12:855603. Published 2022 Apr 8. doi:10.3389/fonc.2022.855603(IF:6.244)
[118] Meng X, Deng Y, He S, Niu L, Zhu H. m6A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigenesis by Regulating the miR-150-5p/E2F3 Axis. Front Oncol. 2021;11:629947. Published 2021 Feb 18. doi:10.3389/fonc.2021.629947(IF:6.244)
[119] Gao Y, Sun Z, Gu J, et al. Cancer-Associated Fibroblasts Promote the Upregulation of PD-L1 Expression Through Akt Phosphorylation in Colorectal Cancer. Front Oncol. 2021;11:748465. Published 2021 Nov 19. doi:10.3389/fonc.2021.748465(IF:6.244)
[120] Liu Y, Dong Y, He X, et al. piR-hsa-211106 Inhibits the Progression of Lung Adenocarcinoma Through Pyruvate Carboxylase and Enhances Chemotherapy Sensitivity. Front Oncol. 2021;11:651915. Published 2021 Jun 23. doi:10.3389/fonc.2021.651915(IF:6.244)
[121] Xu S, Song Y, Shao Y, Zhou H. Hsa_circ_0060927 Is a Novel Tumor Biomarker by Sponging miR-195-5p in the Malignant Transformation of OLK to OSCC. Front Oncol. 2022;11:747086. Published 2022 Jan 11. doi:10.3389/fonc.2021.747086(IF:6.244)
[122] Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p Promotes Non-Small Cell Lung Cancer Through SLC7A11-Mediated-Ferroptosis. Front Oncol. 2021;11:759346. Published 2021 Oct 13. doi:10.3389/fonc.2021.759346(IF:6.244)
[123] Dai P, Tang Z, Ruan P, Bajinka O, Liu D, Tan Y. Gimap5 Inhibits Lung Cancer Growth by Interacting With M6PR. Front Oncol. 2021;11:699847. Published 2021 Sep 15. doi:10.3389/fonc.2021.699847(IF:6.244)
[124] Zan X, Li S, Wei S, et al. COL8A1 Promotes NSCLC Progression Through IFIT1/IFIT3-Mediated EGFR Activation. Front Oncol. 2022;12:707525. Published 2022 Feb 24. doi:10.3389/fonc.2022.707525(IF:6.244)
[125] Xu D, Yang F, Fan Y, et al. LncRNA DLEU1 Contributes to the Growth and Invasion of Colorectal Cancer via Targeting miR-320b/PRPS1. Front Oncol. 2021;11:640276. Published 2021 May 25. doi:10.3389/fonc.2021.640276(IF:6.244)
[126] Hu L, Cai X, Dong S, et al. Synthesis and Anticancer Activity of Novel Actinonin Derivatives as HsPDF Inhibitors. J Med Chem. 2020;63(13):6959-6978. doi:10.1021/acs.jmedchem.0c00079(IF:6.205)
[127] Sun YF, Wang Y, Li XD, Wang H. SNHG15, a p53-regulated lncRNA, suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 axis. Am J Cancer Res. 2022;12(2):816-828. Published 2022 Feb 15. (IF:6.166)
[128] Yu M, Hu X, Yan J, Wang Y, Lu F, Chang J. RIOK2 Inhibitor NSC139021 Exerts Anti-Tumor Effects on Glioblastoma via Inducing Skp2-Mediated Cell Cycle Arrest and Apoptosis. Biomedicines. 2021;9(9):1244. Published 2021 Sep 17. doi:10.3390/biomedicines9091244(IF:6.081)
[129] Liu ZQ, Liu K, Liu ZF, et al. Manganese-induced alpha-synuclein overexpression aggravates mitochondrial damage by repressing PINK1/Parkin-mediated mitophagy [published correction appears in Food Chem Toxicol. 2021 Dec;158:112660]. Food Chem Toxicol. 2021;152:112213. doi:10.1016/j.fct.2021.112213(IF:6.025)
[130] Lu Z, Wang Z, Tu Z, Liu H. HSP90 Inhibitor Ganetespib Enhances the Sensitivity of Mantle Cell Lymphoma to Bruton's Tyrosine Kinase Inhibitor Ibrutinib. Front Pharmacol. 2022;13:864194. Published 2022 Jun 3. doi:10.3389/fphar.2022.864194(IF:5.988)
[131] Zheng Z, Shang Y, Xu R, et al. Ubiquitin specific peptidase 38 promotes the progression of gastric cancer through upregulation of fatty acid synthase. Am J Cancer Res. 2022;12(6):2686-2696. Published 2022 Jun 15. (IF:5.942)
[132] Tao Y, Qiao SM, Lv CJ, et al. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the ERβ/TRIM21/PHB1 pathway [published online ahead of print, 2022 May 22]. Phytother Res. 2022;10.1002/ptr.7495. doi:10.1002/ptr.7495(IF:5.882)
[133] Zhang Y, Wang X, Ma Z, et al. A potential strategy for in-stent restenosis: Inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion. Mater Sci Eng C Mater Biol Appl. 2020;115:111090. doi:10.1016/j.msec.2020.111090(IF:5.880)
[134] Cui T, Li S, Chen S, Liang Y, Sun H, Wang L. "Stealth" dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. Int J Pharm. 2021;600:120502. doi:10.1016/j.ijpharm.2021.120502(IF:5.875)
[135] Liang H, Chen M, Qi F, et al. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal Transduct Target Ther. 2019;4:23. Published 2019 Jul 19. doi:10.1038/s41392-019-0058-5(IF:5.873)
[136] Luan X, Sun M, Zhao X, Wang J, Han Y, Gao Y. Bisimidazolium Salt Glycosyltransferase Inhibitors Suppress Hepatocellular Carcinoma Progression In Vitro and In Vivo. Pharmaceuticals (Basel). 2022;15(6):716. Published 2022 Jun 5. doi:10.3390/ph15060716(IF:5.863)
[137] Tang Y, Shi C, Qin Y, et al. Network Pharmacology-Based Investigation and Experimental Exploration of the Antiapoptotic Mechanism of Colchicine on Myocardial Ischemia Reperfusion Injury. Front Pharmacol. 2021;12:804030. Published 2021 Dec 16. doi:10.3389/fphar.2021.804030(IF:5.811)
[138] Hu Y, Qian Y, Wei J, et al. The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Front Pharmacol. 2021;12:752825. Published 2021 Nov 23. doi:10.3389/fphar.2021.752825(IF:5.811)
[139] Zhu L, Zhou H, Xu F, et al. Hepatic Ischemia-Reperfusion Impairs Blood-Brain Barrier Partly Due to Release of Arginase From Injured Liver. Front Pharmacol. 2021;12:724471. Published 2021 Oct 13. doi:10.3389/fphar.2021.724471(IF:5.811)
[140] Liu A, Wang H, Hou X, et al. Combinatory antitumor therapy by cascade targeting of a single drug. Acta Pharm Sin B. 2020;10(4):667-679. doi:10.1016/j.apsb.2019.08.011(IF:5.808)
[141] Peng RR, Wang LL, Gao WY, et al. The 5.8S pre-rRNA maturation factor, M-phase phosphoprotein 6, is a female fertility factor required for oocyte quality and meiosis. Cell Prolif. 2020;53(3):e12769. doi:10.1111/cpr.12769(IF:5.753)
[142] Niu X, Pu S, Ling C, et al. lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Prolif. 2020;53(6):e12818. doi:10.1111/cpr.12818(IF:5.753)
[143] Wang N, Yu M, Fu Y, Ma Z. Blocking ATM Attenuates SKOV3 Cell Proliferation and Migration by Disturbing OGT/OGA Expression via hsa-miR-542-5p. Front Oncol. 2022;12:839508. Published 2022 Jun 20. doi:10.3389/fonc.2022.839508(IF:5.738)
[144] Hu Y, Wang B, Yi K, Lei Q, Wang G, Xu X. IFI35 is involved in the regulation of the radiosensitivity of colorectal cancer cells. Cancer Cell Int. 2021;21(1):290. Published 2021 Jun 3. doi:10.1186/s12935-021-01997-7(IF:5.722)
[145] Zou X, Liu Y, Di J, et al. ZMIZ2 promotes the development of triple-receptor negative breast cancer. Cancer Cell Int. 2022;22(1):52. Published 2022 Jan 31. doi:10.1186/s12935-021-02393-x(IF:5.722)
[146] Chen W, Chen H, Yang ZT, Mao EQ, Chen Y, Chen EZ. Free fatty acids-induced neutrophil extracellular traps lead to dendritic cells activation and T cell differentiation in acute lung injury. Aging (Albany NY). 2021;13(24):26148-26160. doi:10.18632/aging.203802(IF:5.682)
[147] Liu W, Long Q, Zhang W, et al. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY). 2021;13(15):19760-19775. doi:10.18632/aging.203388(IF:5.682)
[148] Chang L, Gao H, Wang L, et al. Exosomes derived from miR-1228 overexpressing bone marrow-mesenchymal stem cells promote growth of gastric cancer cells. Aging (Albany NY). 2021;13(8):11808-11821. doi:10.18632/aging.202878(IF:5.682)
[149] Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res. 2019;38(1):414. Published 2019 Oct 10. doi:10.1186/s13046-019-1404-8(IF:5.646)
[150] Zhu Y, Wang X, Zhou X, Ding L, Liu D, Xu H. DNMT1-mediated PPARα methylation aggravates damage of retinal tissues in diabetic retinopathy mice. Biol Res. 2021;54(1):25. Published 2021 Aug 6. doi:10.1186/s40659-021-00347-1(IF:5.612)
[151] Cui D, Zhang C, Liu B, et al. Regression of Gastric Cancer by Systemic Injection of RNA Nanoparticles Carrying both Ligand and siRNA. Sci Rep. 2015;5:10726. Published 2015 Jul 3. doi:10.1038/srep10726(IF:5.578)
[152] Xu X, Yuan X, Ni J, et al. MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2. J Cell Physiol. 2021;236(2):1116-1130. doi:10.1002/jcp.29922(IF:5.546)
[153] Lai SY, Guan HM, Liu J, et al. Long noncoding RNA SNHG12 modulated by human papillomavirus 16 E6/E7 promotes cervical cancer progression via ERK/Slug pathway. J Cell Physiol. 2020;235(11):7911-7922. doi:10.1002/jcp.29446(IF:5.546)
[154] Li YR, Peng RR, Gao WY, et al. The ubiquitin ligase KBTBD8 regulates PKM1 levels via Erk1/2 and Aurora A to ensure oocyte quality. Aging (Albany NY). 2019;11(4):1110-1128. doi:10.18632/aging.101802(IF:5.515)
[155] Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11(18):7830-7846. doi:10.18632/aging.102291(IF:5.515)
[156] Tang XD, Zhang DD, Jia L, Ji W, Zhao YS. lncRNA AFAP1-AS1 Promotes Migration and Invasion of Non-Small Cell Lung Cancer via Up-Regulating IRF7 and the RIG-I-Like Receptor Signaling Pathway. Cell Physiol Biochem. 2018;50(1):179-195. doi:10.1159/000493967(IF:5.500)
[157] Jiang Q, Chen Q, Li C, Gong Z, Li Z, Ding S. ox-LDL-Induced Endothelial Progenitor Cell Oxidative Stress via p38/Keap1/Nrf2 Pathway. Stem Cells Int. 2022;2022:5897194. Published 2022 Jan 31. doi:10.1155/2022/5897194(IF:5.443)
[158] Wu Z, Wu P, Zuo X, et al. LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation [published correction appears in Mol Neurobiol. 2017 Jan 4;:]. Mol Neurobiol. 2017;54(10):7670-7685. doi:10.1007/s12035-016-0246-z(IF:5.397)
[159] Halike X, Li J, Yuan P, et al. The petroleum ether extract of Brassica rapa L. induces apoptosis of lung adenocarcinoma cells via the mitochondria-dependent pathway. Food Funct. 2021;12(20):10023-10039. Published 2021 Oct 19. doi:10.1039/d1fo01547h(IF:5.396)
[160] Huo W, Li H, Zhang Y, Li H. Epigenetic silencing of microRNA-874-3p implicates in erectile dysfunction in diabetic rats by activating the Nupr1/Chop-mediated pathway. FASEB J. 2020;34(1):1695-1709. doi:10.1096/fj.201902086R(IF:5.391)
[161] Liang S, Sun M, Lu Y, et al. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B. 2020;8(36):8368-8382. doi:10.1039/d0tb01391a(IF:5.344)
[162] Zhang J, Yang S, Guan H, Zhou J, Gao Y. Xanthatin synergizes with cisplatin to suppress homologous recombination through JAK2/STAT4/BARD1 axis in human NSCLC cells. J Cell Mol Med. 2021;25(3):1688-1699. doi:10.1111/jcmm.16271(IF:5.310)
[163] Han J, Wang P, Xia X, et al. EGR1 promoted anticancer effects of Scutellarin via regulating LINC00857/miR-150-5p/c-Myc in osteosarcoma. J Cell Mol Med. 2021;25(17):8479-8489. doi:10.1111/jcmm.16809(IF:5.310)
[164] Hang C, Song Y, Li Y, et al. Knockout of MYOM1 in human cardiomyocytes leads to myocardial atrophy via impairing calcium homeostasis. J Cell Mol Med. 2021;25(3):1661-1676. doi:10.1111/jcmm.16268(IF:5.310)
[165] Hao Y, Lu C, Zhang B, Xu Z, Guo H, Zhang G. CircPVT1 up-regulation attenuates steroid-induced osteonecrosis of the femoral head through regulating miR-21-5p-mediated Smad7/TGFβ signalling pathway. J Cell Mol Med. 2021;25(10):4608-4622. doi:10.1111/jcmm.16294(IF:5.310)
[166] Shen J, Dong J, Shao F, et al. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine (Lond). 2022;17(9):591-605. doi:10.2217/nnm-2022-0030(IF:5.307)
[167] Gu J, Lin Y, Wang Z, et al. Campylobacter jejuni Cytolethal Distending Toxin Induces GSDME-Dependent Pyroptosis in Colonic Epithelial Cells. Front Cell Infect Microbiol. 2022;12:853204. Published 2022 Apr 27. doi:10.3389/fcimb.2022.853204(IF:5.293)
[168] Wang Z, Liu M, Liu L, Li L, Tan L, Sun Y. The Synergistic Effect of Tacrolimus (FK506) or Everolimus and Azoles Against Scedosporium and Lomentospora Species In Vivo and In Vitro. Front Cell Infect Microbiol. 2022;12:864912. Published 2022 Apr 14. doi:10.3389/fcimb.2022.864912(IF:5.293)
[169] Xu C, Shao T, Shao S, Jin G. High activity, high selectivity and high biocompatibility BODIPY-pyrimidine derivatives for fluorescence target recognition and evaluation of inhibitory activity. Bioorg Chem. 2021;114:105121. doi:10.1016/j.bioorg.2021.105121(IF:5.275)
[170] Sun W, Sun F, Meng J, et al. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem. 2022;126:105906. doi:10.1016/j.bioorg.2022.105906(IF:5.275)
[171] Qiu CL, Ye ZN, Yan BC, et al. Structurally diverse diterpenoids from Isodon oresbius and their bioactivity. Bioorg Chem. 2022;124:105811. doi:10.1016/j.bioorg.2022.105811(IF:5.275)
[172] Ma Y, Yang X, Han H, et al. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem. 2021;111:104872. doi:10.1016/j.bioorg.2021.104872(IF:5.275)
[173] Ao M, Hu X, Qian Y, et al. Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg Chem. 2021;113:104961. doi:10.1016/j.bioorg.2021.104961(IF:5.275)
[174] Zhao XJ, Zhu HY, Wang XL, et al. Oridonin Ameliorates Traumatic Brain Injury-Induced Neurological Damage by Improving Mitochondrial Function and Antioxidant Capacity and Suppressing Neuroinflammation through the Nrf2 Pathway. J Neurotrauma. 2022;39(7-8):530-543. doi:10.1089/neu.2021.0466(IF:5.269)
[175] Wang QY, Yali-Xiang, Hu QH, Huang SH, Lin J, Zhou QH. Surface charge switchable nano-micelle for pH/redox-triggered and endosomal escape mediated co-delivery of doxorubicin and paclitaxel in treatment of lung adenocarcinoma. Colloids Surf B Biointerfaces. 2022;216:112588. doi:10.1016/j.colsurfb.2022.112588(IF:5.268)
[176] Li W, Xie X, Wu T, et al. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids Surf B Biointerfaces. 2019;181:305-314. doi:10.1016/j.colsurfb.2019.05.047(IF:5.268)
[177] Liu Y, Zhou Z, Liu Y, et al. H2O2-activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy. Biomater Sci. 2019;7(12):5359-5368. doi:10.1039/c9bm01354g(IF:5.251)
[178] Hou J, Huang P, Lan C, et al. ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway. Cell Death Discov. 2022;8(1):32. Published 2022 Jan 21. doi:10.1038/s41420-022-00815-x(IF:5.241)
[179] Chen Y, Chen D, Qin Y, et al. TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Discov. 2022;8(1):35. Published 2022 Jan 24. doi:10.1038/s41420-022-00824-w(IF:5.241)
[180] Liu Y, Yao M, Han W, Zhang H, Zhang S. Construction of a Single-Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry. 2021;27(53):13418-13425. doi:10.1002/chem.202102016(IF:5.236)
[181] Liu L, Sun X, Guo Y, Ge K. Evodiamine induces ROS-Dependent cytotoxicity in human gastric cancer cells via TRPV1/Ca2+ pathway. Chem Biol Interact. 2022;351:109756. doi:10.1016/j.cbi.2021.109756(IF:5.194)
[182] Zhang J, Yang F, Mei X, et al. Toosendanin and isotoosendanin suppress triple-negative breast cancer growth via inducing necrosis, apoptosis and autophagy. Chem Biol Interact. 2022;351:109739. doi:10.1016/j.cbi.2021.109739(IF:5.194)
[183] Du XF, Cui HT, Pan HH, et al. Role of the miR-133a-5p/FBXO6 axis in the regulation of intervertebral disc degeneration. J Orthop Translat. 2021;29:123-133. Published 2021 Jun 19. doi:10.1016/j.jot.2021.05.004(IF:5.191)
[184] Tan H, Hou N, Liu Y, et al. CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomedicine. 2020;27:102192. doi:10.1016/j.nano.2020.102192(IF:5.182)
[185] Li WW, Wang HY, Nie X, Liu YB, Han M, Li BH. Human colorectal cancer cells induce vascular smooth muscle cell apoptosis in an exocrine manner. Oncotarget. 2017;8(37):62049-62056. Published 2017 Jun 27. doi:10.18632/oncotarget.18893(IF:5.168)
[186] Liu H, Lu Z, Shi X, et al. HSP90 inhibition downregulates DNA replication and repair genes via E2F1 repression. J Biol Chem. 2021;297(2):100996. doi:10.1016/j.jbc.2021.100996(IF:5.157)
[187] Zhang T, Feng S, Li J, et al. Farnesoid X receptor (FXR) agonists induce hepatocellular apoptosis and impair hepatic functions via FXR/SHP pathway. Arch Toxicol. 2022;96(6):1829-1843. doi:10.1007/s00204-022-03266-6(IF:5.153)
[188] Tian DH, Qin CH, Xu WY, et al. Phenotypic and functional comparison of rat enteric neural crest-derived cells during fetal and early-postnatal stages. Neural Regen Res. 2021;16(11):2310-2315. doi:10.4103/1673-5374.310701(IF:5.135)
