iris-biotech LS-3500说明书

Iris Biotech GmbH 公司是CFM(Chemische Fabrik Marktredwitz)集团于2001年为增强其多肽及生命科学市场的竞争力而成立的高科技子公司,CFM 集团是德国化工企业,成立于1788年,是一家涉及化学、生物试剂、制药、生物工程等多行业的大型企业。Iris Biotech GmbH自成立以来即致力于多肽合成、PEGylation、生命科学研究及生物催化领域的研究试剂开发和供应。供应量可从克至数吨的级别。公司的宗旨是与35个精选的合作制造商及该领域的专家学者协作,以高性价比为客户提供的试剂,尽量的满足客户需求。

iris-biotech LS-3500说明书

Biotin Tyramide

Art-No.:LS-3500、

Cas-no.:41994-02-9

Formula:C18H25N3O3S

Molecular weight:363,47 g/mol

250 mg

€150.00

LS-3500.0250

1 g

€375.00

LS-3500.1000

5 g

€1,500.00

LS-3500.5000

 

描述用于许多应用的酪胺信号放大试剂包括免疫组织化学,原位杂交,电子显微镜,EL ISA等。它可以与显色和荧光可视化方法一起使用。它可以添加到任何其他标准IHC协议中,并减少其他试剂的使用通过降低测定方案中其他试剂的滴度来改善信噪比,并在IHC和(F)ISH应用中实现多目标检测

 

引用HW Rhee,P。Zou,ND Udeshi,JD Martell,VK Mootha,SA Carr,AY Ting; 通过空间限制酶标记对活细胞中线粒体进行蛋白质组学定位;

科学2013; 339:1328-31。www.sciencemag。。org/cgi/content/full/science.1230593/DC1。 DOI:10.1126 / science.1230593。

WO2008128352 A1

 