[189] Kuang Z, Chen Z, Tu S, et al. Dopamine Suppresses Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells via AKT/GSK-3β/β-Catenin Signaling Pathway. Stem Cells Int. 2022;2022:4154440. Published 2022 Jun 29. doi:10.1155/2022/4154440(IF:5.131)
[190] Fan C, Feng J, Tang C, et al. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther. 2020;11(1):442. Published 2020 Oct 15. doi:10.1186/s13287-020-01948-5(IF:5.116)
[191] Zhou J, Hou J, Rao J, Zhou C, Liu Y, Gao W. Magnetically Directed Enzyme/Prodrug Prostate Cancer Therapy Based on β-Glucosidase/Amygdalin. Int J Nanomedicine. 2020;15:4639-4657. Published 2020 Jun 29. doi:10.2147/IJN.S242359(IF:5.115)
[192] Liu B, Chen D, Wang Y, et al. Adipose improves muscular atrophy caused by Sirtuin1 deficiency by promoting mitochondria synthesis. Int J Biochem Cell Biol. 2022;149:106246. doi:10.1016/j.biocel.2022.106246(IF:5.085)
[193] Li Y, Zhai P, Zheng Y, Zhang J, Kellum JA, Peng Z. Csf2 Attenuated Sepsis-Induced Acute Kidney Injury by Promoting Alternative Macrophage Transition. Front Immunol. 2020;11:1415. Published 2020 Jul 7. doi:10.3389/fimmu.2020.01415(IF:5.085)
[194] Zhou GZ, Li J, Sun YH, Zhang Q, Zhang L, Pei C. Autophagy Delays Apoptotic Cell Death Induced by Siniperca chuatsi Rhabdovirus in Epithelioma Papulosum Cyprinid Cells. Viruses. 2021;13(8):1554. Published 2021 Aug 6. doi:10.3390/v13081554(IF:5.048)
[195] Liu H, Lu J, Hua Y, et al. Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer. Cell Death Dis. 2015;6(1):e1595. Published 2015 Jan 15. doi:10.1038/cddis.2014.555(IF:5.014)
[196] Li W, Xie X, Wu T, et al. Targeted delivery of Auristatin PE to Hep G2 cells using folate – conjugated boron nitride nanotubes. Mater Sci Eng C Mater Biol Appl. 2020;109:110509. doi:10.1016/j.msec.2019.110509(IF:4.959)
[197] Wu M, Deng X, Zhong Y, et al. MafF Is Regulated via the circ-ITCH/miR-224-5p Axis and Acts as a Tumor Suppressor in Hepatocellular Carcinoma. Oncol Res. 2020;28(3):299-309. doi:10.3727/096504020X15796890809840(IF:4.949)
[198] Qian C, Al-Hamyari B, Tang X, et al. Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Mol Pharm. 2021;18(12):4531-4542. doi:10.1021/acs.molpharmaceut.1c00735(IF:4.939)
[199] Wang J, Tan M, Ge J, et al. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif. 2018;51(4):e12452. doi:10.1111/cpr.12452(IF:4.936)
[200] Zhou W, Ji L, Liu X, et al. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury [published online ahead of print, 2021 Dec 1]. Biomed J. 2021;S2319-4170(21)00172-4. doi:10.1016/j.bj.2021.11.012(IF:4.910)
[201] Jiang C, Yang W, Wang C, et al. Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. Published 2019 Aug 14. doi:10.1155/2019/1529520(IF:4.868)
[202] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[203] Yan YL, Huang ZN, Zhu Z, et al. Downregulation of TET1 Promotes Bladder Cancer Cell Proliferation and Invasion by Reducing DNA Hydroxymethylation of AJAP1. Front Oncol. 2020;10:667. Published 2020 May 21. doi:10.3389/fonc.2020.00667(IF:4.848)
[204] Yan W, Fu X, Gao Y, et al. Synthesis, antibacterial evaluation, and safety assessment of CuS NPs against Pectobacterium carotovorum subsp. carotovorum. Pest Manag Sci. 2022;78(2):733-742. doi:10.1002/ps.6686(IF:4.845)
[205] Deng Y, Zhu H, Xiao L, Liu C, Meng X. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging (Albany NY). 2020;13(2):2198-2211. doi:10.18632/aging.202234(IF:4.831)
[206] Li B, Zhu F, He F, et al. Synthesis and biological evaluations of N'-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents. Bioorg Chem. 2020;96:103592. doi:10.1016/j.bioorg.2020.103592(IF:4.831)
[207] Yin H, Wang H, Wang M, et al. CircTCF25 serves as a sponge for miR-206 to support proliferation, migration, and invasion of glioma via the Jak2/p-Stat3/CypB axis. Mol Carcinog. 2022;61(6):558-571. doi:10.1002/mc.23402(IF:4.784)
[208] Wang J , Fang T , Li M , et al. Intracellular delivery of peptide drugs using viral nanoparticles of bacteriophage P22: covalent loading and cleavable release. J Mater Chem B. 2018;6(22):3716-3726. doi:10.1039/c8tb00186c(IF:4.776)
[209] Yang L, Tang J, Yin H, et al. Self-Assembled Nanoparticles for Tumor-Triggered Targeting Dual-Mode NIRF/MR Imaging and Photodynamic Therapy Applications. ACS Biomater Sci Eng. 2022;8(2):880-892. doi:10.1021/acsbiomaterials.1c01418(IF:4.749)
[210] Zhang C, Deng K, Xu D, et al. Fe-Based Theranostic Agents Respond to the Tumor Microenvironment for MRI-Guided Ferroptosis-/Apoptosis-Inducing Anticancer Therapy. ACS Biomater Sci Eng. 2022;8(6):2610-2623. doi:10.1021/acsbiomaterials.1c01626(IF:4.749)
[211] Gu C, Du W, Chai M, et al. Human umbilical cord-derived mesenchymal stem cells affect urea synthesis and the cell apoptosis of human induced hepatocytes by secreting IL-6 in a serum-free co-culture system. Biotechnol J. 2022;17(1):e2100096. doi:10.1002/biot.202100096(IF:4.677)
[212] Xi Z, Qiao Y, Wang J, et al. Gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103 [retracted in:  J Cell Mol Med. 2021 Feb;25(4):2286]. J Cell Mol Med. 2020;24(2):1451-1459. doi:10.1111/jcmm.14826(IF:4.658)
[213] Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med. 2019;23(5):3257-3270. doi:10.1111/jcmm.14212(IF:4.658)
[214] Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med. 2019;23(5):3257-3270. doi:10.1111/jcmm.14212(IF:4.658)
[215] Wang H, Tian Q, Xu J, Xu W, Yao K, Chen X. Cataract-causing G91del mutant destabilised βA3 heteromers formation linking with structural stability and cellular viability [published online ahead of print, 2021 Sep 6]. Br J Ophthalmol. 2021;bjophthalmol-2021-320033. doi:10.1136/bjophthalmol-2021-320033(IF:4.638)
[216] Dai Y, Li Y, Lin G, et al. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line [published online ahead of print, 2022 Jun 21]. Fish Shellfish Immunol. 2022;127:681-689. doi:10.1016/j.fsi.2022.06.022(IF:4.581)
[217] Asila A, Yang X, Kaisaer Y, Ma L. SNHG16/miR-485-5p/BMP7 axis modulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Gene Med. 2021;23(3):e3296. doi:10.1002/jgm.3296(IF:4.565)
[218] Chen X, Tang Y, Yan J, Li L, Jiang L, Chen Y. Circ_0062270 upregulates EPHA2 to facilitate melanoma progression via sponging miR-331-3p. J Dermatol Sci. 2021;103(3):176-182. doi:10.1016/j.jdermsci.2021.08.005(IF:4.563)
[219] Guo N, Gao C, Liu J, et al. Reversal of Ovarian Cancer Multidrug Resistance by a Combination of LAH4-L1-siMDR1 Nanocomplexes with Chemotherapeutics. Mol Pharm. 2018;15(5):1853-1861. doi:10.1021/acs.molpharmaceut.8b00031(IF:4.556)
[220] Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed Pharmacother. 2020;129:110371. doi:10.1016/j.biopha.2020.110371(IF:4.545)
[221] Liu X , Liu B , Gao S , et al. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J Mater Chem B. 2017;5(11):2078-2085. doi:10.1039/c7tb00100b(IF:4.543)
[222] Wen C, Lin L, Zou R, Lin F, Liu Y. Mesenchymal stem cell-derived exosome mediated long non-coding RNA KLF3-AS1 represses autophagy and apoptosis of chondrocytes in osteoarthritis. Cell Cycle. 2022;21(3):289-303. doi:10.1080/15384101.2021.2019411(IF:4.534)
[223] Zhang H, Luo Z, Tang J, et al. Transcription factor NFIC functions as a tumor suppressor in lung squamous cell carcinoma progression by modulating lncRNA CASC2. Cell Cycle. 2022;21(1):63-73. doi:10.1080/15384101.2021.1995130(IF:4.534)
[224] Xie LB, Chen B, Liao X, et al. LINC00963 targeting miR-128-3p promotes acute kidney injury process by activating JAK2/STAT1 pathway. J Cell Mol Med. 2020;24(10):5555-5564. doi:10.1111/jcmm.15211(IF:4.486)
[225] Xue Y, Dongmei Li, Yige Zhang, Hang Gao, Li H. Angelica polysaccharide moderates hypoxia-evoked apoptosis and autophagy in rat neural stem cells by downregulation of BNIP3. Artif Cells Nanomed Biotechnol. 2019;47(1):2492-2499. doi:10.1080/21691401.2019.1623228(IF:4.462)
[226] Chen Y, Qin Y, Dai M, et al. IBSP, a potential recurrence biomarker, promotes the progression of colorectal cancer via Fyn/β-catenin signaling pathway. Cancer Med. 2021;10(12):4030-4045. doi:10.1002/cam4.3959(IF:4.452)
[227] Meng H, Shen M, Li J, et al. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol. 2021;906:174280. doi:10.1016/j.ejphar.2021.174280(IF:4.432)
[228] Peng Z, Wangmu T, Li L, Han G, Huang D, Yi P. Combination of berberine and low glucose inhibits gastric cancer through the PP2A/GSK3β/MCL-1 signaling pathway. Eur J Pharmacol. 2022;922:174918. doi:10.1016/j.ejphar.2022.174918(IF:4.432)
[229] Wang J, Teng F, Chai H, Zhang C, Liang X, Yang Y. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2. BMC Cancer. 2021;21(1):456. Published 2021 Apr 23. doi:10.1186/s12885-021-08202-y(IF:4.430)
[230] Yang Y, Wang D, Li Q, et al. Immune-Enhancing Activity of Aqueous Extracts from Artemisia rupestris L. via MAPK and NF-kB Pathways of TLR4/TLR2 Downstream in Dendritic Cells. Vaccines (Basel). 2020;8(3):525. Published 2020 Sep 13. doi:10.3390/vaccines8030525(IF:4.422)
[231] Xia WP, Chen X, Ru F, et al. Knockdown of lncRNA XIST inhibited apoptosis and inflammation in renal fibrosis via microRNA-19b-mediated downregulation of SOX6. Mol Immunol. 2021;139:87-96. doi:10.1016/j.molimm.2021.07.012(IF:4.407)
[232] Wang N, Guo Y, Song L, Tong T, Fan X. Circular RNA intraflagellar transport 80 facilitates endometrial cancer progression through modulating miR-545-3p/FAM98A signaling. J Gynecol Oncol. 2022;33(1):e2. doi:10.3802/jgo.2022.33.e2(IF:4.401)
[233] Yuan S, Xu Y, Yi T, Wang H. The anti-tumor effect of OP-B on ovarian cancer in vitro and in vivo, and its mechanism: An investigation using network pharmacology-based analysis. J Ethnopharmacol. 2022;283:114706. doi:10.1016/j.jep.2021.114706(IF:4.360)
[234] Tian Y, Qi Y, Cai H, Xu M, Zhang Y. Senegenin alleviates Aβ1-42 induced cell damage through triggering mitophagy. J Ethnopharmacol. 2022;295:115409. doi:10.1016/j.jep.2022.115409(IF:4.360)
[235] Wu M, Huang J, Shi J, Shi L, Zeng Q, Wang H. Ruyi Jinhuang Powder accelerated diabetic ulcer wound healing by regulating Wnt/β-catenin signaling pathway of fibroblasts In Vivo and In Vitro. J Ethnopharmacol. 2022;293:115321. doi:10.1016/j.jep.2022.115321(IF:4.360)
[236] Li Y, Chen J, Song S. Circ-OPHN1 suppresses the proliferation, migration, and invasion of trophoblast cells through mediating miR-558/THBS2 axis. Drug Dev Res. 2022;83(4):1034-1046. doi:10.1002/ddr.21931(IF:4.360)
[237] Yuan FY, Xu F, Fan RZ, et al. Structural Elucidation of Three 9,11-Seco Tetracyclic Triterpenoids Enables the Structural Revision of Euphorol J. J Org Chem. 2021;86(11):7588-7593. doi:10.1021/acs.joc.1c00631(IF:4.354)
[238] Li W, Xu J, Cheng L, et al. RelB promotes the migration and invasion of prostate cancer DU145 cells via exosomal ICAM1 in vitro. Cell Signal. 2022;91:110221. doi:10.1016/j.cellsig.2021.110221(IF:4.315)
[239] Shi L, Zhang Y, Xia Y, Li C, Song Z, Zhu J. MiR-150-5p protects against septic acute kidney injury via repressing the MEKK3/JNK pathway. Cell Signal. 2021;86:110101. doi:10.1016/j.cellsig.2021.110101(IF:4.315)
[240] Wang Q, Liang D, Shen P, Yu Y, Yan Y, You W. Hsa_circ_0092276 promotes doxorubicin resistance in breast cancer cells by regulating autophagy via miR-348/ATG7 axis. Transl Oncol. 2021;14(8):101045. doi:10.1016/j.tranon.2021.101045(IF:4.243)
[241] Zhu J, Luo JE, Chen Y, Wu Q. Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/CBX2 axis in ovarian cancer. J Ovarian Res. 2021;14(1):136. Published 2021 Oct 14. doi:10.1186/s13048-021-00888-9(IF:4.234)
[242] Chen R, Liang F, Yan J, Wang Y. CircCDK17 knockdown inhibits tumor progression and cell glycolysis by downregulaing YWHAZ expression through sponging miR-1294 in cervical cancer. J Ovarian Res. 2022;15(1):24. Published 2022 Feb 15. doi:10.1186/s13048-022-00952-y(IF:4.234)
[243] Liu G, Xu X, Jiang L, et al. Targeted Antitumor Mechanism of C-PC/CMC-CD55sp Nanospheres in HeLa Cervical Cancer Cells. Front Pharmacol. 2020;11:906. Published 2020 Jun 18. doi:10.3389/fphar.2020.00906(IF:4.225)
[244] Liu Z, Zhu Q, Song E, Song Y. Polybrominated diphenyl ethers quinone exhibits neurotoxicity by inducing DNA damage, cell cycle arrest, apoptosis and p53-driven adaptive response in microglia BV2 cells. Toxicology. 2021;457:152807. doi:10.1016/j.tox.2021.152807(IF:4.221)
[245] Xiao L, Yuan W, Huang C, Luo Q, Xiao R, Chen ZH. LncRNA PCAT19 induced by SP1 and acted as oncogene in gastric cancer competitively binding to miR429 and upregulating DHX9. J Cancer. 2022;13(1):102-111. Published 2022 Jan 1. doi:10.7150/jca.61961(IF:4.207)
[246] Xu H, Ma Z, Mo X, et al. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer. 2022;13(7):2226-2237. Published 2022 Apr 11. doi:10.7150/jca.66020(IF:4.207)
[247] Zhu L, Zhou D, Guo T, et al. LncRNA GAS5 inhibits Invasion and Migration of Lung Cancer through influencing EMT process. J Cancer. 2021;12(11):3291-3298. Published 2021 Apr 2. doi:10.7150/jca.56218(IF:4.207)
[248] Hu H, Yin S, Ma R, et al. CREBBP knockdown suppressed proliferation and promoted chemo-sensitivity via PERK-mediated unfolded protein response in ovarian cancer. J Cancer. 2021;12(15):4595-4603. Published 2021 Jun 1. doi:10.7150/jca.56135(IF:4.207)
[249] Li K, Li R, Ni Y, et al. Novel distance-progesterone-combined selection approach improves human sperm quality. J Transl Med. 2018;16(1):203. Published 2018 Jul 20. doi:10.1186/s12967-018-1575-7(IF:4.197)
[250] Zhang K, Zhou H, Yan B, Cao X. TUG1/miR-133b/CXCR4 axis regulates cisplatin resistance in human tongue squamous cell carcinoma. Cancer Cell Int. 2020;20:148. Published 2020 May 6. doi:10.1186/s12935-020-01224-9(IF:4.175)
[251] Chen Z, Chen C, Zhou T, et al. A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors. Cancer Cell Int. 2020;20:337. Published 2020 Jul 23. doi:10.1186/s12935-020-01427-0(IF:4.175)
[252] Deng Q, Wu M, Deng J. USP36 promotes tumor growth of non-small cell lung cancer via increasing KHK-A expression by regulating c-MYC-hnRNPH1/H2 axis. Hum Cell. 2022;35(2):694-704. doi:10.1007/s13577-022-00677-6(IF:4.174)
[253] Guo T, Yuan D, Zhang W, et al. Upregulation of long noncoding RNA XIST has anticancer effects on ovarian cancer through sponging miR-106a. Hum Cell. 2021;34(2):579-587. doi:10.1007/s13577-020-00469-w(IF:4.174)
[254] Cheng L, Yu P, Li F, et al. Human umbilical cord-derived mesenchymal stem cell-exosomal miR-627-5p ameliorates non-alcoholic fatty liver disease by repressing FTO expression. Hum Cell. 2021;34(6):1697-1708. doi:10.1007/s13577-021-00593-1(IF:4.174)
[255] Zhang H, Pan Z, Ju J, et al. DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. J Anim Sci Biotechnol. 2020;11:77. Published 2020 Aug 5. doi:10.1186/s40104-020-00489-4(IF:4.167)
[256] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502. doi:10.1016/j.fm.2020.103502(IF:4.155)
[257] Hong Y, Liu N, Zhou R, et al. Combination Therapy Using Kartogenin-Based Chondrogenesis and Complex Polymer Scaffold for Cartilage Defect Regeneration. ACS Biomater Sci Eng. 2020;6(11):6276-6284. doi:10.1021/acsbiomaterials.0c00724(IF:4.152)
[258] Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther. 2021;14:3151-3165. Published 2021 May 13. doi:10.2147/OTT.S291823(IF:4.147)
[259] Sun S, Wang P, Ren L, Wang H, Zhan Y, Shan S. Sevoflurane Suppresses Colon Cancer Cell Malignancy by Regulating circ-PI4KA. Onco Targets Ther. 2021;14:3319-3333. Published 2021 May 20. doi:10.2147/OTT.S295552(IF:4.147)
[260] Zhang Q, Xu L, Wang J, et al. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a. Onco Targets Ther. 2021;14:1187-1204. Published 2021 Feb 22. doi:10.2147/OTT.S288799(IF:4.147)
[261] Yue Q, Xu Y, Deng X, et al. Circ-PITX1 Promotes the Progression of Non-Small Cell Lung Cancer Through Regulating the miR-1248/CCND2 Axis. Onco Targets Th

产品描述

Annexin V-FITC/PI细胞凋亡检测试剂盒是用FITC标记的Annexin V作为探针,来检测细胞早期凋亡的发生。

其检测原理为:在正常的活细胞中,磷脂酰丝氨酸(phosphotidylserine,PS)位于细胞膜的内侧,但在早期凋亡的细胞中,PS 从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中。Annexin-Ⅴ(膜联蛋白-V)是一种分子量为35-36 kDaCa2+ 依赖性磷脂结合蛋白,能与PS高亲和力结合可通过细胞外侧暴露的磷脂酰丝氨酸与凋亡早期细胞的胞膜结合。

另外,本试剂盒中还提供了碘化丙啶(Propidium Iodide,PI)用来区分存活的早期细胞和坏死或晚期凋亡细胞。PI是一种核酸染料,它不能透过正常细胞或早期凋亡细胞的完整的细胞膜,但可以透过凋亡晚期和坏死细胞的细胞膜而使细胞核染红。因此,将Annexin V与PI联合使用时,PI 则被排除在活细胞(Annexin V-/PI-)和早期凋亡细胞(Annexin V+/PI-)之外,而晚期凋亡细胞和坏死细胞同时被FITC 和PI 结合染色呈现双阳性(Annexin V+/PI+)。

本试剂盒可用于流式细胞仪、荧光显微镜进行检测。

 

产品组分

编号

组分

产品编号/规格

40302ES20(20T)

40302ES50(50T)

40302ES60(100T)

40302-A

Annexin V-FITC

100 μL

250 μL

500 μL

40302-B

PI Staining Solution

200 μL

500 μL

1.0 mL

40302-C

1×Binding Buffer

10 mL

25 mL

50 mL

 

运输与保存方法

冰袋(wet ice)运输。-20℃避光保存,避免反复冻融,一年有效。

【注】:如果需要在短时间内多次重复使用,可以在4℃避光保存,半年有效。

 

注意事项

1)由于细胞凋亡是一个快速的过程,建议样品在染色后1小时之内进行分析。

2) 对于贴壁细胞,消化是一个关键步骤。贴壁细胞诱导细胞凋亡时如有漂浮细胞,需收集漂浮细胞和贴壁细胞后合并染色。处理贴壁细胞时要小心操作,尽量避免人为的损伤。胰酶消化时间过短,细胞需要用力吹打才能脱落,容易造成细胞膜的损伤;PI摄入过多,消化时间过长,细胞膜同样易造成损伤,甚至会影响细胞膜上磷脂酰丝氨酸与Annexin V-FITC的结合。消化时将胰酶铺满孔板底后,轻摇使胰酶与细胞充分接触,然后倒掉大部分胰酶,利用剩余少量胰酶再消化一段时间,待细胞间空隙增大,瓶底呈花斑状即可终止。在消化液中尽量不用EDTA,EDTA会影响Annexin V与PS的结合。

3)如果样品来源于血液,请务必除去血液中的血小板。因为血小板含有PS,能与Annexin V结合,从而干扰实验结果。可以使用含有EDTA的缓冲剂并在200 g离心洗去血小板。

4)试剂在开盖前请短暂离心,将盖内壁上的液体甩至管底,避免开盖时液体洒落。

5Annexin V-FITC和PI是光敏物质,在操作时请注意避光。

6)本产品仅作科研用途!

 

操作方法

1.1 样品染色

1)悬浮细胞300 g,4℃离心5 min收集细胞。

贴壁细胞:用不含EDTA的胰酶消化后,300 g,4℃离心5 min收集细胞。胰酶消化时间不宜过长,以防引起假阳性。

2)用预冷的PBS洗涤细胞2次,每次均需300 g,4℃离心5 min。收集1~5×105细胞。

3)吸弃PBS,加入100 μL 1×Binding Buffer重悬细胞。

4)加入5 μL Annexin V-FITC和10 μLPI Staining Solution,轻轻混匀。

5)避光、室温反应10-15 min。

6)加入400 μL 1×Binding Buffer,混匀后放置于冰上,样品在1小时内用流式细胞仪或荧光显微镜检测。

【注】:为了避免洗涤细胞时损失细胞,在吸液时可以用大的Tip头套上小的Tip头吸液。

1.2 样品分析

A.流式细胞仪分析:

FITC最大激发波长为488 nm,最大发射波长525 nm,FITC的绿色荧光在FL1通道检测;PI-DNA复合物的最大激发波长为535 nm,最大发射波长为615 nm,PI的红色荧光在FL2或FL3通道检测。用CellQuest等软件进行分析,绘制双色散点图(two-color dot plot),FITC为横坐标,PI为纵坐标。典型的实验中,细胞可以分成三个亚群,活细胞仅有很低强度的背景荧光,早期凋亡细胞仅有较强的绿色荧光,晚期凋亡细胞有绿色和红色荧光双重染色。

B.荧光显微镜分析:

1)滴一滴用Annexin V-FITC/PI双染的细胞悬液于载玻片上,并用盖玻片盖上细胞。

【注】:对于贴壁细胞,可直接用盖玻片培养细胞并诱导细胞凋亡。

2)在荧光显微镜下用双色滤光片观察。Annexin V-FITC荧光信号呈绿色,PI荧光信号呈红色。

 

相关产品

产品名称

货号

规格

Cell Cycle and Apoptosis Analysis Kit

细胞周期与细胞凋亡检测试剂盒

40301ES50

50 T

40301ES60

100 T

Annexin V-EGFP/PI 细胞凋亡检测试剂盒

Annexin V-EGFP/PI Apoptosis Detection Kit

40303ES20

20 T

40303ES50

50 T

40303ES60

100 T

Annexin V-Alexa Fluor 647/PI 细胞凋亡检测试剂盒

Annexin V-Alexa Fluor 647/PI Apoptosis Detection Kit

40304ES20

20 T

40304ES50

50 T

40304ES60

100 T

Annexin V-Alexa Fluor 488/PI 细胞凋亡检测试剂盒

Annexin V-Alexa Fluor 488/PI Apoptosis Detection Kit

40305ES20

20 T

40305ES50

50 T

40305ES60

100 T

Annexin V-PE/7-AAD细胞凋亡检测试剂盒

Annexin V-PE/7-AAD Apoptosis Detection Kit

40310ES20

20 T

40310ES50

50 T

40310ES60

100 T

 

 

HB220609

QAnnexin V 和 JC-1、Tunel 细胞凋亡检测的区别?

A: Annexin V 是检测细胞早期凋亡的试剂,JC-1 是检测细胞中期凋亡的试剂、Tunel 是检测细胞晚期凋亡的试剂。

QAnnexin V 和JC-1、Tunel 细胞凋亡检测的可以应用到植物或是细菌(原核生物) 吗?

A可以,但是需要制备原生质体,因为植物细胞或是细菌(原核生物)含有细胞壁,具体的染液使用剂量只需浸没细胞即可,染色时间对于不同细胞有一定的不同。

Q:40302ES Annexin V-FITC/PI 细胞凋亡检测试剂盒里的PI的浓度是多少呢?

A:20ug/ml。

Q:实验结果如何判断?

A:活细胞(Annexin V-/PI-)

  早期凋亡细胞(Annexin V+/PI-)

  晚期凋亡细胞和坏死细胞呈现双阳性(Annexin V+/PI+)

  裸核(Annexin V-/PI+)

Q: Annexin VTUNEL有什么区别?

A:末端脱氧核苷酸转移酶 dUTP 缺口末端标记 (TUNEL) 是一种染色方法,用于识别细胞内 DNA 片段化位点——晚期细胞凋亡的标志性特征。 它使用酶末端脱氧核苷酸转移酶 (TdT) 将修饰的 dNTP(例如 dUTP)连接到片段化 DNA 链的 3'-羟基末端。 dNTPs 通常用荧光团修饰以促进量化和/或可视化。

Annexin V 染色通过结合由于细胞膜不对称性丧失而暴露在细胞外的 PS 残基来识别细胞凋亡的早期阶段。 Annexin V 通常用 FITC 等荧光团标记,以促进凋亡细胞的检测。

Annexin V-FITC/PI细胞凋亡检测试剂盒|Annexin V-FITC/PI Apoptosis Detection Kit

 

 