货号

品名

规格

价格

AAA1300.0000

Ac-L-Cys-OH

根据需求

询价

AAA1500.0001

Aloc-D-Lys(Boc)-OH*DCHA

1g

2800

AAA1500.0005

Aloc-D-Lys(Boc)-OH*DCHA

5g

10000

AAA1500.0025

Aloc-D-Lys(Boc)-OH*DCHA

25g

40000

AAA1500.0500

Aloc-D-Lys(Boc)-OH*DCHA

500mg

1800

AAA1505.0001

Aloc-L-Lys(Boc)-OH*DCHA

1g

1800

AAA1505.0005

Aloc-L-Lys(Boc)-OH*DCHA

5g

6000

AAA1505.0025

Aloc-L-Lys(Boc)-OH*DCHA

25g

24000

AAA1506.0001

Aloc-L-Lys(Fmoc)-OH

1g

2000

AAA1506.0005

Aloc-L-Lys(Fmoc)-OH

5g

6000

AAA1506.0025

Aloc-L-Lys(Fmoc)-OH

25g

24000

AAA1700.0005

Aloc-D-Phe-OH*DCHA

5g

4000

AAA1700.0025

Aloc-D-Phe-OH*DCHA

25g

16000

AAA1705.0005

Aloc-L-Phe-OH*DCHA

5g

3000

AAA1705.0025

Aloc-L-Phe-OH*DCHA

25g

12000

AAA1900.0001

Aloc-L-Nle(6-OH)-OH*DCHA

1g

3000

AAA1900.0005

Aloc-L-Nle(6-OH)-OH*DCHA

5g

12000

AAA1901.0001

Aloc-D-Orn(Boc)-OH*DCHA

1g

4500

AAA1901.0005

Aloc-D-Orn(Boc)-OH*DCHA

5g

15000

AAA1901.0025

Aloc-D-Orn(Boc)-OH*DCHA

25g

60000

AAA1902.0001

Aloc-L-Orn(Boc)-OH*DCHA

1g

1600

AAA1902.0005

Aloc-L-Orn(Boc)-OH*DCHA

5g

6000

AAA1902.0025

Aloc-L-Orn(Boc)-OH*DCHA

25g

24000

AAA1904.0001

Ac-L-Ser(tBu)-OH

1g

2500

AAA1904.0005

Ac-L-Ser(tBu)-OH

5g

9500

AAA1905.0001

Aloc-O2Oc-OH*DCHA

1g

1600

AAA1905.0005

Aloc-O2Oc-OH*DCHA

5g

6000

AAA1905.0025

Aloc-O2Oc-OH*DCHA

25g

24000

AAA1906.0005

Ac-beta-Ala-NH2

5g

2000

AAA1906.0025

Ac-beta-Ala-NH2

25g

8000

AAA1907.0005

Ac-beta-Ala-OH

5g

1800

AAA1907.0025

Ac-beta-Ala-OH

25g

7000

AAA1908.0001

Ac-beta-Ala-OMe

1g

1100

AAA1908.0005

Ac-beta-Ala-OMe

5g

4200

AAA1909.0005

Ac-D-Ala-OH

5g

2000

AAA1910.0001

Ac-D-Ala-OMe

1g

1300

AAA1910.0005

Ac-D-Ala-OMe

5g

4600

AAA1911.0000

Ac-L-Ala-OH

根据需求

询价

AAA1912.0005

Ac-L-Ala-OMe

5g

2000

AAA1913.0001

Ac-D-Leu-OH

1g

1000

AAA1913.0005

Ac-D-Leu-OH

5g

3500

AAA1914.0005

Ac-D-Met-OH

5g

1600

AAA1914.0025

Ac-D-Met-OH

25g

6000

AAA1915.0000

Ac-Gly-OH

根据需求

询价

AAA1916.0001

Ac-Gly-ONp

1g

2500

AAA1916.0005

Ac-Gly-ONp

5g

5100

AAA1917.0005

Ac-L-Hyp-OH

5g

1500

AAA1917.0025

Ac-L-Hyp-OH

25g

5200

AAA1918.0001

Ac-L-Ile-OH

1g

1000

AAA1918.0005

Ac-L-Ile-OH

5g

2600

AAA1919.0001

Ac-L-Ile-OMe

1g

1100

AAA1919.0005

Ac-L-Ile-OMe

5g

3600

AAA1920.0000

Ac-L-Leu-OH

根据需求

询价

AAA1921.0005

Ac-L-Leu-OMe

5g

2000

AAA1922.0001

Ac-L-Lys-OMe*HCl

1g

1500

AAA1922.0005

Ac-L-Lys-OMe*HCl

5g

5000

AAA1923.0005

Ac-L-Met-OH

5g

1900

AAA1923.0025

Ac-L-Met-OH

25g

7000

AAA1924.0001

Ac-L-Met-OMe

1g

2600

AAA1924.0005

Ac-L-Met-OMe

5g

5200

AAA1925.0005

Ac-L-Nle-OH

5g

1400

AAA1925.0025

Ac-L-Nle-OH

25g

4500

AAA1926.0001

Ac-L-Nle-OSu

1g

1000

AAA1926.0005

Ac-L-Nle-OSu

5g

2400

AAA1927.0001

Aloc-D-Lys(Fmoc)-OH

1g

3360

AAA1927.0005

Aloc-D-Lys(Fmoc)-OH

5g

12000

AAA1927.0500

Aloc-D-Lys(Fmoc)-OH

500mg

2160

AAA1928.0001

Aloc-L-Nle-OH

1g

1300

AAA1928.0005

Aloc-L-Nle-OH

5g

4000

AAA1929.0001

Ac-D-Phe(3-Cl)-OH

1g

2000

AAA1929.0005

Ac-D-Phe(3-Cl)-OH

5g

8000

AAA1930.0005

Ac-D-Phe-OH

5g

1500

AAA1930.0025

Ac-D-Phe-OH

25g

5000

AAA1931.0001

Ac-D-Pro-OH

1g

1200

AAA1931.0005

Ac-D-Pro-OH

5g

3600

AAA1932.0005

Ac-D-Trp-OH

5g

1800

AAA1932.0025

Ac-D-Trp-OH

25g

6500

AAA1933.0005

Ac-D-Val-OH

5g

1500

AAA1933.0025

Ac-D-Val-OH

25g

4500

AAA1934.0005

Ac-L-Phe-NH2

5g

2400

AAA1935.0025

Ac-L-Phe-OH

25g

2000

AAA1936.0005

Ac-L-Phe-OMe

5g

2000

AAA1936.0025

Ac-L-Phe-OMe

25g

4000

AAA1937.0001

Ac-L-Pra-OEt

1g

4800

AAA1937.0005

Ac-L-Pra-OEt

5g

13500

AAA1938.0001

Ac-L-Pro-NH2

1g

1000

AAA1938.0005

Ac-L-Pro-NH2

5g

3300

AAA1939.0000

Ac-L-Pro-OH

根据需求

询价

AAA1940.0000

Ac-L-Trp-NH2

根据需求

询价

AAA1941.0005

Ac-L-Trp-OEt

5g

1600

AAA1941.0025

Ac-L-Trp-OEt

25g

6500

AAA1942.0000

Ac-L-Trp-OH

根据需求

询价

AAA1943.0005

Ac-L-Trp-OMe

5g

1600

AAA1943.0025

Ac-L-Trp-OMe

25g

6500

AAA1944.0025

Ac-L-Tyr-OEt*H2O

25g

1800

AAA1944.0100

Ac-L-Tyr-OEt*H2O

100g

5500

AAA1945.0005

Ac-L-Tyr-OMe

5g

1100

AAA1945.0025

Ac-L-Tyr-OMe

25g

2900

AAA1946.0001

Ac-L-Val-NH2

1g

1000

AAA1946.0005

Ac-L-Val-NH2

5g

2400

AAA1947.0005

Ac-L-Val-OH

5g

1300

AAA1947.0025

Ac-L-Val-OH

25g

3800

AAA1948.0005

Ac-L-Val-OMe

5g

2000

AAA1948.0025

Ac-L-Val-OMe

25g

8000

AAA1953.0000

Ac-D-AllylGly-OH

根据需求

询价

AAA1960.0001

N3-Hx-OH

1g

2400

AAA1960.0005

N3-Hx-OH

5g

9000

AAA1970.0001

N3-Pen-OH

1g

2400

AAA1970.0005

N3-Pen-OH

5g

9000

AAA1980.0000

TrtS-Hx-OH

根据需求

询价

AAA1990.0001

Aloc-L-Dab(Fmoc)-OH

1g

3400

AAA1990.0005

Aloc-L-Dab(Fmoc)-OH

5g

12000

AAA1990.0025

Aloc-L-Dab(Fmoc)-OH

25g

48000

AAA1990.0500

Aloc-L-Dab(Fmoc)-OH

500mg

2200

AAA2000.0001

Aloc-L-Dap(Fmoc)-OH

1g

3400

AAA2000.0005

Aloc-L-Dap(Fmoc)-OH

5g

12000

AAA2000.0025

Aloc-L-Dap(Fmoc)-OH

25g

48000

AAA2000.0500

Aloc-L-Dap(Fmoc)-OH

500mg

2200

AAA2010.0001

Aloc-L-Orn(Fmoc)-OH

1g

2300

AAA2010.0005

Aloc-L-Orn(Fmoc)-OH

5g

8000

AAA2010.0025

Aloc-L-Orn(Fmoc)-OH

5g

32000

AAA2015.0001

Aloc-L-Cys(Trt)-OH

1g

8200

AAA2015.0005

Aloc-L-Cys(Trt)-OH

5g

28200

AAA2020.0500

Ac-L-Pen(Acm)-OH

500mg

23200

AAA2020.1000

Ac-L-Pen(Acm)-OH

1g

40400

AAA2025.0001

Aloc-L-Glu(tBu)-OH

1g

8200

AAA2025.0005

Aloc-L-Glu(tBu)-OH

5g

28200

AAA2030.0001

Aloc-L-Arg(Pbf)-OH

1g

13200

AAA2030.0005

Aloc-L-Arg(Pbf)-OH

5g

48200

AAA2040.0001

Aloc-L-Asp(tBu)-OH*DCHA

1g

8200

AAA2040.0005

Aloc-L-Asp(tBu)-OH*DCHA

5g

28200

AAA2050.0001

Aloc-L-Gln(Trt)-OH

1g

8200

AAA2050.0005

Aloc-L-Gln(Trt)-OH

5g

28200

AAA2060.0001

Aloc-L-His(Trt)-OH

1g

14800

AAA2060.0005

Aloc-L-His(Trt)-OH

5g

54800

AAA2080.0001

Aloc-Ile-OH*DCHA

1g

8200

AAA2080.0005

Aloc-Ile-OH*DCHA

5g

28200

AAA2090.0001

Aloc-Pro-OH*DCHA

1g

6400

AAA2090.0005

Aloc-Pro-OH*DCHA

5g

21400

AAA2090.0025

Aloc-Pro-OH*DCHA

25g

81400

AAA2100.0001

Aloc-L-Ser(tBu)-OH*DCHA

1g

8200

AAA2100.0005

Aloc-L-Ser(tBu)-OH*DCHA

5g

28200

AAA2110.0001

Aloc-L-Thr(tBu)-OH*DCHA

1g

14800

AAA2110.0005

Aloc-L-Thr(tBu)-OH*DCHA

5g

54800

AAA2120.0001

Aloc-L-Thr-OH*DCHA

1g

18200

AAA2120.0005

Aloc-L-Thr-OH*DCHA

5g

68200

AAA2130.0001

Aloc-L-Thr-OMe

1g

18200

AAA2130.0005

Aloc-L-Thr-OMe

5g

68200

AAA2140.0250

Aloc-L-Thr-OtBu

250mg

8200

AAA2140.1000

Aloc-L-Thr-OtBu

1g

21400

AAA2150.0001

Aloc-L-Trp-OH

1g

8200

AAA2150.0005

Aloc-L-Trp-OH

5g

28200

AAA2160.0001

Aloc-L-Tyr(tBu)-OH*DCHA

1g

14800

AAA2160.0005

Aloc-L-Tyr(tBu)-OH*DCHA

5g

54800

AAA2170.0001

Aloc-L-Val-OH*DCHA

1g

8200

AAA2170.0005

Aloc-L-Val-OH*DCHA

5g

28200

AAA2180.0250

Aloc-D-Dap(Fmoc)-OH

250mg

3000

AAA2180.1000

Aloc-D-Dap(Fmoc)-OH

1g

6000

AAL1020.0010

5-Benzyloxyindole-3-carboxaldehyde, 98%

10g

3800

AAL1040.0010

5-Fluoroindole-3-carboxaldehyde, 99%

10g

6600

AAL1040.0025

5-Fluoroindole-3-carboxaldehyde, 99%

25g

13000

AAL1060.0025

5-Methylindole-3-carboxaldehyde, 99%

25g

17400

AAL1060.0100

5-Methylindole-3-carboxaldehyde, 99%

100g

42200

AAL1120.0010

7-Methylindole-3-carboxaldehyde, 99%

10g

5800

AAL1120.0025

7-Methylindole-3-carboxaldehyde, 99%

25g

11800

AAL1120.0100

7-Methylindole-3-carboxaldehyde, 99%

100g

36400

AAL1130.0000

Indole-3-carboxaldehyde

根据需求

询价

AAL1140.0010

Indole-4-carboxaldehyde

10g

4000

AAL1180.0001

Boc-NH-cis-2-formylcyclopentyl

1g

8600

 iris-biotech中国代理,iris-biotech上海代理,iris-biotech北京代理,iris-biotech广东代理,iris-biotech江苏代理iris-biotech湖北代理,iris-biotech天津代理,iris-biotech黑龙江代理,iris-biotech湖南代理iris-biotech内蒙古代理,iris-biotech吉林代理,iris-biotech福建代理,iris-biotech江苏代理,iris-biotech浙江代理,iris-biotech四川代理,iris-biotech代理,

LS-4000UVL药物光照老化试验箱

LS-4000UVL药物光照老化试验箱

加工定制 分类 其他

LS-4000UVL药物光照老化试验箱,250L
四层光源独立调节的工作室
大屏幕OLED显示
电容式触摸按键式操作
外置实时监控打印机

LS-4000UVL药物光照老化试验箱

产品特

  • 符合中国药典稳定性试验指导原则。
  • 符合ICH药物光稳定性试验指导原则
  • 250升容积,四层工作室,可独立控制。
  • 可见光0~7000Lx,紫外0~250μW。
  • 外置实时记录打印机。
  • 光源寿命超过两万小时
  • 配置机械锁,防止误操作。
  • 大屏幕OLED显示屏,电容式触摸屏操作。

产品用途

  • 药物及材料光照试
  • 化妆品材料光照试验
  • 其他领域光照试验

规格参数

  • 温度控制范围:2℃~室温
  • 照度控制范围:0~7000Lx
  • 工作室大小:500 x 400 x 160mm 4层
  • 紫外光能量:0~250uW 
  • 功率可达:230W
  • 工作电压:180~240VAC 50~60Hz
  • 长x宽x高:660 x 600 x 1400mm
  • 净重:78kg

LS-4000UVL药物光照老化试验箱

相关产品

型号

LS-3000

LS-3000UV

LS-4000

LS-4000UV

LS-4000UVL
温度控制范围 5℃—室温  5℃—室温  2℃—室温
照度控制范围 1000-5500Lx  1000-7000Lx  0-7000Lx
照度均匀度

优于±8%

(不包括边角区域)

 

优于±5%

(不包括边角区域)

 

优于±5%

(不包括边角区域)

工作室大小 365×340×160mm 365×340×160mm 500×400×160mm 4层
紫外光能量 50-150uw(仅LS-3000UV)  50-150uw(仅LS-4000UV)  0-250uw
功率可达 120W 150W 230W
工作电压 180-240V 50-50Hz  180-240V 50-50Hz  180-240V 50-50Hz
长×宽×高  430×480×510mm  430×480×510mm  660×600×1400mm
 净重  18kg  18kg  78kg

LS-4000UVL药物光照老化试验箱LS-4000UVL药物光照老化试验箱

QA-BIO LS-R-BPTX10说明书

 

上海金畔生物作为QA-BIO中国代理为广大科研工作者带来QA-BIO公司搞品质产品和服务

QA-Bio产品是用于制药领域的糖基化研究的首要工具, 到货快,价格低。

产品线:

碳水化合物分析用的酶
    聚糖标准品
    糖纯化
    Ludger Tag聚糖标记试剂盒
    糖生物学用HPLC色谱柱
    糖测序试剂盒

去糖基化试剂盒
    MS / MS数据分析工具

QA-BIO LS-R-BPTX10说明书

 

LudgerSep R BPT Solvent

 

LudgerSep R BPT溶剂

使用LS-R-BPTX10溶剂进行HPLC分析,使用我们的单糖分析UHPLC色谱柱,LudgerSep UR2 UHPLC色谱柱LS-UR2-2.1×50。

产品编号:LS-R-BPTX10

 

描述
在带有防漏盖的矩形HDPE瓶中加入50 mL x10 LS-BPT溶剂。

用法
用脱气HPLC级水稀释使用1瓶LS-R-BPTX10溶剂至450mL水。50mL的x10溶剂将产生500mL的BPT溶剂。在LudgerSepUR2色谱柱上运行约130个单糖色谱,500 mL溶剂就足够了。

储存将
未开瓶的瓶子储存在4˚C。与任何HPLC溶剂一样,我们建议您在使用前立即准备溶剂。注意稀释的溶剂不要暴露在过热或阳光下,因为它含有挥发性成分。制备的溶剂的稳定时间将根据您的实验室条件而变化。制备的溶剂的长期储存,即长于4天,可能导致溶剂中一些挥发性组分蒸发,导致单糖保留时间的变化。

 

 

 

部分产品价格

 

货号

品名

价格

E-AG01

Alpha-(1-3,6)-Galactosidase, E-AG01 

6545

E-ALD01

Sialic Acid Aldolase, E-ALD01

6545

E-AM01

Alpha-(1-2,3,6)-Mannosidase, E-AM01 

6545

E-AM02

Alpha-(1-6)-Core Mannosidase, E-AM02 

6545

E-BG02

Beta-(1-3,4,6)-Galactosidase, E-BG02

6545

E-BG07

Beta-(1-4)-Galactosidase, E-BG07 

6545

E-CMP01

CMP-Sialic Acid Synthetase, E-CMP01

6545

E-EF01

Endoglycosidase F1, E-EF01

6545

E-EF02

Endoglycosidase F2, E-EF02

6545

E-EF03

Endoglycosidase F3, E-EF03

6545

E-EH02

Endo H (Endoglycosidase H), E-EH02

6545

E-F006

Alpha-(1-6)-Fucosidase, E-F006 

6545

E-F134

Alpha-(1-3,4)-Fucosidase, E-F134 

6545

E-G001

O-Glycosidase, E-G001 

6545

E-GL01

Glucosaminidase, E-GL01 

6545

E-PBUF1

PNGase 5X Reaction Buffer, E-PBUF1

3145

E-PNG01

PNGase F – 0.3 Units 

6545

E-PNG01-20

PNGase F – 0.1 Units, E-PNG01-20 

2295

E-PNG05

PNGase F – 1 Unit (200 microlitre), E-PNG05  

19720

E-PNG09

PNGase F plus – high concentration, E-PNG09

24854

E-PNG5X

PNGase F plus – high concentration    10 microlitre, E-PNG5X

6545

E-RPNG01

PNGase F recombinant – 0.3 Units 

6545

E-RPNG01-20

PNGase F recombinant – 0.1 Units 

2295

E-S001

Sialidase Au- E-S001 

6545

E-S005

Sialidase Cp – Alpha-(2-3,6), E-S005 

6545

E-S007

Sialidase Sp Alpha-(2-3), E-S007 

6545

E-XBG01

Endo-Beta-Galactosidase, E-XBG01

6545

KE-DG01

Enzymatic CarboRelease Kit, KE-DG01

9282

KE-DGMX

Enzymatic DeGlycoMx Kit, KE-DGMX

5168

KE-EFX3

Endo F Multi-Kit -includes 20 µls each of Endo F1, Endo F2, and Endo F3, KE-EFX3

6545

KE-SIALIQ

Sialic Acid Quantation Kit, KE-SIALIQ

8041

KE-SQ01

CarboSeq N Kit, KE-SQ01

26877

 

 

 

 

上海金畔生物科技有限公司是实验试剂一站式采购服务商

1:强大的进口辐射能力,血清、抗体、耗材、大部分限制进口品等。

2:产品种类齐全,经营超过700多品牌,基本涵盖所有生物实验试剂耗材。

3:提供加急服务,货品一般1-2周到货。

4:富有竞争力的价格优势,绝大部分价格有优势。

5:多年积累良好的信誉,大部分客户提供货到付款服务。客户包括清华、北大、交大、复旦、中山等100多所高校,ROCHE,阿斯利康、国药、fisher等知药企。

6:我们还是Santa,Advanced Biotechnologies Inc,Athens Research & Technology,bangs,BBInternational,crystalchem,dianova,FD Neurotechnologies,Inc. FormuMax Scientific,Inc, Genebridege, Glycotope Biotechnology GmbH; iduron,Innovative Research of America, Ludger, neuroprobe,omicronbio, Polysciences,prospecbi, QA-BIO,quickzyme,RESEARCH DIETS,INC,sterlitech;sysy,TriLink BioTechnologies,Inc;worthington-biochem,zyagen等几十家国外公司代理。

7:我们还是invitrogen,qiagen,MiraiBioam,sigma;neb,roche,merck, rnd,BD, GE,pierce,BioLegend等知*批发,欢迎合作。

 

 

 

TRIeasy™ LS液体总RNA提取试剂(同TRIzol LS)|TRIeasy™ LS Total RNA Extraction Reagent

TRIeasy™ LS液体总RNA提取试剂(同TRIzol LS)|TRIeasy™ LS Total RNA Extraction Reagent

产品说明书

FAQ

COA

已发表文献

TRIeasyTM LS Total RNA Extraction Reagent 是一种适用于各种动植物、酵母、细菌等液体样本的总RNA抽提试剂,具有极强的裂解能力,可在短时间内裂解细胞和组织样本,并有效抑制样本中RNA的降解,保持RNA的完整性。样品在该试剂中能够充分裂解,之后加入氯仿离心分层,形成上清层、中间层和有机层,RNA分布在上层水相中,收集上清层后,经异丙醇沉淀便可得到总RNA。提取的总RNA纯度高,基本不含蛋白质及基因组DNA,可直接用于Northern、点杂交、mRNA纯化、体外翻译、RT-PCR、poly(A)+选择、RNA酶保护分析以及构建cDNA文库等多种分子生物学实验。

本品操作简单快速,所有操作可在一小时内完成。对少量的组织(50-100 mg)和细胞(5×106)以及大量的组织(≥1 g)和细胞(>107)均有较好的裂解效果。

运输和保存方法
冰袋运输。4℃避光保存,有效期一年。

相关产品

产品名称

货号

规格

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141JP60 

100 T

Hifair® qPCR SYBR® Green Master Mix (No Rox )

11201JP08

5 mL

Hifair® qPCR SYBR® Green Master Mix (Low Rox Plus) 

11202JP08

5 mL

Hifair® qPCR SYBR® Green Master Mix (High Rox Plus) 

11203JP08

5 mL

HB210713

Q:RNA 降解?