[1] Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med. 2022;28(2):272-282. doi:10.1038/s41591-021-01645-7(IF:53.440)
[2] Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247-258. doi:10.1038/s41422-020-0389-3(IF:25.617)
[3] Wang Z, Yu L, Wang Y, et al. Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy. Adv Sci (Weinh). 2022;9(8):e2104793. doi:10.1002/advs.202104793(IF:16.806)
[4] Zhang M, Shao W, Yang T, et al. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication [published online ahead of print, 2022 Jun 4]. Adv Sci (Weinh). 2022;e2201135. doi:10.1002/advs.202201135(IF:16.806)
[5] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)
[6] Li Y, Cui K, Zhang Q, et al. FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death Differ. 2021;28(7):2112-2125. doi:10.1038/s41418-021-00739-6(IF:15.828)
[7] Li X, Yong T, Wei Z, et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat Commun. 2022;13(1):2794. Published 2022 May 19. doi:10.1038/s41467-022-30306-7(IF:14.919)
[8] Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022;13(1):791. Published 2022 Feb 10. doi:10.1038/s41467-022-28452-z(IF:14.919)
[9] Wang XS, Zeng JY, Li MJ, Li QR, Gao F, Zhang XZ. Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS Nano. 2020;14(8):9848-9860. doi:10.1021/acsnano.0c02516(IF:14.588)
[10] Wang M, Zhang L, Cai Y, et al. Bioengineered Human Serum Albumin Fusion Protein as Target/Enzyme/pH Three-Stage Propulsive Drug Vehicle for Tumor Therapy [published online ahead of print, 2020 Nov 17]. ACS Nano. 2020;10.1021/acsnano.0c07610. doi:10.1021/acsnano.0c07610(IF:14.588)
[11] Deng RH, Zou MZ, Zheng D, et al. Nanoparticles from Cuttlefish Ink Inhibit Tumor Growth by Synergizing Immunotherapy and Photothermal Therapy. ACS Nano. 2019;13(8):8618-8629. doi:10.1021/acsnano.9b02993(IF:13.903)
[12] Zhao H, Xu J, Huang W, et al. Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano. 2019;13(6):6647-6661. doi:10.1021/acsnano.9b00972(IF:13.903)
[13] Zhang C, Gao F, Wu W, et al. Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. ACS Nano. 2019;13(10):11249-11262. doi:10.1021/acsnano.9b04315(IF:13.903)
[14] Wan SS, Cheng Q, Zeng X, Zhang XZ. A Mn(III)-Sealed Metal-Organic Framework Nanosystem for Redox-Unlocked Tumor Theranostics. ACS Nano. 2019;13(6):6561-6571. doi:10.1021/acsnano.9b00300(IF:13.903)
[15] Wei JL, Wu SY, Yang YS, et al. GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer. J Immunother Cancer. 2021;9(7):e002383. doi:10.1136/jitc-2021-002383(IF:13.751)
[16] Wang L, Qin W, Xu W, et al. Bacteria-Mediated Tumor Therapy via Photothermally-Programmed Cytolysin A Expression. Small. 2021;17(40):e2102932. doi:10.1002/smll.202102932(IF:13.281)
[17] Wan SS, Zhang L, Zhang XZ. An ATP-Regulated Ion Transport Nanosystem for Homeostatic Perturbation Therapy and Sensitizing Photodynamic Therapy by Autophagy Inhibition of Tumors. ACS Cent Sci. 2019;5(2):327-340. doi:10.1021/acscentsci.8b00822(IF:12.837)
[18] Sun D, Zou Y, Song L, et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B. 2022;12(1):378-393. doi:10.1016/j.apsb.2021.06.005(IF:11.614)
[19] Yang Y, Hu D, Lu Y, et al. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B. 2022;12(6):2710-2730. doi:10.1016/j.apsb.2021.08.021(IF:11.614)
[20] Hu Q, Jia L, Zhang X, Zhu A, Wang S, Xie X. Accurate construction of cell membrane biomimetic graphene nanodecoys via purposeful surface engineering to improve screening efficiency of active components of traditional Chinese medicine. Acta Pharm Sin B. 2022;12(1):394-405. doi:10.1016/j.apsb.2021.05.021(IF:11.614)
[21] Wang M, Xu Y, Zhang Y, et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics. 2021;11(10):5010-5027. Published 2021 Mar 5. doi:10.7150/thno.55645(IF:11.556)
[22] Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics. 2021;11(13):6477-6490. Published 2021 Apr 19. doi:10.7150/thno.55708(IF:11.556)
[23] Fan Q, Zuo J, Tian H, et al. Nanoengineering a metal-organic framework for osteosarcoma chemo-immunotherapy by modulating indoleamine-2,3-dioxygenase and myeloid-derived suppressor cells. J Exp Clin Cancer Res. 2022;41(1):162. Published 2022 May 3. doi:10.1186/s13046-022-02372-8(IF:11.161)
[24] Lei X, Cao K, Chen Y, et al. Nuclear Transglutaminase 2 interacts with topoisomerase II⍺ to promote DNA damage repair in lung cancer cells. J Exp Clin Cancer Res. 2021;40(1):224. Published 2021 Jul 5. doi:10.1186/s13046-021-02009-2(IF:11.161)
[25] Xu L, Wang Y, Song E, Song Y. Nucleophilic and redox properties of polybrominated diphenyl ether derived-quinone/hydroquinone metabolites are responsible for their neurotoxicity. J Hazard Mater. 2021;420:126697. doi:10.1016/j.jhazmat.2021.126697(IF:10.588)
[26] Zhang C, Peng SY, Hong S, et al. Biomimetic carbon monoxide nanogenerator ameliorates streptozotocin induced type 1 diabetes in mice. Biomaterials. 2020;245:119986. doi:10.1016/j.biomaterials.2020.119986(IF:10.317)
[27] Zhang L, Cheng Q, Li C, Zeng X, Zhang XZ. Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination. Biomaterials. 2020;248:120029. doi:10.1016/j.biomaterials.2020.120029(IF:10.317)
[28] Zhang C, Zheng DW, Li CX, et al. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials. 2019;223:119472. doi:10.1016/j.biomaterials.2019.119472(IF:10.273)
[29] Cheng Q, Yu W, Ye J, et al. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials. 2019;224:119500. doi:10.1016/j.biomaterials.2019.119500(IF:10.273)
[30] Zhong H, Huang PY, Yan P, et al. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater. 2021;10(19):e2100770. doi:10.1002/adhm.202100770(IF:9.933)
[31] Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release. 2022;341:892-903. doi:10.1016/j.jconrel.2021.12.026(IF:9.776)
[32] Hu X, Tian H, Jiang W, Song A, Li Z, Luan Y. Rational Design of IR820- and Ce6-Based Versatile Micelle for Single NIR Laser-Induced Imaging and Dual-Modal Phototherapy. Small. 2018;14(52):e1802994. doi:10.1002/smll.201802994(IF:9.598)
[33] Yao Y, Li P, He J, Wang D, Hu J, Yang X. Albumin-Templated Bi2Se3-MnO2 Nanocomposites with Promoted Catalase-Like Activity for Enhanced Radiotherapy of Cancer. ACS Appl Mater Interfaces. 2021;13(24):28650-28661. doi:10.1021/acsami.1c05669(IF:9.229)
[34] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[35] Liu J, Zhou B, Guo Y, et al. SR-A-Targeted Nanoplatform for Sequential Photothermal/Photodynamic Ablation of Activated Macrophages to Alleviate Atherosclerosis [published online ahead of print, 2021 Jun 16]. ACS Appl Mater Interfaces. 2021;10.1021/acsami.1c06380. doi:10.1021/acsami.1c06380(IF:9.229)
[36] Ye R, Zheng Y, Chen Y, et al. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS Appl Mater Interfaces. 2021;13(47):55902-55912. doi:10.1021/acsami.1c17618(IF:9.229)
[37] Luo Q, Lin L, Huang Q, et al. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022;143:320-332. doi:10.1016/j.actbio.2022.02.033(IF:8.947)
[38] Sun J, Liu J, Gao C, et al. Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury. Acta Biomater. 2022;140:573-585. doi:10.1016/j.actbio.2021.12.023(IF:8.947)
[39] Gao J, Liu J, Meng Z, et al. Ultrasound-assisted C3F8-filled PLGA nanobubbles for enhanced FGF21 delivery and improved prophylactic treatment of diabetic cardiomyopathy. Acta Biomater. 2021;130:395-408. doi:10.1016/j.actbio.2021.06.015(IF:8.947)
[40] Xia F, Hou W, Liu Y, et al. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials. 2018;170:1-11. doi:10.1016/j.biomaterials.2018.03.048(IF:8.806)
[41] Xu M, Zhao X, Zhao S, et al. Landscape analysis of lncRNAs shows that DDX11-AS1 promotes cell-cycle progression in liver cancer through the PARP1/p53 axis. Cancer Lett. 2021;520:282-294. doi:10.1016/j.canlet.2021.08.001(IF:8.679)
[42] Hu XK, Rao SS, Tan YJ, et al. Fructose-coated Angstrom silver inhibits osteosarcoma growth and metastasis via promoting ROS-dependent apoptosis through the alteration of glucose metabolism by inhibiting PDK. Theranostics. 2020;10(17):7710-7729. Published 2020 Jun 19. doi:10.7150/thno.45858(IF:8.579)
[43] Wu D, Zhu ZQ, Tang HX, et al. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Theranostics. 2020;10(21):9808-9829. Published 2020 Aug 2. doi:10.7150/thno.43631(IF:8.579)
[44] Hong Y, Han Y, Wu J, et al. Chitosan modified Fe3O4/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics. 2020;10(12):5565-5577. Published 2020 Apr 15. doi:10.7150/thno.43569(IF:8.579)
[45] Ding MH, Wang Z, Jiang L, et al. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials. 2015;56:165-178. doi:10.1016/j.biomaterials.2015.03.058(IF:8.557)
[46] Liang H, Zhou Z, Luo R, et al. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics. 2018;8(18):5059-5071. Published 2018 Oct 5. doi:10.7150/thno.28344(IF:8.537)
[47] Zhou Z, Zhang Q, Zhang M, et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics. 2018;8(17):4604-4619. Published 2018 Sep 9. doi:10.7150/thno.26889(IF:8.537)
[48] Qi HZ, Ye YL, Suo Y, et al. Wnt/β-catenin signaling mediates the abnormal osteogenic and adipogenic capabilities of bone marrow mesenchymal stem cells from chronic graft-versus-host disease patients. Cell Death Dis. 2021;12(4):308. Published 2021 Mar 23. doi:10.1038/s41419-021-03570-6(IF:8.469)
[49] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[50] Xia J, Zhang J, Wang L, et al. Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation. Cell Death Dis. 2021;12(9):833. Published 2021 Sep 4. doi:10.1038/s41419-021-04126-4(IF:8.469)
[51] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[52] Zhang D, Zhang J, Li Q, Song A, Li Z, Luan Y. Cold to Hot: Rational Design of a Minimalist Multifunctional Photo-immunotherapy Nanoplatform toward Boosting Immunotherapy Capability. ACS Appl Mater Interfaces. 2019;11(36):32633-32646. doi:10.1021/acsami.9b09568(IF:8.456)
[53] Zhang J, Zhang D, Li Q, et al. Task-Specific Design of Immune-Augmented Nanoplatform to Enable High-Efficiency Tumor Immunotherapy. ACS Appl Mater Interfaces. 2019;11(46):42904-42916. doi:10.1021/acsami.9b13556(IF:8.456)
[54] Ke R, Zhen X, Wang HS, et al. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci. 2022;609:307-319. doi:10.1016/j.jcis.2021.12.009(IF:8.128)
[55] Jiang W, Zhang H, Wu J, et al. CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo-Photothermal Therapy. ACS Appl Mater Interfaces. 2018;10(40):34513-34523. doi:10.1021/acsami.8b13487(IF:8.097)
[56] Zhang A, Pan S, Zhang Y, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 2019;9(12):3443-3458. Published 2019 May 24. doi:10.7150/thno.33266(IF:8.063)
[57] Liu Y, Pan Y, Cao W, et al. A tumor microenvironment responsive biodegradable CaCO3/MnO2– based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics. 2019;9(23):6867-6884. Published 2019 Sep 21. doi:10.7150/thno.37586(IF:8.063)
[58] Zhang C, Zhou Z, Zhi X, et al. Insights into the distinguishing stress-induced cytotoxicity of chiral gold nanoclusters and the relationship with GSTP1. Theranostics. 2015;5(2):134-149. Published 2015 Jan 1. doi:10.7150/thno.10363(IF:8.022)
[59] Jiang K, Zhao D, Ye R, et al. Transdermal delivery of poly-hyaluronic acid-based spherical nucleic acids for chemogene therapy. Nanoscale. 2022;14(5):1834-1846. Published 2022 Feb 3. doi:10.1039/d1nr06353g(IF:7.790)
[60] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[61] Chen J , Li S , Liu X , et al. Transforming growth factor-β blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy. Nanoscale. 2021;13(22):9989-10001. doi:10.1039/d1nr01552d(IF:7.790)
[62] Gao R, Liu D, Guo W, et al. Meprin-α (Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms. Br J Pharmacol. 2020;177(12):2872-2885. doi:10.1111/bph.15019(IF:7.730)
[63] Yang X, Gao F, Zhang W, et al. "Star" miR-34a and CXCR4 antagonist based nanoplex for binary cooperative migration treatment against metastatic breast cancer. J Control Release. 2020;326:615-627. doi:10.1016/j.jconrel.2020.07.029(IF:7.727)
[64] Wu T, Liang X, Liu X, et al. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol. 2020;17(1):30. Published 2020 Jul 11. doi:10.1186/s12989-020-00363-1(IF:7.546)
[65] Yan Y, Zhao W, Liu W, et al. CCL19 enhances CD8+ T-cell responses and accelerates HBV clearance. J Gastroenterol. 2021;56(8):769-785. doi:10.1007/s00535-021-01799-8(IF:7.527)
[66] Fan RZ, Chen L, Su T, et al. Discovery of 8,9-seco-ent-Kaurane Diterpenoids as Potential Leads for the Treatment of Triple-Negative Breast Cancer. J Med Chem. 2021;64(14):9926-9942. doi:10.1021/acs.jmedchem.1c00166(IF:7.446)
[67] Xu M, Zhao C, Zhu B, et al. Discovering High Potent Hsp90 Inhibitors as Antinasopharyngeal Carcinoma Agents through Fragment Assembling Approach. J Med Chem. 2021;64(4):2010-2023. doi:10.1021/acs.jmedchem.0c01521(IF:7.446)
[68] Hou W, Zhao X, Qian X, et al. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale. 2016;8(1):104-116. doi:10.1039/c5nr06842h(IF:7.394)
[69] Gao W, Liu Y, Zhang H, Wang Z. Electrochemiluminescence Biosensor for Nucleolin Imaging in a Single Tumor Cell Combined with Synergetic Therapy of Tumor. ACS Sens. 2020;5(4):1216-1222. doi:10.1021/acssensors.0c00292(IF:7.333)
[70] Yin M, Zhang J, Zeng X, Zhang H, Gao Y. Target identification and drug discovery by data-driven hypothesis and experimental validation in ovarian endometriosis. Fertil Steril. 2021;116(2):478-492. doi:10.1016/j.fertnstert.2021.01.027(IF:7.329)
[71] Chen CY, Du W, Rao SS, et al. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1. Acta Biomater. 2020;111:208-220. doi:10.1016/j.actbio.2020.05.020(IF:7.242)
[72] Shang D, Sun D, Shi C, et al. Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines. Aging Cell. 2020;19(5):e13145. doi:10.1111/acel.13145(IF:7.238)
[73] Liu Y , Zhi X , Hou W , et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018;10(40):19052-19063. doi:10.1039/c8nr05886e(IF:7.233)
[74] Zhou J , Li T , Zhang C , Xiao J , Cui D , Cheng Y . Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging. Nanoscale. 2018;10(20):9707-9719. doi:10.1039/c8nr00994e(IF:7.233)
[75] Chen MM, Hu ZL, Ding JH, Du RH, Hu G. Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson's disease via astrocyte-neuron cross talk through complement C3-C3R signaling. Brain Behav Immun. 2021;95:310-320. doi:10.1016/j.bbi.2021.04.003(IF:7.217)
[76] Tian Y, Gao S, Wu M, et al. Tobacco Mosaic Virus-Based 1D Nanorod-Drug Carrier via the Integrin-Mediated Endocytosis Pathway. ACS Appl Mater Interfaces. 2016;8(17):10800-10807. doi:10.1021/acsami.6b02801(IF:7.145)
[77] Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D. MMP2-Targeting and Redox-Responsive PEGylated Chlorin e6 Nanoparticles for Cancer Near-Infrared Imaging and Photodynamic Therapy. ACS Appl Mater Interfaces. 2016;8(2):1447-1457. doi:10.1021/acsami.5b10772(IF:7.145)
[78] Zheng Y, Liu L, Wang Y, et al. Glioblastoma stem cell (GSC)-derived PD-L1-containing exosomes activates AMPK/ULK1 pathway mediated autophagy to increase temozolomide-resistance in glioblastoma. Cell Biosci. 2021;11(1):63. Published 2021 Mar 31. doi:10.1186/s13578-021-00575-8(IF:7.133)
[79] Wang H, Liu YC, Zhu CY, et al. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway. J Exp Clin Cancer Res. 2020;39(1):278. Published 2020 Dec 9. doi:10.1186/s13046-020-01792-8(IF:7.068)
[80] Hong W, Xue M, Jiang J, Zhang Y, Gao X. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2020;39(1):149. Published 2020 Aug 3. doi:10.1186/s13046-020-01648-1(IF:7.068)
[81] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[82] Chen Q , Chen Y , Sun Y , et al. Leukocyte-mimicking Pluronic-lipid nanovesicle hybrids inhibit the growth and metastasis of breast cancer. Nanoscale. 2019;11(12):5377-5394. doi:10.1039/c8nr08936a(IF:6.970)
[83] Xu J, Wang H, Wu C, et al. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol. 2021;189:44-52. doi:10.1016/j.ijbiomac.2021.08.111(IF:6.953)
[84] Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600. Published 2021 Jun 17. doi:10.2147/JIR.S304336(IF:6.922)
[85] Liu J, Gao J, Zhang A, et al. Carbon nanocage-based nanozyme as an endogenous H2O2-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale. 2020;12(42):21674-21686. doi:10.1039/d0nr05945e(IF:6.895)
[86] Zhang Q, Huang Y, Yang R, Mu J, Zhou Z, Sun M. Poly-antioxidants for enhanced anti-miR-155 delivery and synergistic therapy of metastatic breast cancer. Biomater Sci. 2022;10(13):3637-3646. Published 2022 Jun 28. doi:10.1039/d1bm02022f(IF:6.843)
[87] Zhang L, Zhao J, Dong J, Liu Y, Xuan K, Liu W. GSK3β rephosphorylation rescues ALPL deficiency-induced impairment of odontoblastic differentiation of DPSCs. Stem Cell Res Ther. 2021;12(1):225. Published 2021 Apr 6. doi:10.1186/s13287-021-02235-7(IF:6.832)
[88] Du X, Chen S, Cui H, et al. Circular RNA hsa_circ_0083756 promotes intervertebral disc degeneration by sponging miR-558 and regulating TREM1 expression. Cell Prolif. 2022;55(4):e13205. doi:10.1111/cpr.13205(IF:6.831)
[89] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)
[90] Kang RR, Sun Q, Chen KG, et al. Resveratrol prevents benzo(a)pyrene-induced disruption of mitochondrial homeostasis via the AMPK signaling pathway in primary cultured neurons [published correction appears in Environ Pollut. 2020 Oct;265(Pt A):115331]. Environ Pollut. 2020;261:114207. doi:10.1016/j.envpol.2020.114207(IF:6.793)
[91] Huang D, Guo Y, Li X, et al. Vitamin D3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai [published online ahead of print, 2021 Oct 12]. Cell Biol Toxicol. 2021;10.1007/s10565-021-09647-4. doi:10.1007/s10565-021-09647-4(IF:6.691)
[92] Li K, Zhu X, Yuan C. Inhibition of miR-185-3p Confers Erlotinib Resistance Through Upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biol. 2021;9:677860. Published 2021 Jul 21. doi:10.3389/fcell.2021.677860(IF:6.684)
[93] Tang X, Sun Y, Xu C, et al. Caffeine Induces Autophagy and Apoptosis in Auditory Hair Cells via the SGK1/HIF-1α Pathway. Front Cell Dev Biol. 2021;9:751012. Published 2021 Nov 16. doi:10.3389/fcell.2021.751012(IF:6.684)
[94] Hu B, Zeng LP, Yang XL, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13(11):e1006698. Published 2017 Nov 30. doi:10.1371/journal.ppat.1006698(IF:6.608)
[95] Jin T, Lin J, Gong Y, et al. iPLA2β Contributes to ER Stress-Induced Apoptosis during Myocardial Ischemia/Reperfusion Injury. Cells. 2021;10(6):1446. Published 2021 Jun 9. doi:10.3390/cells10061446(IF:6.600)
[96] Wang B, Ke W, Wang K, et al. Mechanosensitive Ion Channel Piezo1 Activated by Matrix Stiffness Regulates Oxidative Stress-Induced Senescence and Apoptosis in Human Intervertebral Disc Degeneration. Oxid Med Cell Longev. 2021;2021:8884922. Published 2021 Feb 10. doi:10.1155/2021/8884922(IF:6.543)
[97] Jiang H, Gao X, Gong J, et al. Downregulated Expression of Solute Carrier Family 26 Member 6 in NRK-52E Cells Attenuates Oxalate-Induced Intracellular Oxidative Stress. Oxid Med Cell Longev. 2018;2018:1724648. Published 2018 Oct 10. doi:10.1155/2018/1724648(IF:6.543)
[98] Ma X, Li X, Di Q, et al. Natural molecule Munronoid I attenuates LPS-induced acute lung injury by promoting the K48-linked ubiquitination and degradation of TAK1. Biomed Pharmacother. 2021;138:111543. doi:10.1016/j.biopha.2021.111543(IF:6.530)
[99] Yao M, Han W, Feng L, et al. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem. 2022;233:114236. doi:10.1016/j.ejmech.2022.114236(IF:6.514)
[100] Wang XR, Wang S, Li WB, et al. Design, synthesis and biological evaluation of novel 2-(4-(1H-indazol-6-yl)-1H-pyrazol-1-yl)acetamide derivatives as potent VEGFR-2 inhibitors. Eur J Med Chem. 2021;213:113192. doi:10.1016/j.ejmech.2021.113192(IF:6.514)
[101] Zou Y, Mei D, Yuan J, et al. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. Int J Nanomedicine. 2021;16:1127-1141. Published 2021 Feb 12. doi:10.2147/IJN.S290466(IF:6.400)
[102] Liu H, Jiapaer Z, Meng F, et al. Construction Of High Loading Natural Active Substances Nanoplatform and Application in Synergistic Tumor Therapy. Int J Nanomedicine. 2022;17:2647-2659. Published 2022 Jun 15. doi:10.2147/IJN.S364108(IF:6.400)
[103] Yang X, Zhou Y, Li H, et al. Autophagic flux inhibition, apoptosis, and mitochondrial dysfunction in bile acids-induced impairment of human placental trophoblast. J Cell Physiol. 2022;237(7):3080-3094. doi:10.1002/jcp.30774(IF:6.384)
[104] Liu Y, Liu N, Xu D, et al. Hsa-miR-599 inhibits breast cancer progression via BRD4/Jagged1/Notch1 axis. J Cell Physiol. 2022;237(1):523-531. doi:10.1002/jcp.30548(IF:6.384)
[105] Wu J, Hu X, Liu R, Zhang J, Song A, Luan Y. pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. J Colloid Interface Sci. 2019;547:30-39. doi:10.1016/j.jcis.2019.03.087(IF:6.361)
[106] Cheng C, Chen X, Wang Y, et al. MSCs‑derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med. 2021;27(1):67. Published 2021 Jul 2. doi:10.1186/s10020-021-00324-0(IF:6.354)
[107] Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-Microscopy for microRNA Imaging in Single Cancer Cell Combined with Chemotherapy-Photothermal Therapy. Anal Chem. 2019;91(19):12581-12586. doi:10.1021/acs.analchem.9b03694(IF:6.350)
[108] Xia F, Hou W, Zhang C, et al. pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. Acta Biomater. 2018;68:308-319. doi:10.1016/j.actbio.2017.12.034(IF:6.319)
[109] Wang Y, Liu B, Wu P, et al. Dietary Selenium Alleviated Mouse Liver Oxidative Stress and NAFLD Induced by Obesity by Regulating the KEAP1/NRF2 Pathway. Antioxidants (Basel). 2022;11(2):349. Published 2022 Feb 10. doi:10.3390/antiox11020349(IF:6.313)
[110] Wang Y, Ding Y, Sun P, et al. Empagliflozin-Enhanced Antioxidant Defense Attenuates Lipotoxicity and Protects Hepatocytes by Promoting FoxO3a- and Nrf2-Mediated Nuclear Translocation via the CAMKK2/AMPK Pathway. Antioxidants (Basel). 2022;11(5):799. Published 2022 Apr 19. doi:10.3390/antiox11050799(IF:6.313)
[111] Xu J, Wang J, Wang X, et al. Soluble PD-L1 improved direct ARDS by reducing monocyte-derived macrophages. Cell Death Dis. 2020;11(10):934. Published 2020 Oct 30. doi:10.1038/s41419-020-03139-9(IF:6.304)
[112] Zhao Y, Fan K, Zhu Y, Zhao Y, Cai J, Jin L. Gestational exposure to BDE-209 induces placental injury via the endoplasmic reticulum stress-mediated PERK/ATF4/CHOP signaling pathway. Ecotoxicol Environ Saf. 2022;233:113307. doi:10.1016/j.ecoenv.2022.113307(IF:6.291)
[113] Peng Z, Yang X, Zhang H, Yin M, Luo Y, Xie C. MiR-29b-3p aggravates NG108-15 cell apoptosis triggered by fluorine combined with aluminum [published online ahead of print, 2021 Aug 20]. Ecotoxicol Environ Saf. 2021;224:112658. doi:10.1016/j.ecoenv.2021.112658(IF:6.291)
[114] Chen Y, Deng J, Liu F, et al. Energy-Free, Singlet Oxygen-Based Chemodynamic Therapy for Selective Tumor Treatment without Dark Toxicity. Adv Healthc Mater. 2019;8(18):e1900366. doi:10.1002/adhm.201900366(IF:6.270)
[115] Li T, Zhou J, Wang L, et al. Photo-Fenton-like Metal-Protein Self-Assemblies as Multifunctional Tumor Theranostic Agent. Adv Healthc Mater. 2019;8(15):e1900192. doi:10.1002/adhm.201900192(IF:6.270)
[116] Yi X, Dai J, Han Y, et al. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun Biol. 2018;1:202. Published 2018 Nov 21. doi:10.1038/s42003-018-0204-6(IF:6.268)
[117] Wu J, He X, Xiong Z, et al. Bruceine H Mediates EGFR-TKI Drug Persistence in NSCLC by Notch3-Dependent β-Catenin Activating FOXO3a Signaling. Front Oncol. 2022;12:855603. Published 2022 Apr 8. doi:10.3389/fonc.2022.855603(IF:6.244)
[118] Meng X, Deng Y, He S, Niu L, Zhu H. m6A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigenesis by Regulating the miR-150-5p/E2F3 Axis. Front Oncol. 2021;11:629947. Published 2021 Feb 18. doi:10.3389/fonc.2021.629947(IF:6.244)
[119] Gao Y, Sun Z, Gu J, et al. Cancer-Associated Fibroblasts Promote the Upregulation of PD-L1 Expression Through Akt Phosphorylation in Colorectal Cancer. Front Oncol. 2021;11:748465. Published 2021 Nov 19. doi:10.3389/fonc.2021.748465(IF:6.244)
[120] Liu Y, Dong Y, He X, et al. piR-hsa-211106 Inhibits the Progression of Lung Adenocarcinoma Through Pyruvate Carboxylase and Enhances Chemotherapy Sensitivity. Front Oncol. 2021;11:651915. Published 2021 Jun 23. doi:10.3389/fonc.2021.651915(IF:6.244)
[121] Xu S, Song Y, Shao Y, Zhou H. Hsa_circ_0060927 Is a Novel Tumor Biomarker by Sponging miR-195-5p in the Malignant Transformation of OLK to OSCC. Front Oncol. 2022;11:747086. Published 2022 Jan 11. doi:10.3389/fonc.2021.747086(IF:6.244)
[122] Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p Promotes Non-Small Cell Lung Cancer Through SLC7A11-Mediated-Ferroptosis. Front Oncol. 2021;11:759346. Published 2021 Oct 13. doi:10.3389/fonc.2021.759346(IF:6.244)
[123] Dai P, Tang Z, Ruan P, Bajinka O, Liu D, Tan Y. Gimap5 Inhibits Lung Cancer Growth by Interacting With M6PR. Front Oncol. 2021;11:699847. Published 2021 Sep 15. doi:10.3389/fonc.2021.699847(IF:6.244)
[124] Zan X, Li S, Wei S, et al. COL8A1 Promotes NSCLC Progression Through IFIT1/IFIT3-Mediated EGFR Activation. Front Oncol. 2022;12:707525. Published 2022 Feb 24. doi:10.3389/fonc.2022.707525(IF:6.244)
[125] Xu D, Yang F, Fan Y, et al. LncRNA DLEU1 Contributes to the Growth and Invasion of Colorectal Cancer via Targeting miR-320b/PRPS1. Front Oncol. 2021;11:640276. Published 2021 May 25. doi:10.3389/fonc.2021.640276(IF:6.244)
[126] Hu L, Cai X, Dong S, et al. Synthesis and Anticancer Activity of Novel Actinonin Derivatives as HsPDF Inhibitors. J Med Chem. 2020;63(13):6959-6978. doi:10.1021/acs.jmedchem.0c00079(IF:6.205)
[127] Sun YF, Wang Y, Li XD, Wang H. SNHG15, a p53-regulated lncRNA, suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 axis. Am J Cancer Res. 2022;12(2):816-828. Published 2022 Feb 15. (IF:6.166)
[128] Yu M, Hu X, Yan J, Wang Y, Lu F, Chang J. RIOK2 Inhibitor NSC139021 Exerts Anti-Tumor Effects on Glioblastoma via Inducing Skp2-Mediated Cell Cycle Arrest and Apoptosis. Biomedicines. 2021;9(9):1244. Published 2021 Sep 17. doi:10.3390/biomedicines9091244(IF:6.081)
[129] Liu ZQ, Liu K, Liu ZF, et al. Manganese-induced alpha-synuclein overexpression aggravates mitochondrial damage by repressing PINK1/Parkin-mediated mitophagy [published correction appears in Food Chem Toxicol. 2021 Dec;158:112660]. Food Chem Toxicol. 2021;152:112213. doi:10.1016/j.fct.2021.112213(IF:6.025)
[130] Lu Z, Wang Z, Tu Z, Liu H. HSP90 Inhibitor Ganetespib Enhances the Sensitivity of Mantle Cell Lymphoma to Bruton's Tyrosine Kinase Inhibitor Ibrutinib. Front Pharmacol. 2022;13:864194. Published 2022 Jun 3. doi:10.3389/fphar.2022.864194(IF:5.988)
[131] Zheng Z, Shang Y, Xu R, et al. Ubiquitin specific peptidase 38 promotes the progression of gastric cancer through upregulation of fatty acid synthase. Am J Cancer Res. 2022;12(6):2686-2696. Published 2022 Jun 15. (IF:5.942)
[132] Tao Y, Qiao SM, Lv CJ, et al. Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the ERβ/TRIM21/PHB1 pathway [published online ahead of print, 2022 May 22]. Phytother Res. 2022;10.1002/ptr.7495. doi:10.1002/ptr.7495(IF:5.882)
[133] Zhang Y, Wang X, Ma Z, et al. A potential strategy for in-stent restenosis: Inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion. Mater Sci Eng C Mater Biol Appl. 2020;115:111090. doi:10.1016/j.msec.2020.111090(IF:5.880)
[134] Cui T, Li S, Chen S, Liang Y, Sun H, Wang L. "Stealth" dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. Int J Pharm. 2021;600:120502. doi:10.1016/j.ijpharm.2021.120502(IF:5.875)
[135] Liang H, Chen M, Qi F, et al. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal Transduct Target Ther. 2019;4:23. Published 2019 Jul 19. doi:10.1038/s41392-019-0058-5(IF:5.873)
[136] Luan X, Sun M, Zhao X, Wang J, Han Y, Gao Y. Bisimidazolium Salt Glycosyltransferase Inhibitors Suppress Hepatocellular Carcinoma Progression In Vitro and In Vivo. Pharmaceuticals (Basel). 2022;15(6):716. Published 2022 Jun 5. doi:10.3390/ph15060716(IF:5.863)
[137] Tang Y, Shi C, Qin Y, et al. Network Pharmacology-Based Investigation and Experimental Exploration of the Antiapoptotic Mechanism of Colchicine on Myocardial Ischemia Reperfusion Injury. Front Pharmacol. 2021;12:804030. Published 2021 Dec 16. doi:10.3389/fphar.2021.804030(IF:5.811)
[138] Hu Y, Qian Y, Wei J, et al. The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Front Pharmacol. 2021;12:752825. Published 2021 Nov 23. doi:10.3389/fphar.2021.752825(IF:5.811)
[139] Zhu L, Zhou H, Xu F, et al. Hepatic Ischemia-Reperfusion Impairs Blood-Brain Barrier Partly Due to Release of Arginase From Injured Liver. Front Pharmacol. 2021;12:724471. Published 2021 Oct 13. doi:10.3389/fphar.2021.724471(IF:5.811)
[140] Liu A, Wang H, Hou X, et al. Combinatory antitumor therapy by cascade targeting of a single drug. Acta Pharm Sin B. 2020;10(4):667-679. doi:10.1016/j.apsb.2019.08.011(IF:5.808)
[141] Peng RR, Wang LL, Gao WY, et al. The 5.8S pre-rRNA maturation factor, M-phase phosphoprotein 6, is a female fertility factor required for oocyte quality and meiosis. Cell Prolif. 2020;53(3):e12769. doi:10.1111/cpr.12769(IF:5.753)
[142] Niu X, Pu S, Ling C, et al. lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Prolif. 2020;53(6):e12818. doi:10.1111/cpr.12818(IF:5.753)
[143] Wang N, Yu M, Fu Y, Ma Z. Blocking ATM Attenuates SKOV3 Cell Proliferation and Migration by Disturbing OGT/OGA Expression via hsa-miR-542-5p. Front Oncol. 2022;12:839508. Published 2022 Jun 20. doi:10.3389/fonc.2022.839508(IF:5.738)
[144] Hu Y, Wang B, Yi K, Lei Q, Wang G, Xu X. IFI35 is involved in the regulation of the radiosensitivity of colorectal cancer cells. Cancer Cell Int. 2021;21(1):290. Published 2021 Jun 3. doi:10.1186/s12935-021-01997-7(IF:5.722)
[145] Zou X, Liu Y, Di J, et al. ZMIZ2 promotes the development of triple-receptor negative breast cancer. Cancer Cell Int. 2022;22(1):52. Published 2022 Jan 31. doi:10.1186/s12935-021-02393-x(IF:5.722)
[146] Chen W, Chen H, Yang ZT, Mao EQ, Chen Y, Chen EZ. Free fatty acids-induced neutrophil extracellular traps lead to dendritic cells activation and T cell differentiation in acute lung injury. Aging (Albany NY). 2021;13(24):26148-26160. doi:10.18632/aging.203802(IF:5.682)
[147] Liu W, Long Q, Zhang W, et al. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY). 2021;13(15):19760-19775. doi:10.18632/aging.203388(IF:5.682)
[148] Chang L, Gao H, Wang L, et al. Exosomes derived from miR-1228 overexpressing bone marrow-mesenchymal stem cells promote growth of gastric cancer cells. Aging (Albany NY). 2021;13(8):11808-11821. doi:10.18632/aging.202878(IF:5.682)
[149] Li F, Miao L, Xue T, et al. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res. 2019;38(1):414. Published 2019 Oct 10. doi:10.1186/s13046-019-1404-8(IF:5.646)
[150] Zhu Y, Wang X, Zhou X, Ding L, Liu D, Xu H. DNMT1-mediated PPARα methylation aggravates damage of retinal tissues in diabetic retinopathy mice. Biol Res. 2021;54(1):25. Published 2021 Aug 6. doi:10.1186/s40659-021-00347-1(IF:5.612)
[151] Cui D, Zhang C, Liu B, et al. Regression of Gastric Cancer by Systemic Injection of RNA Nanoparticles Carrying both Ligand and siRNA. Sci Rep. 2015;5:10726. Published 2015 Jul 3. doi:10.1038/srep10726(IF:5.578)
[152] Xu X, Yuan X, Ni J, et al. MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2. J Cell Physiol. 2021;236(2):1116-1130. doi:10.1002/jcp.29922(IF:5.546)
[153] Lai SY, Guan HM, Liu J, et al. Long noncoding RNA SNHG12 modulated by human papillomavirus 16 E6/E7 promotes cervical cancer progression via ERK/Slug pathway. J Cell Physiol. 2020;235(11):7911-7922. doi:10.1002/jcp.29446(IF:5.546)
[154] Li YR, Peng RR, Gao WY, et al. The ubiquitin ligase KBTBD8 regulates PKM1 levels via Erk1/2 and Aurora A to ensure oocyte quality. Aging (Albany NY). 2019;11(4):1110-1128. doi:10.18632/aging.101802(IF:5.515)
[155] Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11(18):7830-7846. doi:10.18632/aging.102291(IF:5.515)
[156] Tang XD, Zhang DD, Jia L, Ji W, Zhao YS. lncRNA AFAP1-AS1 Promotes Migration and Invasion of Non-Small Cell Lung Cancer via Up-Regulating IRF7 and the RIG-I-Like Receptor Signaling Pathway. Cell Physiol Biochem. 2018;50(1):179-195. doi:10.1159/000493967(IF:5.500)
[157] Jiang Q, Chen Q, Li C, Gong Z, Li Z, Ding S. ox-LDL-Induced Endothelial Progenitor Cell Oxidative Stress via p38/Keap1/Nrf2 Pathway. Stem Cells Int. 2022;2022:5897194. Published 2022 Jan 31. doi:10.1155/2022/5897194(IF:5.443)
[158] Wu Z, Wu P, Zuo X, et al. LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation [published correction appears in Mol Neurobiol. 2017 Jan 4;:]. Mol Neurobiol. 2017;54(10):7670-7685. doi:10.1007/s12035-016-0246-z(IF:5.397)
[159] Halike X, Li J, Yuan P, et al. The petroleum ether extract of Brassica rapa L. induces apoptosis of lung adenocarcinoma cells via the mitochondria-dependent pathway. Food Funct. 2021;12(20):10023-10039. Published 2021 Oct 19. doi:10.1039/d1fo01547h(IF:5.396)
[160] Huo W, Li H, Zhang Y, Li H. Epigenetic silencing of microRNA-874-3p implicates in erectile dysfunction in diabetic rats by activating the Nupr1/Chop-mediated pathway. FASEB J. 2020;34(1):1695-1709. doi:10.1096/fj.201902086R(IF:5.391)
[161] Liang S, Sun M, Lu Y, et al. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B. 2020;8(36):8368-8382. doi:10.1039/d0tb01391a(IF:5.344)
[162] Zhang J, Yang S, Guan H, Zhou J, Gao Y. Xanthatin synergizes with cisplatin to suppress homologous recombination through JAK2/STAT4/BARD1 axis in human NSCLC cells. J Cell Mol Med. 2021;25(3):1688-1699. doi:10.1111/jcmm.16271(IF:5.310)
[163] Han J, Wang P, Xia X, et al. EGR1 promoted anticancer effects of Scutellarin via regulating LINC00857/miR-150-5p/c-Myc in osteosarcoma. J Cell Mol Med. 2021;25(17):8479-8489. doi:10.1111/jcmm.16809(IF:5.310)
[164] Hang C, Song Y, Li Y, et al. Knockout of MYOM1 in human cardiomyocytes leads to myocardial atrophy via impairing calcium homeostasis. J Cell Mol Med. 2021;25(3):1661-1676. doi:10.1111/jcmm.16268(IF:5.310)
[165] Hao Y, Lu C, Zhang B, Xu Z, Guo H, Zhang G. CircPVT1 up-regulation attenuates steroid-induced osteonecrosis of the femoral head through regulating miR-21-5p-mediated Smad7/TGFβ signalling pathway. J Cell Mol Med. 2021;25(10):4608-4622. doi:10.1111/jcmm.16294(IF:5.310)
[166] Shen J, Dong J, Shao F, et al. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine (Lond). 2022;17(9):591-605. doi:10.2217/nnm-2022-0030(IF:5.307)
[167] Gu J, Lin Y, Wang Z, et al. Campylobacter jejuni Cytolethal Distending Toxin Induces GSDME-Dependent Pyroptosis in Colonic Epithelial Cells. Front Cell Infect Microbiol. 2022;12:853204. Published 2022 Apr 27. doi:10.3389/fcimb.2022.853204(IF:5.293)
[168] Wang Z, Liu M, Liu L, Li L, Tan L, Sun Y. The Synergistic Effect of Tacrolimus (FK506) or Everolimus and Azoles Against Scedosporium and Lomentospora Species In Vivo and In Vitro. Front Cell Infect Microbiol. 2022;12:864912. Published 2022 Apr 14. doi:10.3389/fcimb.2022.864912(IF:5.293)
[169] Xu C, Shao T, Shao S, Jin G. High activity, high selectivity and high biocompatibility BODIPY-pyrimidine derivatives for fluorescence target recognition and evaluation of inhibitory activity. Bioorg Chem. 2021;114:105121. doi:10.1016/j.bioorg.2021.105121(IF:5.275)
[170] Sun W, Sun F, Meng J, et al. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem. 2022;126:105906. doi:10.1016/j.bioorg.2022.105906(IF:5.275)
[171] Qiu CL, Ye ZN, Yan BC, et al. Structurally diverse diterpenoids from Isodon oresbius and their bioactivity. Bioorg Chem. 2022;124:105811. doi:10.1016/j.bioorg.2022.105811(IF:5.275)
[172] Ma Y, Yang X, Han H, et al. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem. 2021;111:104872. doi:10.1016/j.bioorg.2021.104872(IF:5.275)
[173] Ao M, Hu X, Qian Y, et al. Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg Chem. 2021;113:104961. doi:10.1016/j.bioorg.2021.104961(IF:5.275)
[174] Zhao XJ, Zhu HY, Wang XL, et al. Oridonin Ameliorates Traumatic Brain Injury-Induced Neurological Damage by Improving Mitochondrial Function and Antioxidant Capacity and Suppressing Neuroinflammation through the Nrf2 Pathway. J Neurotrauma. 2022;39(7-8):530-543. doi:10.1089/neu.2021.0466(IF:5.269)
[175] Wang QY, Yali-Xiang, Hu QH, Huang SH, Lin J, Zhou QH. Surface charge switchable nano-micelle for pH/redox-triggered and endosomal escape mediated co-delivery of doxorubicin and paclitaxel in treatment of lung adenocarcinoma. Colloids Surf B Biointerfaces. 2022;216:112588. doi:10.1016/j.colsurfb.2022.112588(IF:5.268)
[176] Li W, Xie X, Wu T, et al. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids Surf B Biointerfaces. 2019;181:305-314. doi:10.1016/j.colsurfb.2019.05.047(IF:5.268)