A:(1) 组织样本保存不当。RNA 提取时要选新鲜组织或细胞样本,若为冻存样本,尽量避免反复冻融。样品离开活体或原来的生长环境后,样品中的内源RNase 开始降解 RNA,降解速度与内源 RNase 的含量及温度有关;(2) 投入样本较多,导致裂解不充分。试剂不能有效抑制样品中所有的 RNase;(3) RNA 保存时间过久,发生降解。对提取的RNA 进行纯度和完整度检测,分管在-80℃长期保存或在-20℃短期保存,尽快使用,避免反复冻融。

Q:是否有提 RNA 的层析柱?

A:没有。

Q:提取的 RNA 有基因组 DNA 污染?

A:(1) 向裂解液中加入氯仿后,需要在低温下(2-8℃)高速离心。离心后,RNA 被抽提到上层的水相中,中、下层是有机相,含有氯仿,DNA 即存在于中层。氯仿在常温下会与水以一定比例互溶,因此,常温离心会导致上层水相中也有少量基因组DNA 的污染。吸取上层液体时, 应非常小心,避免吸到中间层和下层;(2) RNA 样品中的少量基因组 DNA 残留,也可以通过后续逆转录反应前的基因组去除步骤进行去除。

Q:加入异丙醇离心后无沉淀?

A:RNA 含量可能较低。建议加入异丙醇后在 4℃或-20℃放置 10-30 min 后再离心。若依然看不见沉淀,在后面弃上清的操作时,采用吸取而不是倾倒的方法,以免沉淀丢失。

[1] Zhang D, Liu Y, Zhu Y, et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol. 2022;24(5):766-782. doi:10.1038/s41556-022-00894-z(IF:28.824)
[2] Tian S, Zhang B, He Y, et al. CRISPR-iPAS: a novel dCAS13-based method for alternative polyadenylation interference. Nucleic Acids Res. 2022;50(5):e26. doi:10.1093/nar/gkac108(IF:16.971)
[3] Ni XC, Wang HF, Cai YY, et al. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol. 2022;54:102363. doi:10.1016/j.redox.2022.102363(IF:11.799)
[4] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[5] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[6] Qin Q, Shou J, Li M, et al. Stk24 protects against obesity-associated metabolic disorders by disrupting the NLRP3 inflammasome. Cell Rep. 2021;35(8):109161. doi:10.1016/j.celrep.2021.109161(IF:9.423)
[7] Mao S, Wang B, Yue L, Xia W. Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym. 2021;262:117972. doi:10.1016/j.carbpol.2021.117972(IF:9.381)
[8] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[9] Chen D, Li J, Huang Y, et al. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation. 2022;19(1):112. Published 2022 May 16. doi:10.1186/s12974-022-02471-5(IF:8.322)
[10] Wang D, Wu Z, Zhao C, et al. KP-10/Gpr54 attenuates rheumatic arthritis through inactivating NF-κB and MAPK signaling in macrophages. Pharmacol Res. 2021;171:105496. doi:10.1016/j.phrs.2021.105496(IF:7.658)
[11] Liu QN, Tang YY, Zhou MJ, et al. Differentially expressed genes involved in immune pathways from yellowhead catfish (Tachysurus fulvidraco) after poly (I:C) challenge. Int J Biol Macromol. 2021;183:340-345. doi:10.1016/j.ijbiomac.2021.04.167(IF:6.953)
[12] Zhang X, Liu Y, Zuo Q, et al. 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair. Int J Bioprint. 2021;7(4):401. Published 2021 Sep 14. doi:10.18063/ijb.v7i4.401(IF:6.638)
[13] Wu Q, Chen Y, Wang Z, et al. Mangiferin Inhibits PDGF-BB-Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells and Alleviates Neointimal Formation in Mice through the AMPK/Drp1 Axis. Oxid Med Cell Longev. 2021;2021:3119953. Published 2021 Dec 3. doi:10.1155/2021/3119953(IF:6.543)
[14] Zeng Z, Lei S, He Z, Chen T, Jiang J. YEATS2 is a target of HIF1α and promotes pancreatic cancer cell proliferation and migration. J Cell Physiol. 2021;236(3):2087-2098. doi:10.1002/jcp.29995(IF:6.384)
[15] Huang W, Zheng X, Yang M, Li R, Song Y. PER2-mediated ameloblast differentiation via PPARγ/AKT1/β-catenin axis. Int J Oral Sci. 2021;13(1):16. Published 2021 May 19. doi:10.1038/s41368-021-00123-7(IF:6.344)
[16] Zhong X, Li J, Wu X, et al. Identification of N6-Methyladenosine-Related LncRNAs for Predicting Overall Survival and Clustering of a Potentially Novel Molecular Subtype of Breast Cancer. Front Oncol. 2021;11:742944. Published 2021 Oct 15. doi:10.3389/fonc.2021.742944(IF:6.244)
[17] Qian Z, Liu C, Li H, et al. Osteocalcin Alleviates Lipopolysaccharide-Induced Acute Inflammation via Activation of GPR37 in Macrophages. Biomedicines. 2022;10(5):1006. Published 2022 Apr 27. doi:10.3390/biomedicines10051006(IF:6.081)
[18] Miao Y, Geng Y, Yang L, Zheng Y, Dai Y, Wei Z. Morin inhibits the transformation of fibroblasts towards myofibroblasts through regulating "PPAR-γ-glutaminolysis-DEPTOR" pathway in pulmonary fibrosis. J Nutr Biochem. 2022;101:108923. doi:10.1016/j.jnutbio.2021.108923(IF:6.048)
[19] Zhao J, Li R, Li Y, Chen J, Feng F, Sun C. Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-Mediated Type I Interferon Production. Int J Mol Sci. 2021;22(9):4668. Published 2021 Apr 28. doi:10.3390/ijms22094668(IF:5.924)
[20] Zhang X, Liu Y, Luo C, et al. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;118:111388. doi:10.1016/j.msec.2020.111388(IF:5.880)
[21] Shao Q, Wu F, Liu T, et al. JieZe-1 Alleviates HSV-2 Infection-Induced Genital Herpes in Balb/c Mice by Inhibiting Cell Apoptosis via Inducing Autophagy. Front Pharmacol. 2021;12:775521. Published 2021 Nov 3. doi:10.3389/fphar.2021.775521(IF:5.811)
[22] Jin M, Cao B, Lin C, et al. Tianma Gouteng Decoction Exerts Pregnancy-Protective Effects Against Preeclampsia via Regulation of Oxidative Stress and NO Signaling. Front Pharmacol. 2022;13:849074. Published 2022 Mar 21. doi:10.3389/fphar.2022.849074(IF:5.811)
[23] Wu F, Zhao Y, Shao Q, et al. Ameliorative Effects of Osthole on Experimental Renal Fibrosis in vivo and in vitro by Inhibiting IL-11/ERK1/2 Signaling. Front Pharmacol. 2021;12:646331. Published 2021 May 13. doi:10.3389/fphar.2021.646331(IF:5.811)
[24] Xia C, Qin X, Zhou L, et al. Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction. Front Endocrinol (Lausanne). 2021;12:762826. Published 2021 Nov 3. doi:10.3389/fendo.2021.762826(IF:5.555)
[25] Cheng X, He D, Liao C, et al. IL-1/IL-1R signaling induced by all-trans-retinal contributes to complement alternative pathway activation in retinal pigment epithelium. J Cell Physiol. 2021;236(5):3660-3674. doi:10.1002/jcp.30103(IF:5.546)
[26] Zhang X, Zou G, Li X, et al. An isoflavone derivative potently inhibits the angiogenesis and progression of triple-negative breast cancer by targeting the MTA2/SerRS/VEGFA pathway. Cancer Biol Med. 2020;17(3):693-706. doi:10.20892/j.issn.2095-3941.2020.0010(IF:5.432)
[27] Wu F, Shao Q, Xia Q, et al. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. Phytomedicine. 2021;83:153487. doi:10.1016/j.phymed.2021.153487(IF:5.340)
[28] Sun Q, Niu Q, Guo Y, et al. Regulation on Citrate Influx and Metabolism through Inhibiting SLC13A5 and ACLY: A Novel Mechanism Mediating the Therapeutic Effects of Curcumin on NAFLD. J Agric Food Chem. 2021;69(31):8714-8725. doi:10.1021/acs.jafc.1c03105(IF:5.279)
[29] Li N, Chen J, Geng C, et al. Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI. Cell Death Discov. 2022;8(1):90. Published 2022 Feb 28. doi:10.1038/s41420-022-00894-w(IF:5.241)
[30] Hua L, Qian H, Lei T, Zhang Y, Lei P, Hu Y. 3D-Printed Porous Tantalum Coated with Antitubercular Drugs Achieving Antibacterial Properties and Good Biocompatibility. Macromol Biosci. 2022;22(1):e2100338. doi:10.1002/mabi.202100338(IF:4.979)
[31] Chen X, Yao T, Cai J, et al. A novel cis-regulatory variant modulating TIE1 expression associated with attention deficit hyperactivity disorder in Han Chinese children. J Affect Disord. 2022;300:179-188. doi:10.1016/j.jad.2021.12.066(IF:4.839)
[32] Gong W, Zhang S, Zong Y, et al. Involvement of the microglial NLRP3 inflammasome in the anti-inflammatory effect of the antidepressant clomipramine. J Affect Disord. 2019;254:15-25. doi:10.1016/j.jad.2019.05.009(IF:4.839)
[33] Fang H, Zhang J, Ao M, et al. Synthesis and discovery of ω-3 polyunsaturated fatty acid- alkanolamine (PUFA-AA) derivatives as anti-inflammatory agents targeting Nur77. Bioorg Chem. 2020;105:104456. doi:10.1016/j.bioorg.2020.104456(IF:4.831)
[34] Zhou J, Dong ZN, Qiu BQ, et al. CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Aging (Albany NY). 2020;12(14):14080-14091. doi:10.18632/aging.103388(IF:4.831)
[35] Zhang P, Tian L, Bao J, et al. Isotretinoin Impairs the Secretory Function of Meibomian Gland Via the PPARγ Signaling Pathway. Invest Ophthalmol Vis Sci. 2022;63(3):29. doi:10.1167/iovs.63.3.29(IF:4.799)
[36] Yin X, Zhuang X, Liao M, et al. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas challenged by Vibrio alginolyticus reveals lipid metabolic disturbance. Fish Shellfish Immunol. 2022;123:238-247. doi:10.1016/j.fsi.2022.03.004(IF:4.581)
[37] Mao G, Zhou B, Xu W, et al. Hsa_circ_0040809 regulates colorectal cancer development by upregulating methyltransferase DNMT1 via targeting miR-515-5p. J Gene Med. 2021;23(12):e3388. doi:10.1002/jgm.3388(IF:4.565)
[38] Wang X, Song Z, Meng Q, Xia S, Wang C, Huang X. Circular RNA circ_0006089 regulates the IGF1R expression by targeting miR-143-3p to promote gastric cancer proliferation, migration and invasion [published online ahead of print, 2022 May 11]. Cell Cycle. 2022;1-14. doi:10.1080/15384101.2022.2075197(IF:4.534)
[39] Li J, Chen YH, Li LZ, et al. Omics and Transgenic Analyses Reveal that Salvianolic Acid B Exhibits its Anti-Inflammatory Effects through Inhibiting the Mincle-Syk-Related Pathway in Macrophages. J Proteome Res. 2021;20(7):3734-3748. doi:10.1021/acs.jproteome.1c00325(IF:4.466)
[40] Lin L, Li H, Shi D, et al. Depletion of C12orf48 inhibits gastric cancer growth and metastasis via up-regulating Poly r(C)-Binding Protein (PCBP) 1. BMC Cancer. 2022;22(1):123. Published 2022 Jan 31. doi:10.1186/s12885-022-09220-0(IF:4.430)
[41] Nie Y, Zhu X, Bu N, et al. Circ_0064288 acts as an oncogene of hepatocellular carcinoma cells by inhibiting miR-335-5p expression and promoting ROCK1 expression. BMC Cancer. 2022;22(1):265. Published 2022 Mar 14. doi:10.1186/s12885-022-09323-8(IF:4.430)
[42] Xu Z, Zhou Y, Nong Q, et al. LKB1 Differently Regulates Adipogenesis in Intramuscular and Subcutaneous Adipocytes through Metabolic and Cytokine-Related Signaling Pathways. Cells. 2020;9(12):2599. Published 2020 Dec 4. doi:10.3390/cells9122599(IF:4.366)
[43] Zhao Y, Luan H, Gao H, Wu X, Zhang Y, Li R. Gegen Qinlian decoction maintains colonic mucosal homeostasis in acute/chronic ulcerative colitis via bidirectionally modulating dysregulated Notch signaling. Phytomedicine. 2020;68:153182. doi:10.1016/j.phymed.2020.153182(IF:4.268)
[44] Ge Y, Liu H, Zhang Y, et al. Inhibition of DCLK1 kinase reverses epithelial-mesenchymal transition and restores T-cell activity in pancreatic ductal adenocarcinoma [published online ahead of print, 2022 Jan 5]. Transl Oncol. 2022;17:101317. doi:10.1016/j.tranon.2021.101317(IF:4.243)
[45] Cao Y, Liu M, Wu S, et al. Kupffer cells play a crucial role in monocrotaline-induced liver injury by producing TNF-α. Toxicology. 2022;468:153101. doi:10.1016/j.tox.2022.153101(IF:4.221)
[46] Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des Devel Ther. 2021;15:3207-3221. Published 2021 Jul 21. doi:10.2147/DDDT.S319260(IF:4.162)
[47] Ye Z, Zeng Z, Shen Y, et al. ODC1 promotes proliferation and mobility via the AKT/GSK3β/β-catenin pathway and modulation of acidotic microenvironment in human hepatocellular carcinoma. Onco Targets Ther. 2019;12:4081-4092. Published 2019 May 27. doi:10.2147/OTT.S198341(IF:4.147)
[48] Zheng P, Li L. FANCI Cooperates with IMPDH2 to Promote Lung Adenocarcinoma Tumor Growth via a MEK/ERK/MMPs Pathway. Onco Targets Ther. 2020;13:451-463. Published 2020 Jan 15. doi:10.2147/OTT.S230333(IF:4.147)
[49] Chen T, Lei S, Zeng Z, et al. MicroRNA‑137 suppresses the proliferation, migration and invasion of cholangiocarcinoma cells by targeting WNT2B. Int J Mol Med. 2020;45(3):886-896. doi:10.3892/ijmm.2020.4474(IF:4.101)
[50] Bu XL, Weng JY, He BB, Xu MJ, Xu J. A Novel AdpA Homologue Negatively Regulates Morphological Differentiation in Streptomyces xiamenensis 318. Appl Environ Microbiol. 2019;85(7):e03107-18. Published 2019 Mar 22. doi:10.1128/AEM.03107-18(IF:4.077)
[51] Pan C, Liu Q, Wu X. HIF1α/miR-520a-3p/AKT1/mTOR Feedback Promotes The Proliferation And Glycolysis Of Gastric Cancer Cells. Cancer Manag Res. 2019;11:10145-10156. Published 2019 Dec 2. doi:10.2147/CMAR.S223473(IF:3.989)
[52] Zhang M, Li Q, Zhou C, Zhao Y, Li R, Zhang Y. Demethyleneberberine attenuates concanavalin A-induced autoimmune hepatitis in mice through inhibition of NF-κB and MAPK signaling. Int Immunopharmacol. 2020;80:106137. doi:10.1016/j.intimp.2019.106137(IF:3.943)
[53] Yan X, Yang C, Hu W, et al. Knockdown of KRT17 decreases osteosarcoma cell proliferation and the Warburg effect via the AKT/mTOR/HIF1α pathway. Oncol Rep. 2020;44(1):103-114. doi:10.3892/or.2020.7611(IF:3.906)
[54] Guo X, Cao X, Fang X, Guo A, Li E. Involvement of phase II enzymes and efflux transporters in the metabolism and absorption of naringin, hesperidin and their aglycones in rats. Int J Food Sci Nutr. 2022;73(4):480-490. doi:10.1080/09637486.2021.2012562(IF:3.833)
[55] Mao MG, Xu J, Liu RT, Ye L, Wang R, Jiang JL. Fas/FasL of pacific cod mediated apoptosis. Dev Comp Immunol. 2021;119:104022. doi:10.1016/j.dci.2021.104022(IF:3.636)
[56] Chen H, Pan R, Li H, et al. CHRDL2 promotes osteosarcoma cell proliferation and metastasis through the BMP-9/PI3K/AKT pathway. Cell Biol Int. 2021;45(3):623-632. doi:10.1002/cbin.11507(IF:3.612)
[57] Ruan W, Yang Y, Yu Q, et al. FUT11 is a target gene of HIF1α that promotes the progression of hepatocellular carcinoma. Cell Biol Int. 2021;45(11):2275-2286. doi:10.1002/cbin.11675(IF:3.612)
[58] Gu D, Zhou X, Ma Y, et al. Expression of a Brassica napus metal transport protein (BnMTP3) in Arabidopsis thaliana confers tolerance to Zn and Mn. Plant Sci. 2021;304:110754. doi:10.1016/j.plantsci.2020.110754(IF:3.591)
[59] Wang S, Fan X, Zhu J, et al. The differentiation of colorectal cancer is closely relevant to m6A modification. Biochem Biophys Res Commun. 2021;546:65-73. doi:10.1016/j.bbrc.2021.02.001(IF:3.575)
[60] Zeng X, Xia S, Yan X, Hu C, An K, Luo L. High expression of aryl hydrocarbon receptor (AhR) plays an important role in the formation of fibrous epulis [published online ahead of print, 2021 Jun 17]. Oral Dis. 2021;10.1111/odi.13940. doi:10.1111/odi.13940(IF:3.511)
[61] Miao X, Xiang Y, Mao W, Chen Y, Li Q, Fan B. TRIM27 promotes IL-6-induced proliferation and inflammation factor production by activating STAT3 signaling in HaCaT cells. Am J Physiol Cell Physiol. 2020;318(2):C272-C281. doi:10.1152/ajpcell.00314.2019(IF:3.485)
[62] Li L, Huang K, Lu Z, et al. Bioinformatics analysis of LINC01554 and its co‑expressed genes in hepatocellular carcinoma. Oncol Rep. 2020;44(5):2185-2197. doi:10.3892/or.2020.7779(IF:3.417)
[63] Ren X, Li A, Ying E, Fang J, Li M, Yu J. Upregulation of ubiquitin-conjugating enzyme E2T (UBE2T) predicts poor prognosis and promotes hepatocellular carcinoma progression. Bioengineered. 2021;12(1):1530-1542. doi:10.1080/21655979.2021.1918507(IF:3.269)
[64] Lu N, Ren L. TTK (threonine tyrosine kinase) regulates the malignant behaviors of cancer cells and is regulated by microRNA-582-5p in ovarian cancer. Bioengineered. 2021;12(1):5759-5768. doi:10.1080/21655979.2021.1968778(IF:3.269)
[65] Zhang Y, Zeng S, Wang T. Circular RNA hsa_circ_0002360 promotes non-small cell lung cancer progression through upregulating matrix metalloproteinase 16 and sponging multiple micorRNAs. Bioengineered. 2021;12(2):12767-12777. doi:10.1080/21655979.2021.1999370(IF:3.269)
[66] Li Y, Wu M, Xu S, Huang H, Yan L, Gu Y. Colorectal cancer stem cell-derived exosomal long intergenic noncoding RNA 01315 (LINC01315) promotes proliferation, migration, and stemness of colorectal cancer cells. Bioengineered. 2022;13(4):10827-10842. doi:10.1080/21655979.2022.2065800(IF:3.269)
[67] Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 (KIF23). Bioengineered. 2022;13(1):1103-1114. doi:10.1080/21655979.2021.2017629(IF:3.269)
[68] Zhao X, Cui D, Yan F, Yang L, Huang B. Circ_0007919 exerts an anti-tumor role in colorectal cancer through targeting miR-942-5p/TET1 axis. Pathol Res Pract. 2022;229:153704. doi:10.1016/j.prp.2021.153704(IF:3.250)
[69] Liang X, Hu M, Yuan W, et al. MicroRNA-4487 regulates vascular smooth muscle cell proliferation, migration and apoptosis by targeting RAS p21 protein activator 1. Pathol Res Pract. 2022;234:153903. doi:10.1016/j.prp.2022.153903(IF:3.250)
[70] Zhang S, Zong Y, Ren Z, et al. Regulation of indoleamine 2, 3-dioxygenase in hippocampal microglia by NLRP3 inflammasome in lipopolysaccharide-induced depressive-like behaviors. Eur J Neurosci. 2020;52(11):4586-4601. doi:10.1111/ejn.15016(IF:3.115)
[71] Hei X, Xie M, Xu J, Li J, Liu T. β-Asarone Exerts Antioxidative Effects on H2O2-Stimulated PC12 Cells by Activating Nrf2/HO-1 Pathway. Neurochem Res. 2020;45(8):1953-1961. doi:10.1007/s11064-020-03060-9(IF:3.038)
[72] Zhu H, Chen D, Xie X, Li Y, Fan T. Melittin inhibits lung metastasis of human osteosarcoma: Evidence of wnt/β-catenin signaling pathway participation. Toxicon. 2021;198:132-142. doi:10.1016/j.toxicon.2021.04.024(IF:3.033)
[73] Ren C, Pan R, Hou L, et al. Suppression of CLEC3A inhibits osteosarcoma cell proliferation and promotes their chemosensitivity through the AKT1/mTOR/HIF1α signaling pathway. Mol Med Rep. 2020;21(4):1739-1748. doi:10.3892/mmr.2020.10986(IF:2.952)
[74] Ma P, Hu Z, Li L, Li D, Tang R. Dietary selenium promotes the growth performance through growth hormone-insulin-like growth factor and hypothalamic-pituitary-thyroid axes in grass carp (Ctenopharyngodon idella). Fish Physiol Biochem. 2021;47(4):1313-1327. doi:10.1007/s10695-021-00974-1(IF:2.794)
[75] Zhao F, Wang X, Li Y, Chen X, Geng Z, Zhang C. Effects of Dietary Supplementation with Epigallocatechin Gallate on Meat Quality and Muscle Antioxidant Capacity of Broilers Subjected to Acute Heat Stress. Animals (Basel). 2021;11(11):3296. Published 2021 Nov 18. doi:10.3390/ani11113296(IF:2.752)
[76] Yuan DD, Jia CD, Yan MY, Wang J. Circular RNA hsa_circ_0000730 restrains cell proliferation, migration, and invasion in cervical cancer through miR-942-5p/PTEN axis. Kaohsiung J Med Sci. 2021;37(11):964-972. doi:10.1002/kjm2.12443(IF:2.744)
[77] Zhou W, Huang K, Zhang Q, et al. LINC00844 promotes proliferation and migration of hepatocellular carcinoma by regulating NDRG1 expression. PeerJ. 2020;8:e8394. Published 2020 Jan 28. doi:10.7717/peerj.8394(IF:2.379)
[78] Chen S, Hong K, Zhou L, et al. Hsa_circRNA_0017620 regulated cell progression of non-small-cell lung cancer via miR-520a-5p/KRT5 axis. J Clin Lab Anal. 2022;36(4):e24347. doi:10.1002/jcla.24347(IF:2.352)
[79] Jiang B, Wu RM, Li HD, et al. Yixin Ningshen Tablet Alleviates Comorbidity of Myocardial Infarction and Depression by Enhancing Myocardial Energy Metabolism and Increasing Availability of Monoamine Neurotransmitter. Chin J Integr Med. 2022;28(7):586-593. doi:10.1007/s11655-022-3570-3(IF:1.978)
[80] Lin X, Liu S, Xie G, Chen J, Li P, Chen J. Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis. J Microbiol Biotechnol. 2016;26(11):1908-1917. doi:10.4014/jmb.1604.04019(IF:1.685)
[81] Liao Y, Zhao T, Li LY, Wang FQ. Elevated Sad1 and UNC84 Domain Containing 2 (SUN2) level inhibits cell growth and aerobic glycolysis in oral cancer through reducing the expressions of glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). J Dent Sci. 2021;16(1):460-466. doi:10.1016/j.jds.2020.08.007(IF:1.034)
[82] Li L, Peng W, Tian X. Protective Effects and Mechanisms of MicroRNA-182 on Oxidative Stress in RHiN. Open Life Sci. 2019;14:400-409. Published 2019 Aug 28. doi:10.1515/biol-2019-0045(IF:0.504)

TRIeasyTM LS Total RNA Extraction Reagent 是一种适用于各种动植物、酵母、细菌等液体样本的总RNA抽提试剂,具有极强的裂解能力,可在短时间内裂解细胞和组织样本,并有效抑制样本中RNA的降解,保持RNA的完整性。样品在该试剂中能够充分裂解,之后加入氯仿离心分层,形成上清层、中间层和有机层,RNA分布在上层水相中,收集上清层后,经异丙醇沉淀便可得到总RNA。提取的总RNA纯度高,基本不含蛋白质及基因组DNA,可直接用于Northern、点杂交、mRNA纯化、体外翻译、RT-PCR、poly(A)+选择、RNA酶保护分析以及构建cDNA文库等多种分子生物学实验。

本品操作简单快速,所有操作可在一小时内完成。对少量的组织(50-100 mg)和细胞(5×106)以及大量的组织(≥1 g)和细胞(>107)均有较好的裂解效果。

运输和保存方法
冰袋运输。4℃避光保存,有效期一年。

相关产品

产品名称

货号

规格

Hifair® Ⅲ 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141JP60 

100 T

Hifair® qPCR SYBR® Green Master Mix (No Rox )

11201JP08

5 mL

Hifair® qPCR SYBR® Green Master Mix (Low Rox Plus) 

11202JP08

5 mL

Hifair® qPCR SYBR® Green Master Mix (High Rox Plus) 

11203JP08

5 mL

HB210713

Q:RNA 降解?