[177] Liu Y, Zhou Z, Liu Y, et al. H2O2-activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy. Biomater Sci. 2019;7(12):5359-5368. doi:10.1039/c9bm01354g(IF:5.251)
[178] Hou J, Huang P, Lan C, et al. ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway. Cell Death Discov. 2022;8(1):32. Published 2022 Jan 21. doi:10.1038/s41420-022-00815-x(IF:5.241)
[179] Chen Y, Chen D, Qin Y, et al. TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Discov. 2022;8(1):35. Published 2022 Jan 24. doi:10.1038/s41420-022-00824-w(IF:5.241)
[180] Liu Y, Yao M, Han W, Zhang H, Zhang S. Construction of a Single-Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry. 2021;27(53):13418-13425. doi:10.1002/chem.202102016(IF:5.236)
[181] Liu L, Sun X, Guo Y, Ge K. Evodiamine induces ROS-Dependent cytotoxicity in human gastric cancer cells via TRPV1/Ca2+ pathway. Chem Biol Interact. 2022;351:109756. doi:10.1016/j.cbi.2021.109756(IF:5.194)
[182] Zhang J, Yang F, Mei X, et al. Toosendanin and isotoosendanin suppress triple-negative breast cancer growth via inducing necrosis, apoptosis and autophagy. Chem Biol Interact. 2022;351:109739. doi:10.1016/j.cbi.2021.109739(IF:5.194)
[183] Du XF, Cui HT, Pan HH, et al. Role of the miR-133a-5p/FBXO6 axis in the regulation of intervertebral disc degeneration. J Orthop Translat. 2021;29:123-133. Published 2021 Jun 19. doi:10.1016/j.jot.2021.05.004(IF:5.191)
[184] Tan H, Hou N, Liu Y, et al. CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomedicine. 2020;27:102192. doi:10.1016/j.nano.2020.102192(IF:5.182)
[185] Li WW, Wang HY, Nie X, Liu YB, Han M, Li BH. Human colorectal cancer cells induce vascular smooth muscle cell apoptosis in an exocrine manner. Oncotarget. 2017;8(37):62049-62056. Published 2017 Jun 27. doi:10.18632/oncotarget.18893(IF:5.168)
[186] Liu H, Lu Z, Shi X, et al. HSP90 inhibition downregulates DNA replication and repair genes via E2F1 repression. J Biol Chem. 2021;297(2):100996. doi:10.1016/j.jbc.2021.100996(IF:5.157)
[187] Zhang T, Feng S, Li J, et al. Farnesoid X receptor (FXR) agonists induce hepatocellular apoptosis and impair hepatic functions via FXR/SHP pathway. Arch Toxicol. 2022;96(6):1829-1843. doi:10.1007/s00204-022-03266-6(IF:5.153)
[188] Tian DH, Qin CH, Xu WY, et al. Phenotypic and functional comparison of rat enteric neural crest-derived cells during fetal and early-postnatal stages. Neural Regen Res. 2021;16(11):2310-2315. doi:10.4103/1673-5374.310701(IF:5.135)
[189] Kuang Z, Chen Z, Tu S, et al. Dopamine Suppresses Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells via AKT/GSK-3β/β-Catenin Signaling Pathway. Stem Cells Int. 2022;2022:4154440. Published 2022 Jun 29. doi:10.1155/2022/4154440(IF:5.131)
[190] Fan C, Feng J, Tang C, et al. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther. 2020;11(1):442. Published 2020 Oct 15. doi:10.1186/s13287-020-01948-5(IF:5.116)
[191] Zhou J, Hou J, Rao J, Zhou C, Liu Y, Gao W. Magnetically Directed Enzyme/Prodrug Prostate Cancer Therapy Based on β-Glucosidase/Amygdalin. Int J Nanomedicine. 2020;15:4639-4657. Published 2020 Jun 29. doi:10.2147/IJN.S242359(IF:5.115)
[192] Liu B, Chen D, Wang Y, et al. Adipose improves muscular atrophy caused by Sirtuin1 deficiency by promoting mitochondria synthesis. Int J Biochem Cell Biol. 2022;149:106246. doi:10.1016/j.biocel.2022.106246(IF:5.085)
[193] Li Y, Zhai P, Zheng Y, Zhang J, Kellum JA, Peng Z. Csf2 Attenuated Sepsis-Induced Acute Kidney Injury by Promoting Alternative Macrophage Transition. Front Immunol. 2020;11:1415. Published 2020 Jul 7. doi:10.3389/fimmu.2020.01415(IF:5.085)
[194] Zhou GZ, Li J, Sun YH, Zhang Q, Zhang L, Pei C. Autophagy Delays Apoptotic Cell Death Induced by Siniperca chuatsi Rhabdovirus in Epithelioma Papulosum Cyprinid Cells. Viruses. 2021;13(8):1554. Published 2021 Aug 6. doi:10.3390/v13081554(IF:5.048)
[195] Liu H, Lu J, Hua Y, et al. Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer. Cell Death Dis. 2015;6(1):e1595. Published 2015 Jan 15. doi:10.1038/cddis.2014.555(IF:5.014)
[196] Li W, Xie X, Wu T, et al. Targeted delivery of Auristatin PE to Hep G2 cells using folate – conjugated boron nitride nanotubes. Mater Sci Eng C Mater Biol Appl. 2020;109:110509. doi:10.1016/j.msec.2019.110509(IF:4.959)
[197] Wu M, Deng X, Zhong Y, et al. MafF Is Regulated via the circ-ITCH/miR-224-5p Axis and Acts as a Tumor Suppressor in Hepatocellular Carcinoma. Oncol Res. 2020;28(3):299-309. doi:10.3727/096504020X15796890809840(IF:4.949)
[198] Qian C, Al-Hamyari B, Tang X, et al. Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Mol Pharm. 2021;18(12):4531-4542. doi:10.1021/acs.molpharmaceut.1c00735(IF:4.939)
[199] Wang J, Tan M, Ge J, et al. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif. 2018;51(4):e12452. doi:10.1111/cpr.12452(IF:4.936)
[200] Zhou W, Ji L, Liu X, et al. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury [published online ahead of print, 2021 Dec 1]. Biomed J. 2021;S2319-4170(21)00172-4. doi:10.1016/j.bj.2021.11.012(IF:4.910)
[201] Jiang C, Yang W, Wang C, et al. Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis. Oxid Med Cell Longev. 2019;2019:1529520. Published 2019 Aug 14. doi:10.1155/2019/1529520(IF:4.868)
[202] Bian L, Meng Y, Zhang M, et al. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci. 2020;16(7):1096-1106. Published 2020 Feb 4. doi:10.7150/ijbs.41246(IF:4.858)
[203] Yan YL, Huang ZN, Zhu Z, et al. Downregulation of TET1 Promotes Bladder Cancer Cell Proliferation and Invasion by Reducing DNA Hydroxymethylation of AJAP1. Front Oncol. 2020;10:667. Published 2020 May 21. doi:10.3389/fonc.2020.00667(IF:4.848)
[204] Yan W, Fu X, Gao Y, et al. Synthesis, antibacterial evaluation, and safety assessment of CuS NPs against Pectobacterium carotovorum subsp. carotovorum. Pest Manag Sci. 2022;78(2):733-742. doi:10.1002/ps.6686(IF:4.845)
[205] Deng Y, Zhu H, Xiao L, Liu C, Meng X. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging (Albany NY). 2020;13(2):2198-2211. doi:10.18632/aging.202234(IF:4.831)
[206] Li B, Zhu F, He F, et al. Synthesis and biological evaluations of N'-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents. Bioorg Chem. 2020;96:103592. doi:10.1016/j.bioorg.2020.103592(IF:4.831)
[207] Yin H, Wang H, Wang M, et al. CircTCF25 serves as a sponge for miR-206 to support proliferation, migration, and invasion of glioma via the Jak2/p-Stat3/CypB axis. Mol Carcinog. 2022;61(6):558-571. doi:10.1002/mc.23402(IF:4.784)
[208] Wang J , Fang T , Li M , et al. Intracellular delivery of peptide drugs using viral nanoparticles of bacteriophage P22: covalent loading and cleavable release. J Mater Chem B. 2018;6(22):3716-3726. doi:10.1039/c8tb00186c(IF:4.776)
[209] Yang L, Tang J, Yin H, et al. Self-Assembled Nanoparticles for Tumor-Triggered Targeting Dual-Mode NIRF/MR Imaging and Photodynamic Therapy Applications. ACS Biomater Sci Eng. 2022;8(2):880-892. doi:10.1021/acsbiomaterials.1c01418(IF:4.749)
[210] Zhang C, Deng K, Xu D, et al. Fe-Based Theranostic Agents Respond to the Tumor Microenvironment for MRI-Guided Ferroptosis-/Apoptosis-Inducing Anticancer Therapy. ACS Biomater Sci Eng. 2022;8(6):2610-2623. doi:10.1021/acsbiomaterials.1c01626(IF:4.749)
[211] Gu C, Du W, Chai M, et al. Human umbilical cord-derived mesenchymal stem cells affect urea synthesis and the cell apoptosis of human induced hepatocytes by secreting IL-6 in a serum-free co-culture system. Biotechnol J. 2022;17(1):e2100096. doi:10.1002/biot.202100096(IF:4.677)
[212] Xi Z, Qiao Y, Wang J, et al. Gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103 [retracted in:  J Cell Mol Med. 2021 Feb;25(4):2286]. J Cell Mol Med. 2020;24(2):1451-1459. doi:10.1111/jcmm.14826(IF:4.658)
[213] Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med. 2019;23(5):3257-3270. doi:10.1111/jcmm.14212(IF:4.658)
[214] Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med. 2019;23(5):3257-3270. doi:10.1111/jcmm.14212(IF:4.658)
[215] Wang H, Tian Q, Xu J, Xu W, Yao K, Chen X. Cataract-causing G91del mutant destabilised βA3 heteromers formation linking with structural stability and cellular viability [published online ahead of print, 2021 Sep 6]. Br J Ophthalmol. 2021;bjophthalmol-2021-320033. doi:10.1136/bjophthalmol-2021-320033(IF:4.638)
[216] Dai Y, Li Y, Lin G, et al. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line [published online ahead of print, 2022 Jun 21]. Fish Shellfish Immunol. 2022;127:681-689. doi:10.1016/j.fsi.2022.06.022(IF:4.581)
[217] Asila A, Yang X, Kaisaer Y, Ma L. SNHG16/miR-485-5p/BMP7 axis modulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Gene Med. 2021;23(3):e3296. doi:10.1002/jgm.3296(IF:4.565)
[218] Chen X, Tang Y, Yan J, Li L, Jiang L, Chen Y. Circ_0062270 upregulates EPHA2 to facilitate melanoma progression via sponging miR-331-3p. J Dermatol Sci. 2021;103(3):176-182. doi:10.1016/j.jdermsci.2021.08.005(IF:4.563)
[219] Guo N, Gao C, Liu J, et al. Reversal of Ovarian Cancer Multidrug Resistance by a Combination of LAH4-L1-siMDR1 Nanocomplexes with Chemotherapeutics. Mol Pharm. 2018;15(5):1853-1861. doi:10.1021/acs.molpharmaceut.8b00031(IF:4.556)
[220] Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed Pharmacother. 2020;129:110371. doi:10.1016/j.biopha.2020.110371(IF:4.545)
[221] Liu X , Liu B , Gao S , et al. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J Mater Chem B. 2017;5(11):2078-2085. doi:10.1039/c7tb00100b(IF:4.543)
[222] Wen C, Lin L, Zou R, Lin F, Liu Y. Mesenchymal stem cell-derived exosome mediated long non-coding RNA KLF3-AS1 represses autophagy and apoptosis of chondrocytes in osteoarthritis. Cell Cycle. 2022;21(3):289-303. doi:10.1080/15384101.2021.2019411(IF:4.534)
[223] Zhang H, Luo Z, Tang J, et al. Transcription factor NFIC functions as a tumor suppressor in lung squamous cell carcinoma progression by modulating lncRNA CASC2. Cell Cycle. 2022;21(1):63-73. doi:10.1080/15384101.2021.1995130(IF:4.534)
[224] Xie LB, Chen B, Liao X, et al. LINC00963 targeting miR-128-3p promotes acute kidney injury process by activating JAK2/STAT1 pathway. J Cell Mol Med. 2020;24(10):5555-5564. doi:10.1111/jcmm.15211(IF:4.486)
[225] Xue Y, Dongmei Li, Yige Zhang, Hang Gao, Li H. Angelica polysaccharide moderates hypoxia-evoked apoptosis and autophagy in rat neural stem cells by downregulation of BNIP3. Artif Cells Nanomed Biotechnol. 2019;47(1):2492-2499. doi:10.1080/21691401.2019.1623228(IF:4.462)
[226] Chen Y, Qin Y, Dai M, et al. IBSP, a potential recurrence biomarker, promotes the progression of colorectal cancer via Fyn/β-catenin signaling pathway. Cancer Med. 2021;10(12):4030-4045. doi:10.1002/cam4.3959(IF:4.452)
[227] Meng H, Shen M, Li J, et al. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol. 2021;906:174280. doi:10.1016/j.ejphar.2021.174280(IF:4.432)
[228] Peng Z, Wangmu T, Li L, Han G, Huang D, Yi P. Combination of berberine and low glucose inhibits gastric cancer through the PP2A/GSK3β/MCL-1 signaling pathway. Eur J Pharmacol. 2022;922:174918. doi:10.1016/j.ejphar.2022.174918(IF:4.432)
[229] Wang J, Teng F, Chai H, Zhang C, Liang X, Yang Y. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2. BMC Cancer. 2021;21(1):456. Published 2021 Apr 23. doi:10.1186/s12885-021-08202-y(IF:4.430)
[230] Yang Y, Wang D, Li Q, et al. Immune-Enhancing Activity of Aqueous Extracts from Artemisia rupestris L. via MAPK and NF-kB Pathways of TLR4/TLR2 Downstream in Dendritic Cells. Vaccines (Basel). 2020;8(3):525. Published 2020 Sep 13. doi:10.3390/vaccines8030525(IF:4.422)
[231] Xia WP, Chen X, Ru F, et al. Knockdown of lncRNA XIST inhibited apoptosis and inflammation in renal fibrosis via microRNA-19b-mediated downregulation of SOX6. Mol Immunol. 2021;139:87-96. doi:10.1016/j.molimm.2021.07.012(IF:4.407)
[232] Wang N, Guo Y, Song L, Tong T, Fan X. Circular RNA intraflagellar transport 80 facilitates endometrial cancer progression through modulating miR-545-3p/FAM98A signaling. J Gynecol Oncol. 2022;33(1):e2. doi:10.3802/jgo.2022.33.e2(IF:4.401)
[233] Yuan S, Xu Y, Yi T, Wang H. The anti-tumor effect of OP-B on ovarian cancer in vitro and in vivo, and its mechanism: An investigation using network pharmacology-based analysis. J Ethnopharmacol. 2022;283:114706. doi:10.1016/j.jep.2021.114706(IF:4.360)
[234] Tian Y, Qi Y, Cai H, Xu M, Zhang Y. Senegenin alleviates Aβ1-42 induced cell damage through triggering mitophagy. J Ethnopharmacol. 2022;295:115409. doi:10.1016/j.jep.2022.115409(IF:4.360)
[235] Wu M, Huang J, Shi J, Shi L, Zeng Q, Wang H. Ruyi Jinhuang Powder accelerated diabetic ulcer wound healing by regulating Wnt/β-catenin signaling pathway of fibroblasts In Vivo and In Vitro. J Ethnopharmacol. 2022;293:115321. doi:10.1016/j.jep.2022.115321(IF:4.360)
[236] Li Y, Chen J, Song S. Circ-OPHN1 suppresses the proliferation, migration, and invasion of trophoblast cells through mediating miR-558/THBS2 axis. Drug Dev Res. 2022;83(4):1034-1046. doi:10.1002/ddr.21931(IF:4.360)
[237] Yuan FY, Xu F, Fan RZ, et al. Structural Elucidation of Three 9,11-Seco Tetracyclic Triterpenoids Enables the Structural Revision of Euphorol J. J Org Chem. 2021;86(11):7588-7593. doi:10.1021/acs.joc.1c00631(IF:4.354)
[238] Li W, Xu J, Cheng L, et al. RelB promotes the migration and invasion of prostate cancer DU145 cells via exosomal ICAM1 in vitro. Cell Signal. 2022;91:110221. doi:10.1016/j.cellsig.2021.110221(IF:4.315)
[239] Shi L, Zhang Y, Xia Y, Li C, Song Z, Zhu J. MiR-150-5p protects against septic acute kidney injury via repressing the MEKK3/JNK pathway. Cell Signal. 2021;86:110101. doi:10.1016/j.cellsig.2021.110101(IF:4.315)
[240] Wang Q, Liang D, Shen P, Yu Y, Yan Y, You W. Hsa_circ_0092276 promotes doxorubicin resistance in breast cancer cells by regulating autophagy via miR-348/ATG7 axis. Transl Oncol. 2021;14(8):101045. doi:10.1016/j.tranon.2021.101045(IF:4.243)
[241] Zhu J, Luo JE, Chen Y, Wu Q. Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/CBX2 axis in ovarian cancer. J Ovarian Res. 2021;14(1):136. Published 2021 Oct 14. doi:10.1186/s13048-021-00888-9(IF:4.234)
[242] Chen R, Liang F, Yan J, Wang Y. CircCDK17 knockdown inhibits tumor progression and cell glycolysis by downregulaing YWHAZ expression through sponging miR-1294 in cervical cancer. J Ovarian Res. 2022;15(1):24. Published 2022 Feb 15. doi:10.1186/s13048-022-00952-y(IF:4.234)
[243] Liu G, Xu X, Jiang L, et al. Targeted Antitumor Mechanism of C-PC/CMC-CD55sp Nanospheres in HeLa Cervical Cancer Cells. Front Pharmacol. 2020;11:906. Published 2020 Jun 18. doi:10.3389/fphar.2020.00906(IF:4.225)
[244] Liu Z, Zhu Q, Song E, Song Y. Polybrominated diphenyl ethers quinone exhibits neurotoxicity by inducing DNA damage, cell cycle arrest, apoptosis and p53-driven adaptive response in microglia BV2 cells. Toxicology. 2021;457:152807. doi:10.1016/j.tox.2021.152807(IF:4.221)
[245] Xiao L, Yuan W, Huang C, Luo Q, Xiao R, Chen ZH. LncRNA PCAT19 induced by SP1 and acted as oncogene in gastric cancer competitively binding to miR429 and upregulating DHX9. J Cancer. 2022;13(1):102-111. Published 2022 Jan 1. doi:10.7150/jca.61961(IF:4.207)
[246] Xu H, Ma Z, Mo X, et al. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer. 2022;13(7):2226-2237. Published 2022 Apr 11. doi:10.7150/jca.66020(IF:4.207)
[247] Zhu L, Zhou D, Guo T, et al. LncRNA GAS5 inhibits Invasion and Migration of Lung Cancer through influencing EMT process. J Cancer. 2021;12(11):3291-3298. Published 2021 Apr 2. doi:10.7150/jca.56218(IF:4.207)
[248] Hu H, Yin S, Ma R, et al. CREBBP knockdown suppressed proliferation and promoted chemo-sensitivity via PERK-mediated unfolded protein response in ovarian cancer. J Cancer. 2021;12(15):4595-4603. Published 2021 Jun 1. doi:10.7150/jca.56135(IF:4.207)
[249] Li K, Li R, Ni Y, et al. Novel distance-progesterone-combined selection approach improves human sperm quality. J Transl Med. 2018;16(1):203. Published 2018 Jul 20. doi:10.1186/s12967-018-1575-7(IF:4.197)
[250] Zhang K, Zhou H, Yan B, Cao X. TUG1/miR-133b/CXCR4 axis regulates cisplatin resistance in human tongue squamous cell carcinoma. Cancer Cell Int. 2020;20:148. Published 2020 May 6. doi:10.1186/s12935-020-01224-9(IF:4.175)
[251] Chen Z, Chen C, Zhou T, et al. A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors. Cancer Cell Int. 2020;20:337. Published 2020 Jul 23. doi:10.1186/s12935-020-01427-0(IF:4.175)
[252] Deng Q, Wu M, Deng J. USP36 promotes tumor growth of non-small cell lung cancer via increasing KHK-A expression by regulating c-MYC-hnRNPH1/H2 axis. Hum Cell. 2022;35(2):694-704. doi:10.1007/s13577-022-00677-6(IF:4.174)
[253] Guo T, Yuan D, Zhang W, et al. Upregulation of long noncoding RNA XIST has anticancer effects on ovarian cancer through sponging miR-106a. Hum Cell. 2021;34(2):579-587. doi:10.1007/s13577-020-00469-w(IF:4.174)
[254] Cheng L, Yu P, Li F, et al. Human umbilical cord-derived mesenchymal stem cell-exosomal miR-627-5p ameliorates non-alcoholic fatty liver disease by repressing FTO expression. Hum Cell. 2021;34(6):1697-1708. doi:10.1007/s13577-021-00593-1(IF:4.174)
[255] Zhang H, Pan Z, Ju J, et al. DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. J Anim Sci Biotechnol. 2020;11:77. Published 2020 Aug 5. doi:10.1186/s40104-020-00489-4(IF:4.167)
[256] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502. doi:10.1016/j.fm.2020.103502(IF:4.155)
[257] Hong Y, Liu N, Zhou R, et al. Combination Therapy Using Kartogenin-Based Chondrogenesis and Complex Polymer Scaffold for Cartilage Defect Regeneration. ACS Biomater Sci Eng. 2020;6(11):6276-6284. doi:10.1021/acsbiomaterials.0c00724(IF:4.152)
[258] Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther. 2021;14:3151-3165. Published 2021 May 13. doi:10.2147/OTT.S291823(IF:4.147)
[259] Sun S, Wang P, Ren L, Wang H, Zhan Y, Shan S. Sevoflurane Suppresses Colon Cancer Cell Malignancy by Regulating circ-PI4KA. Onco Targets Ther. 2021;14:3319-3333. Published 2021 May 20. doi:10.2147/OTT.S295552(IF:4.147)
[260] Zhang Q, Xu L, Wang J, et al. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a. Onco Targets Ther. 2021;14:1187-1204. Published 2021 Feb 22. doi:10.2147/OTT.S288799(IF:4.147)
[261] Yue Q, Xu Y, Deng X, et al. Circ-PITX1 Promotes the Progression of Non-Small Cell Lung Cancer Through Regulating the miR-1248/CCND2 Axis. Onco Targets Th