A:(1) 组织样本保存不当。RNA 提取时要选新鲜组织或细胞样本,若为冻存样本,尽量避免反复冻融。样品离开活体或原来的生长环境后,样品中的内源RNase 开始降解 RNA,降解速度与内源 RNase 的含量及温度有关;(2) 投入样本较多,导致裂解不充分。试剂不能有效抑制样品中所有的 RNase;(3) RNA 保存时间过久,发生降解。对提取的RNA 进行纯度和完整度检测,分管在-80℃长期保存或在-20℃短期保存,尽快使用,避免反复冻融。

Q:是否有提 RNA 的层析柱?

A:没有。

Q:提取的 RNA 有基因组 DNA 污染?

A:(1) 向裂解液中加入氯仿后,需要在低温下(2-8℃)高速离心。离心后,RNA 被抽提到上层的水相中,中、下层是有机相,含有氯仿,DNA 即存在于中层。氯仿在常温下会与水以一定比例互溶,因此,常温离心会导致上层水相中也有少量基因组DNA 的污染。吸取上层液体时, 应非常小心,避免吸到中间层和下层;(2) RNA 样品中的少量基因组 DNA 残留,也可以通过后续逆转录反应前的基因组去除步骤进行去除。

Q:加入异丙醇离心后无沉淀?

A:RNA 含量可能较低。建议加入异丙醇后在 4℃或-20℃放置 10-30 min 后再离心。若依然看不见沉淀,在后面弃上清的操作时,采用吸取而不是倾倒的方法,以免沉淀丢失。

[1] Zhang D, Liu Y, Zhu Y, et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol. 2022;24(5):766-782. doi:10.1038/s41556-022-00894-z(IF:28.824)
[2] Tian S, Zhang B, He Y, et al. CRISPR-iPAS: a novel dCAS13-based method for alternative polyadenylation interference. Nucleic Acids Res. 2022;50(5):e26. doi:10.1093/nar/gkac108(IF:16.971)
[3] Ni XC, Wang HF, Cai YY, et al. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol. 2022;54:102363. doi:10.1016/j.redox.2022.102363(IF:11.799)
[4] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0(IF:11.614)
[5] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684(IF:11.492)
[6] Qin Q, Shou J, Li M, et al. Stk24 protects against obesity-associated metabolic disorders by disrupting the NLRP3 inflammasome. Cell Rep. 2021;35(8):109161. doi:10.1016/j.celrep.2021.109161(IF:9.423)
[7] Mao S, Wang B, Yue L, Xia W. Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym. 2021;262:117972. doi:10.1016/j.carbpol.2021.117972(IF:9.381)
[8] Liu H, Xing R, Ou Z, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021;12(6):610. Published 2021 Jun 12. doi:10.1038/s41419-021-03897-0(IF:8.469)
[9] Chen D, Li J, Huang Y, et al. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation. 2022;19(1):112. Published 2022 May 16. doi:10.1186/s12974-022-02471-5(IF:8.322)
[10] Wang D, Wu Z, Zhao C, et al. KP-10/Gpr54 attenuates rheumatic arthritis through inactivating NF-κB and MAPK signaling in macrophages. Pharmacol Res. 2021;171:105496. doi:10.1016/j.phrs.2021.105496(IF:7.658)
[11] Liu QN, Tang YY, Zhou MJ, et al. Differentially expressed genes involved in immune pathways from yellowhead catfish (Tachysurus fulvidraco) after poly (I:C) challenge. Int J Biol Macromol. 2021;183:340-345. doi:10.1016/j.ijbiomac.2021.04.167(IF:6.953)
[12] Zhang X, Liu Y, Zuo Q, et al. 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair. Int J Bioprint. 2021;7(4):401. Published 2021 Sep 14. doi:10.18063/ijb.v7i4.401(IF:6.638)
[13] Wu Q, Chen Y, Wang Z, et al. Mangiferin Inhibits PDGF-BB-Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells and Alleviates Neointimal Formation in Mice through the AMPK/Drp1 Axis. Oxid Med Cell Longev. 2021;2021:3119953. Published 2021 Dec 3. doi:10.1155/2021/3119953(IF:6.543)
[14] Zeng Z, Lei S, He Z, Chen T, Jiang J. YEATS2 is a target of HIF1α and promotes pancreatic cancer cell proliferation and migration. J Cell Physiol. 2021;236(3):2087-2098. doi:10.1002/jcp.29995(IF:6.384)
[15] Huang W, Zheng X, Yang M, Li R, Song Y. PER2-mediated ameloblast differentiation via PPARγ/AKT1/β-catenin axis. Int J Oral Sci. 2021;13(1):16. Published 2021 May 19. doi:10.1038/s41368-021-00123-7(IF:6.344)
[16] Zhong X, Li J, Wu X, et al. Identification of N6-Methyladenosine-Related LncRNAs for Predicting Overall Survival and Clustering of a Potentially Novel Molecular Subtype of Breast Cancer. Front Oncol. 2021;11:742944. Published 2021 Oct 15. doi:10.3389/fonc.2021.742944(IF:6.244)
[17] Qian Z, Liu C, Li H, et al. Osteocalcin Alleviates Lipopolysaccharide-Induced Acute Inflammation via Activation of GPR37 in Macrophages. Biomedicines. 2022;10(5):1006. Published 2022 Apr 27. doi:10.3390/biomedicines10051006(IF:6.081)
[18] Miao Y, Geng Y, Yang L, Zheng Y, Dai Y, Wei Z. Morin inhibits the transformation of fibroblasts towards myofibroblasts through regulating "PPAR-γ-glutaminolysis-DEPTOR" pathway in pulmonary fibrosis. J Nutr Biochem. 2022;101:108923. doi:10.1016/j.jnutbio.2021.108923(IF:6.048)
[19] Zhao J, Li R, Li Y, Chen J, Feng F, Sun C. Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-Mediated Type I Interferon Production. Int J Mol Sci. 2021;22(9):4668. Published 2021 Apr 28. doi:10.3390/ijms22094668(IF:5.924)
[20] Zhang X, Liu Y, Luo C, et al. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;118:111388. doi:10.1016/j.msec.2020.111388(IF:5.880)
[21] Shao Q, Wu F, Liu T, et al. JieZe-1 Alleviates HSV-2 Infection-Induced Genital Herpes in Balb/c Mice by Inhibiting Cell Apoptosis via Inducing Autophagy. Front Pharmacol. 2021;12:775521. Published 2021 Nov 3. doi:10.3389/fphar.2021.775521(IF:5.811)
[22] Jin M, Cao B, Lin C, et al. Tianma Gouteng Decoction Exerts Pregnancy-Protective Effects Against Preeclampsia via Regulation of Oxidative Stress and NO Signaling. Front Pharmacol. 2022;13:849074. Published 2022 Mar 21. doi:10.3389/fphar.2022.849074(IF:5.811)
[23] Wu F, Zhao Y, Shao Q, et al. Ameliorative Effects of Osthole on Experimental Renal Fibrosis in vivo and in vitro by Inhibiting IL-11/ERK1/2 Signaling. Front Pharmacol. 2021;12:646331. Published 2021 May 13. doi:10.3389/fphar.2021.646331(IF:5.811)
[24] Xia C, Qin X, Zhou L, et al. Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction. Front Endocrinol (Lausanne). 2021;12:762826. Published 2021 Nov 3. doi:10.3389/fendo.2021.762826(IF:5.555)
[25] Cheng X, He D, Liao C, et al. IL-1/IL-1R signaling induced by all-trans-retinal contributes to complement alternative pathway activation in retinal pigment epithelium. J Cell Physiol. 2021;236(5):3660-3674. doi:10.1002/jcp.30103(IF:5.546)
[26] Zhang X, Zou G, Li X, et al. An isoflavone derivative potently inhibits the angiogenesis and progression of triple-negative breast cancer by targeting the MTA2/SerRS/VEGFA pathway. Cancer Biol Med. 2020;17(3):693-706. doi:10.20892/j.issn.2095-3941.2020.0010(IF:5.432)
[27] Wu F, Shao Q, Xia Q, et al. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. Phytomedicine. 2021;83:153487. doi:10.1016/j.phymed.2021.153487(IF:5.340)
[28] Sun Q, Niu Q, Guo Y, et al. Regulation on Citrate Influx and Metabolism through Inhibiting SLC13A5 and ACLY: A Novel Mechanism Mediating the Therapeutic Effects of Curcumin on NAFLD. J Agric Food Chem. 2021;69(31):8714-8725. doi:10.1021/acs.jafc.1c03105(IF:5.279)
[29] Li N, Chen J, Geng C, et al. Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI. Cell Death Discov. 2022;8(1):90. Published 2022 Feb 28. doi:10.1038/s41420-022-00894-w(IF:5.241)
[30] Hua L, Qian H, Lei T, Zhang Y, Lei P, Hu Y. 3D-Printed Porous Tantalum Coated with Antitubercular Drugs Achieving Antibacterial Properties and Good Biocompatibility. Macromol Biosci. 2022;22(1):e2100338. doi:10.1002/mabi.202100338(IF:4.979)
[31] Chen X, Yao T, Cai J, et al. A novel cis-regulatory variant modulating TIE1 expression associated with attention deficit hyperactivity disorder in Han Chinese children. J Affect Disord. 2022;300:179-188. doi:10.1016/j.jad.2021.12.066(IF:4.839)
[32] Gong W, Zhang S, Zong Y, et al. Involvement of the microglial NLRP3 inflammasome in the anti-inflammatory effect of the antidepressant clomipramine. J Affect Disord. 2019;254:15-25. doi:10.1016/j.jad.2019.05.009(IF:4.839)
[33] Fang H, Zhang J, Ao M, et al. Synthesis and discovery of ω-3 polyunsaturated fatty acid- alkanolamine (PUFA-AA) derivatives as anti-inflammatory agents targeting Nur77. Bioorg Chem. 2020;105:104456. doi:10.1016/j.bioorg.2020.104456(IF:4.831)
[34] Zhou J, Dong ZN, Qiu BQ, et al. CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Aging (Albany NY). 2020;12(14):14080-14091. doi:10.18632/aging.103388(IF:4.831)
[35] Zhang P, Tian L, Bao J, et al. Isotretinoin Impairs the Secretory Function of Meibomian Gland Via the PPARγ Signaling Pathway. Invest Ophthalmol Vis Sci. 2022;63(3):29. doi:10.1167/iovs.63.3.29(IF:4.799)
[36] Yin X, Zhuang X, Liao M, et al. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas challenged by Vibrio alginolyticus reveals lipid metabolic disturbance. Fish Shellfish Immunol. 2022;123:238-247. doi:10.1016/j.fsi.2022.03.004(IF:4.581)
[37] Mao G, Zhou B, Xu W, et al. Hsa_circ_0040809 regulates colorectal cancer development by upregulating methyltransferase DNMT1 via targeting miR-515-5p. J Gene Med. 2021;23(12):e3388. doi:10.1002/jgm.3388(IF:4.565)
[38] Wang X, Song Z, Meng Q, Xia S, Wang C, Huang X. Circular RNA circ_0006089 regulates the IGF1R expression by targeting miR-143-3p to promote gastric cancer proliferation, migration and invasion [published online ahead of print, 2022 May 11]. Cell Cycle. 2022;1-14. doi:10.1080/15384101.2022.2075197(IF:4.534)
[39] Li J, Chen YH, Li LZ, et al. Omics and Transgenic Analyses Reveal that Salvianolic Acid B Exhibits its Anti-Inflammatory Effects through Inhibiting the Mincle-Syk-Related Pathway in Macrophages. J Proteome Res. 2021;20(7):3734-3748. doi:10.1021/acs.jproteome.1c00325(IF:4.466)
[40] Lin L, Li H, Shi D, et al. Depletion of C12orf48 inhibits gastric cancer growth and metastasis via up-regulating Poly r(C)-Binding Protein (PCBP) 1. BMC Cancer. 2022;22(1):123. Published 2022 Jan 31. doi:10.1186/s12885-022-09220-0(IF:4.430)
[41] Nie Y, Zhu X, Bu N, et al. Circ_0064288 acts as an oncogene of hepatocellular carcinoma cells by inhibiting miR-335-5p expression and promoting ROCK1 expression. BMC Cancer. 2022;22(1):265. Published 2022 Mar 14. doi:10.1186/s12885-022-09323-8(IF:4.430)
[42] Xu Z, Zhou Y, Nong Q, et al. LKB1 Differently Regulates Adipogenesis in Intramuscular and Subcutaneous Adipocytes through Metabolic and Cytokine-Related Signaling Pathways. Cells. 2020;9(12):2599. Published 2020 Dec 4. doi:10.3390/cells9122599(IF:4.366)
[43] Zhao Y, Luan H, Gao H, Wu X, Zhang Y, Li R. Gegen Qinlian decoction maintains colonic mucosal homeostasis in acute/chronic ulcerative colitis via bidirectionally modulating dysregulated Notch signaling. Phytomedicine. 2020;68:153182. doi:10.1016/j.phymed.2020.153182(IF:4.268)
[44] Ge Y, Liu H, Zhang Y, et al. Inhibition of DCLK1 kinase reverses epithelial-mesenchymal transition and restores T-cell activity in pancreatic ductal adenocarcinoma [published online ahead of print, 2022 Jan 5]. Transl Oncol. 2022;17:101317. doi:10.1016/j.tranon.2021.101317(IF:4.243)
[45] Cao Y, Liu M, Wu S, et al. Kupffer cells play a crucial role in monocrotaline-induced liver injury by producing TNF-α. Toxicology. 2022;468:153101. doi:10.1016/j.tox.2022.153101(IF:4.221)
[46] Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des Devel Ther. 2021;15:3207-3221. Published 2021 Jul 21. doi:10.2147/DDDT.S319260(IF:4.162)
[47] Ye Z, Zeng Z, Shen Y, et al. ODC1 promotes proliferation and mobility via the AKT/GSK3β/β-catenin pathway and modulation of acidotic microenvironment in human hepatocellular carcinoma. Onco Targets Ther. 2019;12:4081-4092. Published 2019 May 27. doi:10.2147/OTT.S198341(IF:4.147)
[48] Zheng P, Li L. FANCI Cooperates with IMPDH2 to Promote Lung Adenocarcinoma Tumor Growth via a MEK/ERK/MMPs Pathway. Onco Targets Ther. 2020;13:451-463. Published 2020 Jan 15. doi:10.2147/OTT.S230333(IF:4.147)
[49] Chen T, Lei S, Zeng Z, et al. MicroRNA‑137 suppresses the proliferation, migration and invasion of cholangiocarcinoma cells by targeting WNT2B. Int J Mol Med. 2020;45(3):886-896. doi:10.3892/ijmm.2020.4474(IF:4.101)
[50] Bu XL, Weng JY, He BB, Xu MJ, Xu J. A Novel AdpA Homologue Negatively Regulates Morphological Differentiation in Streptomyces xiamenensis 318. Appl Environ Microbiol. 2019;85(7):e03107-18. Published 2019 Mar 22. doi:10.1128/AEM.03107-18(IF:4.077)
[51] Pan C, Liu Q, Wu X. HIF1α/miR-520a-3p/AKT1/mTOR Feedback Promotes The Proliferation And Glycolysis Of Gastric Cancer Cells. Cancer Manag Res. 2019;11:10145-10156. Published 2019 Dec 2. doi:10.2147/CMAR.S223473(IF:3.989)
[52] Zhang M, Li Q, Zhou C, Zhao Y, Li R, Zhang Y. Demethyleneberberine attenuates concanavalin A-induced autoimmune hepatitis in mice through inhibition of NF-κB and MAPK signaling. Int Immunopharmacol. 2020;80:106137. doi:10.1016/j.intimp.2019.106137(IF:3.943)
[53] Yan X, Yang C, Hu W, et al. Knockdown of KRT17 decreases osteosarcoma cell proliferation and the Warburg effect via the AKT/mTOR/HIF1α pathway. Oncol Rep. 2020;44(1):103-114. doi:10.3892/or.2020.7611(IF:3.906)
[54] Guo X, Cao X, Fang X, Guo A, Li E. Involvement of phase II enzymes and efflux transporters in the metabolism and absorption of naringin, hesperidin and their aglycones in rats. Int J Food Sci Nutr. 2022;73(4):480-490. doi:10.1080/09637486.2021.2012562(IF:3.833)
[55] Mao MG, Xu J, Liu RT, Ye L, Wang R, Jiang JL. Fas/FasL of pacific cod mediated apoptosis. Dev Comp Immunol. 2021;119:104022. doi:10.1016/j.dci.2021.104022(IF:3.636)
[56] Chen H, Pan R, Li H, et al. CHRDL2 promotes osteosarcoma cell proliferation and metastasis through the BMP-9/PI3K/AKT pathway. Cell Biol Int. 2021;45(3):623-632. doi:10.1002/cbin.11507(IF:3.612)
[57] Ruan W, Yang Y, Yu Q, et al. FUT11 is a target gene of HIF1α that promotes the progression of hepatocellular carcinoma. Cell Biol Int. 2021;45(11):2275-2286. doi:10.1002/cbin.11675(IF:3.612)
[58] Gu D, Zhou X, Ma Y, et al. Expression of a Brassica napus metal transport protein (BnMTP3) in Arabidopsis thaliana confers tolerance to Zn and Mn. Plant Sci. 2021;304:110754. doi:10.1016/j.plantsci.2020.110754(IF:3.591)
[59] Wang S, Fan X, Zhu J, et al. The differentiation of colorectal cancer is closely relevant to m6A modification. Biochem Biophys Res Commun. 2021;546:65-73. doi:10.1016/j.bbrc.2021.02.001(IF:3.575)
[60] Zeng X, Xia S, Yan X, Hu C, An K, Luo L. High expression of aryl hydrocarbon receptor (AhR) plays an important role in the formation of fibrous epulis [published online ahead of print, 2021 Jun 17]. Oral Dis. 2021;10.1111/odi.13940. doi:10.1111/odi.13940(IF:3.511)
[61] Miao X, Xiang Y, Mao W, Chen Y, Li Q, Fan B. TRIM27 promotes IL-6-induced proliferation and inflammation factor production by activating STAT3 signaling in HaCaT cells. Am J Physiol Cell Physiol. 2020;318(2):C272-C281. doi:10.1152/ajpcell.00314.2019(IF:3.485)
[62] Li L, Huang K, Lu Z, et al. Bioinformatics analysis of LINC01554 and its co‑expressed genes in hepatocellular carcinoma. Oncol Rep. 2020;44(5):2185-2197. doi:10.3892/or.2020.7779(IF:3.417)
[63] Ren X, Li A, Ying E, Fang J, Li M, Yu J. Upregulation of ubiquitin-conjugating enzyme E2T (UBE2T) predicts poor prognosis and promotes hepatocellular carcinoma progression. Bioengineered. 2021;12(1):1530-1542. doi:10.1080/21655979.2021.1918507(IF:3.269)
[64] Lu N, Ren L. TTK (threonine tyrosine kinase) regulates the malignant behaviors of cancer cells and is regulated by microRNA-582-5p in ovarian cancer. Bioengineered. 2021;12(1):5759-5768. doi:10.1080/21655979.2021.1968778(IF:3.269)
[65] Zhang Y, Zeng S, Wang T. Circular RNA hsa_circ_0002360 promotes non-small cell lung cancer progression through upregulating matrix metalloproteinase 16 and sponging multiple micorRNAs. Bioengineered. 2021;12(2):12767-12777. doi:10.1080/21655979.2021.1999370(IF:3.269)
[66] Li Y, Wu M, Xu S, Huang H, Yan L, Gu Y. Colorectal cancer stem cell-derived exosomal long intergenic noncoding RNA 01315 (LINC01315) promotes proliferation, migration, and stemness of colorectal cancer cells. Bioengineered. 2022;13(4):10827-10842. doi:10.1080/21655979.2022.2065800(IF:3.269)
[67] Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 (KIF23). Bioengineered. 2022;13(1):1103-1114. doi:10.1080/21655979.2021.2017629(IF:3.269)
[68] Zhao X, Cui D, Yan F, Yang L, Huang B. Circ_0007919 exerts an anti-tumor role in colorectal cancer through targeting miR-942-5p/TET1 axis. Pathol Res Pract. 2022;229:153704. doi:10.1016/j.prp.2021.153704(IF:3.250)
[69] Liang X, Hu M, Yuan W, et al. MicroRNA-4487 regulates vascular smooth muscle cell proliferation, migration and apoptosis by targeting RAS p21 protein activator 1. Pathol Res Pract. 2022;234:153903. doi:10.1016/j.prp.2022.153903(IF:3.250)
[70] Zhang S, Zong Y, Ren Z, et al. Regulation of indoleamine 2, 3-dioxygenase in hippocampal microglia by NLRP3 inflammasome in lipopolysaccharide-induced depressive-like behaviors. Eur J Neurosci. 2020;52(11):4586-4601. doi:10.1111/ejn.15016(IF:3.115)
[71] Hei X, Xie M, Xu J, Li J, Liu T. β-Asarone Exerts Antioxidative Effects on H2O2-Stimulated PC12 Cells by Activating Nrf2/HO-1 Pathway. Neurochem Res. 2020;45(8):1953-1961. doi:10.1007/s11064-020-03060-9(IF:3.038)
[72] Zhu H, Chen D, Xie X, Li Y, Fan T. Melittin inhibits lung metastasis of human osteosarcoma: Evidence of wnt/β-catenin signaling pathway participation. Toxicon. 2021;198:132-142. doi:10.1016/j.toxicon.2021.04.024(IF:3.033)
[73] Ren C, Pan R, Hou L, et al. Suppression of CLEC3A inhibits osteosarcoma cell proliferation and promotes their chemosensitivity through the AKT1/mTOR/HIF1α signaling pathway. Mol Med Rep. 2020;21(4):1739-1748. doi:10.3892/mmr.2020.10986(IF:2.952)
[74] Ma P, Hu Z, Li L, Li D, Tang R. Dietary selenium promotes the growth performance through growth hormone-insulin-like growth factor and hypothalamic-pituitary-thyroid axes in grass carp (Ctenopharyngodon idella). Fish Physiol Biochem. 2021;47(4):1313-1327. doi:10.1007/s10695-021-00974-1(IF:2.794)
[75] Zhao F, Wang X, Li Y, Chen X, Geng Z, Zhang C. Effects of Dietary Supplementation with Epigallocatechin Gallate on Meat Quality and Muscle Antioxidant Capacity of Broilers Subjected to Acute Heat Stress. Animals (Basel). 2021;11(11):3296. Published 2021 Nov 18. doi:10.3390/ani11113296(IF:2.752)
[76] Yuan DD, Jia CD, Yan MY, Wang J. Circular RNA hsa_circ_0000730 restrains cell proliferation, migration, and invasion in cervical cancer through miR-942-5p/PTEN axis. Kaohsiung J Med Sci. 2021;37(11):964-972. doi:10.1002/kjm2.12443(IF:2.744)
[77] Zhou W, Huang K, Zhang Q, et al. LINC00844 promotes proliferation and migration of hepatocellular carcinoma by regulating NDRG1 expression. PeerJ. 2020;8:e8394. Published 2020 Jan 28. doi:10.7717/peerj.8394(IF:2.379)
[78] Chen S, Hong K, Zhou L, et al. Hsa_circRNA_0017620 regulated cell progression of non-small-cell lung cancer via miR-520a-5p/KRT5 axis. J Clin Lab Anal. 2022;36(4):e24347. doi:10.1002/jcla.24347(IF:2.352)
[79] Jiang B, Wu RM, Li HD, et al. Yixin Ningshen Tablet Alleviates Comorbidity of Myocardial Infarction and Depression by Enhancing Myocardial Energy Metabolism and Increasing Availability of Monoamine Neurotransmitter. Chin J Integr Med. 2022;28(7):586-593. doi:10.1007/s11655-022-3570-3(IF:1.978)
[80] Lin X, Liu S, Xie G, Chen J, Li P, Chen J. Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis. J Microbiol Biotechnol. 2016;26(11):1908-1917. doi:10.4014/jmb.1604.04019(IF:1.685)
[81] Liao Y, Zhao T, Li LY, Wang FQ. Elevated Sad1 and UNC84 Domain Containing 2 (SUN2) level inhibits cell growth and aerobic glycolysis in oral cancer through reducing the expressions of glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). J Dent Sci. 2021;16(1):460-466. doi:10.1016/j.jds.2020.08.007(IF:1.034)
[82] Li L, Peng W, Tian X. Protective Effects and Mechanisms of MicroRNA-182 on Oxidative Stress in RHiN. Open Life Sci. 2019;14:400-409. Published 2019 Aug 28. doi:10.1515/biol-2019-0045(IF:0.504)

worthington LS004176​现货说明书

 