Annexin V-EGFP/PI细胞凋亡检测试剂盒|Annexin V-EGFP/PI Apoptosis Detection Kit

Annexin V-EGFP/PI细胞凋亡检测试剂盒|Annexin V-EGFP/PI Apoptosis Detection Kit

产品说明书

FAQ

COA

已发表文献

产品描述

Annexin V-EGFP/PI细胞凋亡检测试剂盒是用EGFP标记了的Annexin V作为探针,来检测细胞早期凋亡的发生。

其检测原理为:在正常的活细胞中,磷脂酰丝氨酸(phosphotidylserinePS)位于细胞膜的内侧,但在早期凋亡的细胞中,PS 从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中。Annexin-Ⅴ(膜联蛋白-V)是一种分子量为35-36 kDaCa2+ 依赖性磷脂结合蛋白,能与PS高亲和力结合。可通过细胞外侧暴露的磷脂酰丝氨酸与凋亡早期细胞的胞膜结合。

另外,本试剂盒中还提供了碘化丙啶(Propidium IodidePI)用来区分存活的早期细胞和坏死或晚期凋亡细胞。PI是一种核酸染料,它不能透过正常细胞或早期凋亡细胞的完整的细胞膜,但可以透过凋亡晚期和坏死细胞的细胞膜而使细胞核染红。因此,将Annexin VPI联合使用时,PI则被排除在活细胞(Annexin V/PI)和早期凋亡细胞(Annexin V+/PI)之外,而晚期凋亡细胞和坏死细胞同时被EGFPPI结合染色呈现双阳性(Annexin V+/PI+)。

本试剂盒适合使用流式细胞仪和荧光显微镜进行检测。

 

产品组分

编号

组分

产品编号/规格

40303ES2020 T

40303ES5050 T

40303ES60100 T

40303-A

Annexin V-EGFP

0.1 mL

0.25 mL

0.5 mL

40303-B

PI Staining Solution

0.2 mL

0.5 mL

1 mL

40303-C

1×Binding Buffer

10 mL

25 mL

50 mL

 

运输与保存方法

冰袋(wet ice)运输。-20 ℃避光保存,避免反复冻融,年有效

【注】:如果需要在短时间内多次重复使用,可以在4 ℃避光保存,半年有效。

 

注意事项

1)由于细胞凋亡是一个快速的过程,建议样品在染色后1小时之内进行分析。

2)对于贴壁细胞,消化是一个关键步骤。贴壁细胞诱导细胞凋亡时如有漂浮细胞,需收集漂浮细胞和贴壁细胞后合并染色。处理贴壁细胞时要小心操作,尽量避免人为的损伤细胞。胰酶消化时间过短,细胞需要用力吹打才能脱落,容易造成细胞膜的损伤,PI摄入过多;消化时间过长,细胞膜同样易造成损伤,甚至会影响细胞膜上磷脂酰丝氨酸与Annexin V-EGFP的结合。消化时将胰酶铺满孔板底后,轻摇时胰酶与细胞充分接触,然后倒掉大部分胰酶,利用剩余的少量胰酶再消化一段时间,待细胞间空隙增大,瓶底呈花斑状即可终止。在消化液中尽量不用EDTAEDTA会影响Annexin VPS的结合。

3) 实验中如需要固定细胞,比如在检测凋亡的同时检测细胞周期,只能选用Annexin V-FITC,而不能选用Annexin V-EGFP,因为在固定过程中EGFP会变性导致丧失激发荧光的能力。固定前需要先将细胞与Annexin V-FITC进行孵育,并用Binding Buffer洗掉未结合的Annexin V-FITC。因为固定过程中细胞通透性增加会产生细胞碎片,可以和Annexin V结合,对结果产生干扰。

4)如果样品来源于血液,请务必除去血液中的血小板。因为血小板含有PS,能与Annexin V结合,从而干扰实验结果。可以使用含有EDTA的缓冲剂并在200 g离心洗去血小板。

5)试剂在开盖前请短暂离心,将盖内壁上的液体甩至管底,避免开盖时液体洒落。

6Annexin V-EGFPPI是光敏物质,在操作时请注意避光。

7)本产品仅作科研用途!

 

操作方法

实验设计

空白管:阴性对照细胞,不加Annexin V-EGFPPI Staining Solution ,用于调节电压。

单染管:阳性对照细胞,只加Annexin V-EGFP,用于调节补偿。

检测管:处理的细胞,加Annexin V-EGFPPI Staining Solution。利用空白管和单染管调节好的参数进行实验数据的获得。

1.1 样品染色

1悬浮细胞300 g4 ℃离心5 min收集细胞

   贴壁细胞用不含EDTA的胰酶消化后300 g4 ℃离心5 min收集细胞胰酶消化时间不宜过长以防引起假阳性

2)用预冷的PBS洗涤细胞2每次均需300 g4 ℃离心5 min

3)用1×Binding Buffer重新悬浮细胞调节其浓度为1~5×106/mL

4)取100 μL的细胞悬液于5 mL的流式管中加入5 μL Annexin V-EGFP混匀后于室温避光孵育5 min

5)加入10 μL PI Staining Solution并加400 μL PBS立刻进行流式检测

【注】用流式检测凋亡时PI受时间的影响很大时间过长会导致PI的染色增加,所以需要在1 h内完成流式检测。 

1.2流式细胞仪分析

EGFP最大激发波长为488 nm最大发射波长为507 nmPI-DNA复合物的最大激发波长为535 nm,最大发射波长为615 nm。用CellQuest等软件进行分析,绘制双色散点图(two-color dot plot),EGFP为横坐标,PI为纵坐标。每个样采集10000 events。典型的实验中,细胞可以分成三个亚群,活细胞仅有很低强度的背景荧光,早期凋亡细胞仅有较强的绿色荧光,晚期凋亡细胞有绿色和红色荧光双重染色。

HB221008

 

Annexin V-EGFP/PI细胞凋亡检测试剂盒|Annexin V-EGFP/PI Apoptosis Detection Kit

暂无内容

[1] Gao W, Liu Y, Zhang H, Wang Z. Electrochemiluminescence Biosensor for Nucleolin Imaging in a Single Tumor Cell Combined with Synergetic Therapy of Tumor. ACS Sens. 2020;5(4):1216-1222. doi:10.1021/acssensors.0c00292(IF:7.333)
[2] Duan M , Xia F , Li T , et al. Matrix metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes for dual-mode imaging and photodynamic therapy. Nanoscale. 2019;11(39):18426-18435. doi:10.1039/c9nr06774d(IF:6.970)
[3] Yao M, Han W, Feng L, et al. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem. 2022;233:114236. doi:10.1016/j.ejmech.2022.114236(IF:6.514)
[4] Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-Microscopy for microRNA Imaging in Single Cancer Cell Combined with Chemotherapy-Photothermal Therapy. Anal Chem. 2019;91(19):12581-12586. doi:10.1021/acs.analchem.9b03694(IF:6.350)
[5] Wang L, Zhang Y, Han Y, et al. Nanoscale photosensitizer with tumor-selective turn-on fluorescence and activatable photodynamic therapy treatment for COX-2 overexpressed cancer cells. J Mater Chem B. 2021;9(8):2001-2009. doi:10.1039/d0tb02828b(IF:6.331)
[6] Liu Y, Yao M, Han W, Zhang H, Zhang S. Construction of a Single-Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry. 2021;27(53):13418-13425. doi:10.1002/chem.202102016(IF:5.236)
[7] You X, Zhou Z, Chen W, Wei X, Zhou H, Luo W. MicroRNA-495 confers inhibitory effects on cancer stem cells in oral squamous cell carcinoma through the HOXC6-mediated TGF-β signaling pathway. Stem Cell Res Ther. 2020;11(1):117. Published 2020 Mar 14. doi:10.1186/s13287-020-1576-3(IF:5.116)
[8] Xu S, Luo W, Xu X, et al. MD2 blockade prevents oxLDL-induced renal epithelial cell injury and protects against high-fat-diet-induced kidney dysfunction. J Nutr Biochem. 2019;70:47-55. doi:10.1016/j.jnutbio.2019.04.003(IF:4.490)
[9] Liu K, Sun T, Luan Y, et al. Berberine ameliorates erectile dysfunction in rats with streptozotocin-induced diabetes mellitus through the attenuation of apoptosis by inhibiting the SPHK1/S1P/S1PR2 and MAPK pathways. Andrology. 2022;10(2):404-418. doi:10.1111/andr.13119(IF:3.842)
[10] Sun T, Xu W, Wang J, et al. Paeonol ameliorates diabetic erectile dysfunction by inhibiting HMGB1/RAGE/NF-kB pathway [published online ahead of print, 2022 Jun 9]. Andrology. 2022;10.1111/andr.13203. doi:10.1111/andr.13203(IF:3.842)
[11] Zuo Y, Xu H, Chen Z, et al. 17‑AAG synergizes with Belinostat to exhibit a negative effect on the proliferation and invasion of MDA‑MB‑231 breast cancer cells. Oncol Rep. 2020;43(6):1928-1944. doi:10.3892/or.2020.7563(IF:3.417)
[12] Hu P, Dong ZS, Zheng S, et al. The effects of miR-26b-5p on fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) via targeting EZH2. Tissue Cell. 2021;72:101591. doi:10.1016/j.tice.2021.101591(IF:2.466)

产品描述

Annexin V-EGFP/PI细胞凋亡检测试剂盒是用EGFP标记了的Annexin V作为探针,来检测细胞早期凋亡的发生。

其检测原理为:在正常的活细胞中,磷脂酰丝氨酸(phosphotidylserinePS)位于细胞膜的内侧,但在早期凋亡的细胞中,PS 从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中。Annexin-Ⅴ(膜联蛋白-V)是一种分子量为35-36 kDaCa2+ 依赖性磷脂结合蛋白,能与PS高亲和力结合。可通过细胞外侧暴露的磷脂酰丝氨酸与凋亡早期细胞的胞膜结合。

另外,本试剂盒中还提供了碘化丙啶(Propidium IodidePI)用来区分存活的早期细胞和坏死或晚期凋亡细胞。PI是一种核酸染料,它不能透过正常细胞或早期凋亡细胞的完整的细胞膜,但可以透过凋亡晚期和坏死细胞的细胞膜而使细胞核染红。因此,将Annexin VPI联合使用时,PI则被排除在活细胞(Annexin V/PI)和早期凋亡细胞(Annexin V+/PI)之外,而晚期凋亡细胞和坏死细胞同时被EGFPPI结合染色呈现双阳性(Annexin V+/PI+)。

本试剂盒适合使用流式细胞仪和荧光显微镜进行检测。

 

产品组分

编号

组分

产品编号/规格

40303ES2020 T

40303ES5050 T

40303ES60100 T

40303-A

Annexin V-EGFP

0.1 mL

0.25 mL

0.5 mL

40303-B

PI Staining Solution

0.2 mL

0.5 mL

1 mL

40303-C

1×Binding Buffer

10 mL

25 mL

50 mL

 

运输与保存方法

冰袋(wet ice)运输。-20 ℃避光保存,避免反复冻融,年有效

【注】:如果需要在短时间内多次重复使用,可以在4 ℃避光保存,半年有效。

 

注意事项

1)由于细胞凋亡是一个快速的过程,建议样品在染色后1小时之内进行分析。

2)对于贴壁细胞,消化是一个关键步骤。贴壁细胞诱导细胞凋亡时如有漂浮细胞,需收集漂浮细胞和贴壁细胞后合并染色。处理贴壁细胞时要小心操作,尽量避免人为的损伤细胞。胰酶消化时间过短,细胞需要用力吹打才能脱落,容易造成细胞膜的损伤,PI摄入过多;消化时间过长,细胞膜同样易造成损伤,甚至会影响细胞膜上磷脂酰丝氨酸与Annexin V-EGFP的结合。消化时将胰酶铺满孔板底后,轻摇时胰酶与细胞充分接触,然后倒掉大部分胰酶,利用剩余的少量胰酶再消化一段时间,待细胞间空隙增大,瓶底呈花斑状即可终止。在消化液中尽量不用EDTAEDTA会影响Annexin VPS的结合。

3) 实验中如需要固定细胞,比如在检测凋亡的同时检测细胞周期,只能选用Annexin V-FITC,而不能选用Annexin V-EGFP,因为在固定过程中EGFP会变性导致丧失激发荧光的能力。固定前需要先将细胞与Annexin V-FITC进行孵育,并用Binding Buffer洗掉未结合的Annexin V-FITC。因为固定过程中细胞通透性增加会产生细胞碎片,可以和Annexin V结合,对结果产生干扰。

4)如果样品来源于血液,请务必除去血液中的血小板。因为血小板含有PS,能与Annexin V结合,从而干扰实验结果。可以使用含有EDTA的缓冲剂并在200 g离心洗去血小板。

5)试剂在开盖前请短暂离心,将盖内壁上的液体甩至管底,避免开盖时液体洒落。

6Annexin V-EGFPPI是光敏物质,在操作时请注意避光。

7)本产品仅作科研用途!

 

操作方法

实验设计

空白管:阴性对照细胞,不加Annexin V-EGFPPI Staining Solution ,用于调节电压。

单染管:阳性对照细胞,只加Annexin V-EGFP,用于调节补偿。

检测管:处理的细胞,加Annexin V-EGFPPI Staining Solution。利用空白管和单染管调节好的参数进行实验数据的获得。

1.1 样品染色

1悬浮细胞300 g4 ℃离心5 min收集细胞

   贴壁细胞用不含EDTA的胰酶消化后300 g4 ℃离心5 min收集细胞胰酶消化时间不宜过长以防引起假阳性

2)用预冷的PBS洗涤细胞2每次均需300 g4 ℃离心5 min

3)用1×Binding Buffer重新悬浮细胞调节其浓度为1~5×106/mL

4)取100 μL的细胞悬液于5 mL的流式管中加入5 μL Annexin V-EGFP混匀后于室温避光孵育5 min

5)加入10 μL PI Staining Solution并加400 μL PBS立刻进行流式检测

【注】用流式检测凋亡时PI受时间的影响很大时间过长会导致PI的染色增加,所以需要在1 h内完成流式检测。 

1.2流式细胞仪分析

EGFP最大激发波长为488 nm最大发射波长为507 nmPI-DNA复合物的最大激发波长为535 nm,最大发射波长为615 nm。用CellQuest等软件进行分析,绘制双色散点图(two-color dot plot),EGFP为横坐标,PI为纵坐标。每个样采集10000 events。典型的实验中,细胞可以分成三个亚群,活细胞仅有很低强度的背景荧光,早期凋亡细胞仅有较强的绿色荧光,晚期凋亡细胞有绿色和红色荧光双重染色。

HB221008

 

Annexin V-EGFP/PI细胞凋亡检测试剂盒|Annexin V-EGFP/PI Apoptosis Detection Kit

暂无内容

[1] Gao W, Liu Y, Zhang H, Wang Z. Electrochemiluminescence Biosensor for Nucleolin Imaging in a Single Tumor Cell Combined with Synergetic Therapy of Tumor. ACS Sens. 2020;5(4):1216-1222. doi:10.1021/acssensors.0c00292(IF:7.333)
[2] Duan M , Xia F , Li T , et al. Matrix metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes for dual-mode imaging and photodynamic therapy. Nanoscale. 2019;11(39):18426-18435. doi:10.1039/c9nr06774d(IF:6.970)
[3] Yao M, Han W, Feng L, et al. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem. 2022;233:114236. doi:10.1016/j.ejmech.2022.114236(IF:6.514)
[4] Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-Microscopy for microRNA Imaging in Single Cancer Cell Combined with Chemotherapy-Photothermal Therapy. Anal Chem. 2019;91(19):12581-12586. doi:10.1021/acs.analchem.9b03694(IF:6.350)
[5] Wang L, Zhang Y, Han Y, et al. Nanoscale photosensitizer with tumor-selective turn-on fluorescence and activatable photodynamic therapy treatment for COX-2 overexpressed cancer cells. J Mater Chem B. 2021;9(8):2001-2009. doi:10.1039/d0tb02828b(IF:6.331)
[6] Liu Y, Yao M, Han W, Zhang H, Zhang S. Construction of a Single-Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry. 2021;27(53):13418-13425. doi:10.1002/chem.202102016(IF:5.236)
[7] You X, Zhou Z, Chen W, Wei X, Zhou H, Luo W. MicroRNA-495 confers inhibitory effects on cancer stem cells in oral squamous cell carcinoma through the HOXC6-mediated TGF-β signaling pathway. Stem Cell Res Ther. 2020;11(1):117. Published 2020 Mar 14. doi:10.1186/s13287-020-1576-3(IF:5.116)
[8] Xu S, Luo W, Xu X, et al. MD2 blockade prevents oxLDL-induced renal epithelial cell injury and protects against high-fat-diet-induced kidney dysfunction. J Nutr Biochem. 2019;70:47-55. doi:10.1016/j.jnutbio.2019.04.003(IF:4.490)
[9] Liu K, Sun T, Luan Y, et al. Berberine ameliorates erectile dysfunction in rats with streptozotocin-induced diabetes mellitus through the attenuation of apoptosis by inhibiting the SPHK1/S1P/S1PR2 and MAPK pathways. Andrology. 2022;10(2):404-418. doi:10.1111/andr.13119(IF:3.842)
[10] Sun T, Xu W, Wang J, et al. Paeonol ameliorates diabetic erectile dysfunction by inhibiting HMGB1/RAGE/NF-kB pathway [published online ahead of print, 2022 Jun 9]. Andrology. 2022;10.1111/andr.13203. doi:10.1111/andr.13203(IF:3.842)
[11] Zuo Y, Xu H, Chen Z, et al. 17‑AAG synergizes with Belinostat to exhibit a negative effect on the proliferation and invasion of MDA‑MB‑231 breast cancer cells. Oncol Rep. 2020;43(6):1928-1944. doi:10.3892/or.2020.7563(IF:3.417)
[12] Hu P, Dong ZS, Zheng S, et al. The effects of miR-26b-5p on fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) via targeting EZH2. Tissue Cell. 2021;72:101591. doi:10.1016/j.tice.2021.101591(IF:2.466)

VMRD CJ-F-PI3-10ML

VMRD CJ-F-PI3-10ML

Bovine – Reagents

Parainfluenza Virus Type 3 (PI-3) FITC Conjugate 10 ml

CATALOG #:

CJ-F-PI3-10ML

SHELF LIFE:

Four years from date of QC release.

STORAGE:

Store at 2-7 °C. Do not freeze!

SIZE:

10 ml

SPECIES:

BOVINE

RELATED PRODUCTS:

描述

与异硫氰酸荧光素偶联的抗3型大肠流感病毒(PI-3)多克隆抗血清。山羊源。该试剂可用于检测感染动物和细胞培养物中呼吸道组织中的PI-3。

品牌: 美国

 

744-30

Porcine IgG RID Kit 30 Determinations                          

猪IgG RID 试剂盒 30测定

EA

744-60

Porcine IgG RID Kit  60 determinations                         

猪IgG RID 试剂盒 60测定

EA

CJ-F-PAV-10ML

Porcine Adenovirus(PAV) FITC FA Conjugate          

猪腺病毒(PAV)FITC结合荧光抗体

10 ML

CJ-F-PAV-1ML

Porcine Adenovirus(PAV) FITC FA Conjugate          

猪腺病毒(PAV)FITC结合荧光抗体

1 ML

CJ-F-PCV2-10ML

Porcine Circovirus(PCV2) FITC FA Conjugate          

猪圆环病毒FITC结合荧光抗体

10 ML

CJ-F-PCV2-1ML

Porcine Circovirus(PCV2) FITC FA Conjugate          

猪圆环病毒FITC结合荧光抗体

1 ML

CJ-F-PHEV-10ML

PHEV FA Conjugate 10ML                            

PHEV结合荧光抗体

10 ML

CJ-F-PHEV-1ML

PHEV FA Conjugate 1ML                             

PHEV结合荧光抗体

1 ML

CJ-F-PORC-10ML

Anti-Porcine Cell FITC Conjugate                   

抗猪细胞FITC结合物

10 ML

CJ-F-PORC-1ML

Anti-Porcine Cell FITC Conjugate                   

抗猪细胞FITC结合物

1 ML

CJ-F-PORG-AP-10ML

Anti-Porcine IgG FITC Conjugate Affinity Purified  

亲和层析纯化的抗猪IgG FITC结合物

10 ML

CJ-F-PORG-AP-1ML

Anti-Porcine IgG FITC Conjugate Affinity Purified  

亲和层析纯化的抗猪IgG FITC结合物

1 ML

CJ-F-PPV-10ML

Porcine Parvovirus(PPV) FITC FA Conjugate          

猪细小病毒FITC结合荧光抗体

10 ML

CJ-F-PPV-1ML

Porcine Parvovirus(PPV) FITC FA Conjugate          

猪细小病毒FITC结合荧光抗体

1 ML

CJ-F-TGE-10ML

Transmissible Gastroenteritis (TGE) FITC FA Conjugate  

传染性胃肠炎(TGE)FITC结合荧光抗体

10 ML

CJ-F-TGE-1ML

Transmissible Gastroenteritis (TGE) FITC FA Conjugate  

传染性胃肠炎(TGE)FITC结合荧光抗体

1 ML

CJ-F-VSV-10ML

Vesicular Stomatitis Virus(VSV) FA Conjugate           

水泡性口炎病毒(VSV)结合荧光抗体

10 ML

CJ-F-VSV-1ML

Vesicular Stomatitis Virus(VSV) FA Conjugate           

水泡性口炎病毒(VSV)结合荧光抗体

1 ML