上海金畔生物worthington LS004176现货说明书


粗胶原酶制剂含有两种不同胶原酶的几种同工型,一种巯基蛋白酶、梭菌蛋白酶、一种胰蛋白酶样酶和一种氨肽酶。这种胶原蛋白水解和蛋白水解活性的组合可有效分解细胞间基质,这是组织解离的重要部分。该复合物的一个成分是水解酶,它优先在序列 Pro-Y-Gly-Pro 中的 Y-Gly 键处降解天然胶原蛋白中的螺旋区域,其中 Y 常见的是中性氨基酸。这种切割产生对进一步肽酶消化敏感的产物。粗胶原酶被半胱氨酸、EDTA 或邻菲咯啉等金属螯合剂抑制,但 DFP 不抑制。它也被一种大的血浆糖蛋白α2-巨球蛋白抑制。钙2+是酶活性所必需的。每种胶原酶的特定酶谱已与从中获得研究细胞的组织(或与放置细胞的用途)相关,并且作为相关性的结果,Worthington 已经建立了几种类型的粗胶原酶:类型 1、2、3 和 4。

• 1 型粗胶原酶具有胶原酶、酪蛋白酶、梭菌蛋白酶和胰蛋白酶活性的原始平衡。
• 2 型含有较高相对水平的蛋白酶活性,尤其是梭菌蛋白酶。
• 3 型含有低水平的二级蛋白酶。
• 4 型被设计成胰蛋白酶活性特别低,以限制对膜蛋白和受体的损害。
• 5 型 含有较高的胶原酶和酪蛋白酶值。
• 6 型 含有高胶原酶活性,酪蛋白酶与胶原酶的比例约为 2:1。设计为相对于 I 型 ( col  G)富含 II 型 ( col  H) 胶原酶。
• 7 型胶原酶和酪蛋白酶的活性比 1 型和 2 型胶原酶高四倍。

 •纯化的胶原酶,代码:CLSPA,含有最少的二次蛋白水解活性和高胶原酶活性。

 

新的! 无动物型 AFA、AFB 和 AFC、STZ1 和 STZ2胶原酶源自在*不含动物成分的培养基中生长的培养物,设计用于必须防止引入潜在动物源性病原体的生物加工应用。二级蛋白酶的水平与 1 型和 2 型胶原酶相似。

•  CLSAFA 是最初的 AFA 等级,旨在含有类似于 1 型和 2 型胶原酶的胶原酶和二级蛋白酶。
•  CLSAFB 含有比 CLSAFA 更高的胶原酶和酪蛋白酶活性。
•  CLSAFC 具有特别低的胰蛋白酶活性,类似于 4 型胶原酶。
•  STZ1 和 STZ2,0.22μ 过滤的STEMxyme ® AOF 胶原酶/中性蛋白酶 (Dispase®) 混合物,用于原代细胞和干细胞分离。 

 

Worthington 还提供预包装形式的每种类型的 0.22µm 过滤制剂,用于直接重组和用于细胞分离和培养程序。酶类型和不同组织的有效性之间的相关性很好,,部分原因是使用的可变参数。然而,大多数研究人员认为粗胶原酶批次的组织分型是一项有价值的服务。Worthington 胶原酶和污染物检测的详细说明可在Worthington 酶手册中找到。此外,组织特异性参考和详细的分离条件可以在Worthington 组织分离指南中找到。

胶原酶测定是Mandl的改进,其中将胶原酶与天然胶原一起温育5小时,并使用Moore and Stein, JBC, 176 , 367, (1948)比色茚三酮法测定胶原分解的程度。释放的氨基酸以每毫克胶原酶微摩尔亮氨酸表示。

用途:粗胶原酶广泛用于酶促原代细胞分离和组织解离程序。大多数研究人员要么使用粗制胶原酶制剂,例如 1、2、3 和 4 型,要么使用色谱纯化的胶原酶(代码:CLSPA);后者通常与二级酶如弹性蛋白酶、透明质酸酶等结合。为了获得最佳效果,必须针对要解离的组织调整蛋白水解活性的精确混合。不同组织的类型和有效性之间的相关性很好,,并且可能部分取决于使用参数和目标以及批次间的差异。如需更多信息,请参阅胶原酶取样程序信息。Worthington 还出版了组织分离指南它提供了有关用于这些应用的酶的更多信息以及多种细胞和组织类型的具体参考。

单位定义:一个单位在 37°C、pH 7.5 下 5 小时内从胶原蛋白中释放 1 微摩尔 L-亮氨酸当量

相关产品:

胶原蛋白 (CL)
脱氧核糖核酸酶 I (DP/D/DCLS/D2/DPFF/DPRF)
弹性蛋白酶 (ES/ESL/ESFF)
透明质酸
酶 ( HSE/HSEP)中性蛋白酶 (Dispase, NPRO)
木瓜蛋白酶 (PAP/PAPL/PAP2)蛋白酶 K (PROK)
胰蛋白酶 (TL/TRL/TRL3/TRLS/TRTPCK)
胰蛋白酶抑制剂 (LBI/OI/SI/SIC)

细胞分离优化系统 (CIT)
肝细胞分离系统 (HIS)
新生儿心肌细胞分离系统 (NCIS)
木瓜蛋白酶解离系统 (PDS/PDS2)

 LS004176  1克

胶原酶,2 型
准备含有更高的梭菌蛋白酶活性。建议用于骨骼、心脏、肝脏、甲状腺和唾液原代细胞分离。以透析、冻干粉末的形式提供。
储存在 2-8°C。


 

 

 

lsbio LS-F26670-1说明书

lsbio

 LS-F26670-1

人ADIPOR1 /脂连蛋白受体1ELISA试剂盒(夹心ELISA)-LS-F26670

Human ADIPOR1/Adiponectin Receptor 1 ELISA Kit (Sandwich ELISA) – LS-F26670

LS-F26670-1

1 plate

$1,090 USD

 

 

 

产品描述

LS-F26670是一种96孔酶联免疫吸附测定(ELISA),用于定量检测血浆和血清样品中的人ADIPOR1 /脂联素受体1。它基于夹心测定原理,可用于检测低至0.1毫微克/毫升的ADIPOR1 /脂联素受体1的水平。

产品规格

类型

 

夹心ELISA(酶联免疫吸附测定)试剂盒

目标

 

ADIPOR1 /脂联素受体1

同义词

 

ADIPOR1,脂联素受体1,脂联素受体,脂联素受体蛋白1,CGI-45,CGI45,ACDCR1,TESBP1A,PAQR1

反应

 

人的

特异性

 

该试剂盒用于检测人ADIPOR1 /脂联素受体1.在ADIPOR1 /脂联素受体1和类似物之间未观察到显着的交叉反应性或干扰。该权利要求受到现有技术的限制,因此可能存在与未经测试的类似物的交叉反应性。

手册

 

 

预期的样本类型

 

血浆,血清

格式

 

96孔板带

发现

 

比色 – 450nm(TMB)

测量

 

检测范围

 

2.5 – 50 ng / ml

灵敏度

 

0.1 ng / ml

分析时间

 

1.5小时

 

测定内:CV%<9%测定间:CV%<10%

存储

 

短期:4°C; 长期:见手册。

质量保证

 

由于其有限的保质期,LSBio ELISA试剂盒通常不作为成品库存。收到订单后,每个套件都经过组装和测试,以确保在发货前符合规格。范围,灵敏度和精度可能会发生微小变化。如果发生重大变化,订单将在发货前与客户确认.ELISA试剂盒批号反映了每个特定试剂盒的终组装和测试日期,而不是批量生产的批次。对所有试剂盒进行测试,以确认它们符合其定义的测定间和测定内变异系数。

套件组件

 

· 胶粘剂密封剂

· 涂层96孔带板

· 标准A.

· 标准B.

· 标准C.

· 标准D.

· 标准E.

· 标准F.

· 平衡解决方案

· 酶标

· 洗涤缓冲液(100x)

· 基材A.

· 基材B.

· 停止解决方案

限制

 

仅供研究使用。

保证

 

这款elisa套装带有LSBio 100%保证。

关于ADIPOR1 / Adiponectin Receptor 1

 

球状和全长脂联素(APM1)的受体,脂肪细胞分泌的必需激素,作为抗糖尿病药。可能参与调节脂质代谢的代谢途径,例如脂肪酸氧化。介导增加AMPK,PPARA配体活性,脂肪酸氧化和脂联素对葡萄糖的摄取。对于球状脂联素具有一些高亲和力受体,但对于全长脂联素具有低亲和力受体。 Uniprot:  Q96A54 NCBI:NM_015999 NP_057083.2

 

Anatrace L360S说明书

美国Anatrace成立于1984年.*的膜蛋白研究用产品供应商,为膜蛋白提取与纯化提供高纯度生化产品,包括了各种表面活性剂、试剂盒及各种研究用工具书。提供膜蛋白提取和纯化试剂,高纯的生化试剂和清洁剂,去垢剂等
产品分类:
1.Nonionic detergents-非离子去垢剂
2. Ionic detergents-离子去垢剂
3. Zwitterionic detergents-两性离子去垢剂
4. Synthetic lipids-具有去垢作用的水溶性合成脂类
5.Kit-为某种特定的膜蛋白选择去垢剂并不容易,一种去垢剂可能用于溶解蛋白,另一种可能执行生化功能或者结晶化,因此我们提供一系列固体的或可溶性的去垢剂的kit使得这些过程更加容易进行。所有试剂都经过别的纯化,确保的结果。
6. Biochemicals-高纯生化试剂
7. MTS (methanethiosulfonate) reagents- MTS试剂
8.Books-工具书

L360S – LAPAO,Sol-Grade

3-十二烷基酰胺-N,N'-二甲基丙基胺氧化物•3-月桂酰胺基-N,N'-二甲基丙基胺氧化物

L360S:LAPAO,Sol-Grade

 

 

 

L360S 1 GM

LAPAO, Sol-Grade

1 gm

83

 

L360S 5 GM

LAPAO, Sol-Grade

5 gm

279

 

L360S 25 GM

LAPAO, Sol-Grade

25 gm

1330

 

 

分子式:C 17 H 36 N 2 O 2
CAS编号:[61792-31-2] 
分子式:300.6 
CMC:(H 2 O)~1.56 mM (1)(0.052%)
聚集数:(H 2 O) ~126 
纯度:HPLC分析≥95%
pH:4-9(1%水溶液)
溶解度:≥20%(在20°C水中)
电导率:<500μS(10%水溶液)
吸光度1%水溶液
260nm:<0.4280nm 
:<0.3 
340nm:<0.2

 

引用:
1。Dahout-Gonzalez,C.,Brandolin,G。和Pebay-Peyroula。E.(2003)Acta。CRYST。D59,2353-2355

 

 

上海金畔生物科技有限公司是实验试剂一站式采购服务商

1:强大的进口辐射能力,血清、抗体、耗材、大部分限制进口品等。

2:产品种类齐全,经营超过700多品牌,基本涵盖所有生物实验试剂耗材。

3:提供加急服务,货品一般1-2周到货。

4:富有竞争力的价格优势,绝大部分价格有优势。

5:多年积累良好的信誉,大部分客户提供货到付款服务。客户包括清华、北大、交大、复旦、中山等100多所高校,ROCHE,阿斯利康、国药、fisher等知药企。

6:我们还是Santa,Advanced Biotechnologies Inc,Athens Research & Technology,bangs,BBInternational,crystalchem,dianova,FD Neurotechnologies,Inc. FormuMax Scientific,Inc, Genebridege, Glycotope Biotechnology GmbH; iduron,Innovative Research of America, Ludger, neuroprobe,omicronbio, Polysciences,prospecbi, QA-BIO,quickzyme,RESEARCH DIETS,INC,sterlitech;sysy,TriLink BioTechnologies,Inc;worthington-biochem,zyagen等几十家国外公司代理。

7:我们还是invitrogen,qiagen,MiraiBioam,sigma;neb,roche,merck, rnd,BD, GE,pierce,BioLegend等知*批发,欢迎合作。

 

 

苯基琼脂糖FF(LS)|Phenyl(LS)强疏水层析介质

苯基琼脂糖FF(LS)|Phenyl(LS)强疏水层析介质

产品说明书

FAQ

COA

已发表文献

 

疏水作用层析(hydrophobic interaction chromatographyHIC)是利用生物分子所带有的疏水基团和固定相上的疏水配基之间的相互作用来分离物质的一种层析方法,盐离子可以破坏生物分子表面的水化膜,促进疏水基团和配基之间的结合。

本品Phenyl Agarose FF(LS)是一种高取代的芳香族疏水层析介质,它是 6%的琼脂糖基架上偶联苯基而成的,结合载量相对Phenyl Agarose FF(HS)较低,配基疏水性强,适合疏水性较的生物分子的分离纯化。

 

产品性质

基质

6%的高度交联的琼脂糖

粒径

45165 µm

功能基团

苯基

载量

10 mg lgG 24 mg HSA/mL

建议流速

300-600 cm/h

pH范围

3-13

储存缓冲液

20%乙醇

 

运输和保存方法

冰袋运输。4-30保存,有效期4年。

 

注意事项

1)请勿冷冻保存本产品。

2填料使用前一定要充分颠倒若干次,使琼脂糖珠混合均匀。

3)为了您的安全和健康,请穿实验服并戴一次性手套操作。

4本产品仅作科研用途!

 

使用方法

1 缓冲液的准备

1所用水和Buffer在使用前最好用0.22 µm0.45 µm滤膜过滤

2结合缓冲液通常选用含有高浓度盐的磷酸盐缓冲液,如20 mM PB1.5 M (NH4)2SO4pH7.0

3洗脱缓冲液通常选用不含其他盐类的磷酸盐缓冲液,如50 mM PBpH7.0对于较难洗脱的物质可以采用纯水,或者在纯水中加入低浓度乙醇作为洗脱液。

注:需要根据后续的实验结果(目的物是否有沉淀、目的物的结合强弱、回收率、分离度等) 对结合缓冲液中的盐的浓度和类型进行调整。

 

2 样品准备

样品在使用前最好用0.22 µm0.45 µm滤膜过滤,减少杂质,提高蛋白纯化效率和防止堵塞柱子。需要将样品的 pH 和电导率调整到与结合缓冲液一致

 

3 样品纯化

1)将介质装入合适的层析柱,3-5倍柱体积的去离子水冲洗出储存缓冲液,然后5倍柱体积的结合Buffer进行平衡,使填料处于与目的蛋白相同的缓冲体系下,起到保护蛋白的作用。

2)将样品加到平衡好的Phenyl Agarose FF(LS)中,收集流出液。

3)用10-15倍柱体积的洗杂Buffer进行清洗,去除非特异性吸附的杂蛋白,收集洗杂液。

4)使用5-10倍柱体积的洗脱Buffer,收集洗脱液,即目的蛋白组分。

5)依次使用3倍柱体积的结合Buffer5倍柱体积的去离子水平衡填料,最后再用5倍柱体积的20%的乙醇平衡,然后保存在等体积的20%的乙醇中,置于4度保存,防止填料被细菌污染。

 

4 填料清洗

疏水层析填料每次使用后可以分别2-3倍柱体积的30%异丙醇(70%乙醇)3倍柱体积的纯化水冲洗层析柱,然后用至少3倍柱体积的平衡液进行平衡。

CIPCleaning In Place)清洗

疏水层析填料可以重复使用,但随着非特异性结合的蛋白的增多和蛋白的聚集,往往造成流速和结合载量都下降,这时可按照下面方法对树脂进行清洗。

1)先用2个柱体积的纯化水冲洗掉结合比较紧的蛋白。

2对于强疏水性蛋白、沉淀蛋白的去除:先用2~3个柱体积1M NaOH清洗,然后立即用5~10个柱体积纯水冲洗。

3脂蛋白和脂类物质的去除:先用5~10个柱体积的70%乙醇或30%异丙醇清洗,后用5~10个柱体积纯水冲洗。

4也可将上述两种清洗条件结合进行清洗,即用含有1M NaOH30%异丙醇溶液清洗

HB220815

 

苯基琼脂糖FF(LS)|Phenyl(LS)强疏水层析介质

暂无内容

苯基琼脂糖FF(LS)|Phenyl(LS)强疏水层析介质

暂无内容

 

疏水作用层析(hydrophobic interaction chromatographyHIC)是利用生物分子所带有的疏水基团和固定相上的疏水配基之间的相互作用来分离物质的一种层析方法,盐离子可以破坏生物分子表面的水化膜,促进疏水基团和配基之间的结合。

本品Phenyl Agarose FF(LS)是一种高取代的芳香族疏水层析介质,它是 6%的琼脂糖基架上偶联苯基而成的,结合载量相对Phenyl Agarose FF(HS)较低,配基疏水性强,适合疏水性较的生物分子的分离纯化。

 

产品性质

基质

6%的高度交联的琼脂糖

粒径

45165 µm

功能基团

苯基

载量

10 mg lgG 24 mg HSA/mL

建议流速

300-600 cm/h

pH范围

3-13

储存缓冲液

20%乙醇

 

运输和保存方法

冰袋运输。4-30保存,有效期4年。

 

注意事项

1)请勿冷冻保存本产品。

2填料使用前一定要充分颠倒若干次,使琼脂糖珠混合均匀。

3)为了您的安全和健康,请穿实验服并戴一次性手套操作。

4本产品仅作科研用途!

 

使用方法

1 缓冲液的准备

1所用水和Buffer在使用前最好用0.22 µm0.45 µm滤膜过滤

2结合缓冲液通常选用含有高浓度盐的磷酸盐缓冲液,如20 mM PB1.5 M (NH4)2SO4pH7.0

3洗脱缓冲液通常选用不含其他盐类的磷酸盐缓冲液,如50 mM PBpH7.0对于较难洗脱的物质可以采用纯水,或者在纯水中加入低浓度乙醇作为洗脱液。

注:需要根据后续的实验结果(目的物是否有沉淀、目的物的结合强弱、回收率、分离度等) 对结合缓冲液中的盐的浓度和类型进行调整。

 

2 样品准备

样品在使用前最好用0.22 µm0.45 µm滤膜过滤,减少杂质,提高蛋白纯化效率和防止堵塞柱子。需要将样品的 pH 和电导率调整到与结合缓冲液一致

 

3 样品纯化

1)将介质装入合适的层析柱,3-5倍柱体积的去离子水冲洗出储存缓冲液,然后5倍柱体积的结合Buffer进行平衡,使填料处于与目的蛋白相同的缓冲体系下,起到保护蛋白的作用。

2)将样品加到平衡好的Phenyl Agarose FF(LS)中,收集流出液。

3)用10-15倍柱体积的洗杂Buffer进行清洗,去除非特异性吸附的杂蛋白,收集洗杂液。

4)使用5-10倍柱体积的洗脱Buffer,收集洗脱液,即目的蛋白组分。

5)依次使用3倍柱体积的结合Buffer5倍柱体积的去离子水平衡填料,最后再用5倍柱体积的20%的乙醇平衡,然后保存在等体积的20%的乙醇中,置于4度保存,防止填料被细菌污染。

 

4 填料清洗

疏水层析填料每次使用后可以分别2-3倍柱体积的30%异丙醇(70%乙醇)3倍柱体积的纯化水冲洗层析柱,然后用至少3倍柱体积的平衡液进行平衡。

CIPCleaning In Place)清洗

疏水层析填料可以重复使用,但随着非特异性结合的蛋白的增多和蛋白的聚集,往往造成流速和结合载量都下降,这时可按照下面方法对树脂进行清洗。

1)先用2个柱体积的纯化水冲洗掉结合比较紧的蛋白。

2对于强疏水性蛋白、沉淀蛋白的去除:先用2~3个柱体积1M NaOH清洗,然后立即用5~10个柱体积纯水冲洗。

3脂蛋白和脂类物质的去除:先用5~10个柱体积的70%乙醇或30%异丙醇清洗,后用5~10个柱体积纯水冲洗。

4也可将上述两种清洗条件结合进行清洗,即用含有1M NaOH30%异丙醇溶液清洗

HB220815

 

苯基琼脂糖FF(LS)|Phenyl(LS)强疏水层析介质

暂无内容

苯基琼脂糖FF(LS)|Phenyl(LS)强疏水层析介质

暂无内容

现货worthington LS003113说明书

 

上海金畔生物现货worthington LS003113说明书

Plasma Amine Oxidase Product Information

Source: Bovine Plasma

 

IUB:1.4.3.21

血浆胺氧化酶(PAO)催化反应:

RCH 2 NH 2 + O 2 + H 2 O→RCHO + NH 3 + H 2 O 2

牛血浆胺氧化酶的分子量为170 kDa,精胺的适pH为6.2,亚精胺的适pH为7.2。胺氧化酶分为两类:血浆胺氧化酶所属的吡ido醛和含铜酶,以及含FAD的氨基氧化酶。天然底物包括儿茶酚胺,色胺衍生物和其他生理活性胺。血浆胺氧化酶用于需要氮基转移的研究中。该分子由两条相同的多肽链组成。每个分子有两个吡ido醛磷酸盐和两个Cu +原子。牛血浆胺氧化酶被铜螯合剂,许多羧基试剂如铜酮,羟胺和青化物抑制。苯甲酸和苯甲醇都是非竞争性抑制剂(KI分别为30和34mM)。在沃辛顿使用的用于测定胺氧化酶的测定法基本上是Tabor 等人,JBC,208,645(1954)的测定法,其反应温度降低至25℃。

稳定性/储存: -20°C稳定12个月。储存在-20℃。

单位定义: 1个单位在25°C,pH 7.2下每分钟氧化1µmol苄胺。

技术说明: 1 IU等于4,330 Tabor单位。(TU)

  描述 活动 尺寸 货号 价钱
  血浆胺氧化酶
来源:牛血浆
通过Yamada,Y.和Yasunobu,K.,JBC,237,1511(1962)的步骤五进行色谱纯化。冻干粉末。(1 IU = 4,330 Tabor单位)。 
储存在-20℃。 
需要特别的运输:冰袋
≥17Tabor单位/ mg dw AO 600 LS003113 $ 40.00
3千 LS003114 $ 135.00
LS003110

 

 

 

现货ludger LS-UR2-2.1×100说明书

Ludger是一家生物科学公司,专门研究糖生物学的医学应用分析技术。该技术起源于英国牛津大学。它在范围内用于FDA和EMEA批准的生物药品的质量控制中,并可用于支持IND提交。我们从1999年开始运营,已建立了一个客户群,包括的制药和生物技术公司。

上海金畔生物现货ludger LS-UR2-2.1×100说明书

 

UR2 2.1x100mm UHPLC色谱柱

LudgerSep uR2 2.1x100mm色谱柱已经开发出来,可使用LudgerTag DMB唾液酸标记试剂盒对用DMB标记的唾液酸进行UHPLC分析

尺寸:2.1mm x 100mm

 

 

 

 

Part Number: LS-UR2-2.1×100

 

 

LudgerSep uR2 2.1x100mm UHPLC色谱柱已经开发出来,可使用LudgerTag DMB唾液酸标记试剂盒分析用DMB标记的唾液酸(1,2-二氨基-4,5亚甲二氧基苯.2HCl)。

 

LudgerSep uR2色谱柱设计用于新一代的UHPLC仪器,能够承受高流动压力和快速的样品分析。为了利用低于3μm粒径的色谱柱的高分离能力,我们建议将进样量保持在5μL或以下,并大程度地减少系统空隙体积。理想情况下使用全循环注入。油管应为窄孔(直径约0.13 mm或更小),检测器流通池体积应为10μl或更小。尽管产品指南中显示了示例色谱图,但保留时间将根据所用的UHPLC系统而有所不同。

程序概述

唾液酸
的释放糖蛋白中唾液酸的释放是通过温和的酸水解而发生的。将样品和对照与2M乙酸在80°C下孵育2小时。

唾液酸标记反应
用1,2-二氨基-4,5-亚甲基二氧基苯-2HCl(DMB)对释放的二氧化硅进行荧光标记。酸水解的样品和过程控制以及Ludger唾液酸标准品:Neu5Ac,Neu5Gc,唾液酸参考板和Neu5,9Ac2(如果使用)与DMB在50°C孵育3小时。

通过HPLC或UHPLC分析
使用Neu5Ac和Neu5Gc标准物计算标准曲线。唾液酸参考板和Neu5,9Ac2用于鉴定唾液酸。可以使用适用于HPLC 的LudgerSep R1x150mm色谱柱或使用LudgerSep uR2x100mm色谱柱的UHPLC进行分析。

DMB标记的唾液酸参考面板在LudgerSep uR2 2.1x100mm UHPLC色谱柱上运行。
峰:1 = Neu5Gc;2 = Neu5Ac; 3 = Neu5,7Ac2; 4 = Neu5Gc,9Ac; 5 = Neu5,8Ac2; 6 = Neu5,9Ac2; 7 = Neu5,x,xAc3(其中x是未知的乙酰基位置);* =试剂

 

 

uR2 2.1x100mm UHPLC色谱柱规格

颗粒: 1.9 µm二氧化硅,十八碳ade涂层衍生。孔径为175埃。
色谱柱尺寸: 2.1mm x 100mm 
色谱柱体积: 0.34 mls 
典型流速: 0.1 – 0.6 ml / min 
压力极限: 15,000 psi 
色谱柱管:不锈钢,与Valco兼容的端接头
pH兼容性: pH 1至pH 11

 

Certificate of Analysis

LudgerSepTM UR2 UHPLC Column for Glycan Analysis

Cat. #: LS-UR2-2.1×100

Batch: C04U-06

Size: 2.1 x 100 mm

本栏符合Ludger文件#LS-UR2-指南中给出的规范。
填充溶剂50%乙腈(aq)
测试分析
流量500ul/min
50%乙腈(aq)洗脱液
压力8066 psi
样品体积1微升
254nm处的紫外检测