碳吸附胎牛血清说明书

碳吸附胎牛血清说明书

产品详情

货号

规格

价格

78ED10001-500ml

500ml

6800.00

78ED10001-10*50 ml

10*50 ml

6900.00

78ED10001-50ml

50ml

900.00

 产品描述

碳吸附胎牛血清是一款低水平类固醇类激素的胎牛血清产品。通过碳吸附可降低血清中许多激素及生长因子的浓度,如雌二醇、皮质醇、皮质酮、T3、T4、前列腺素等。该血清适用于上述一些分子可能干扰实验结果的实验中,对于那些需要这些分子的细胞培养,也可能降低细胞生长性能。

产品特点

三次0.1µm 无菌过滤;

支原体检测和病毒筛查

产品应用

碳吸附胎牛血清是细胞培养中用量很大的培养基,含有丰富的细胞生长必须的营养成份,常用于动物细胞的体外培养,具有极为重要的功能。

运输与保存方法

干冰运输,-20°C保存。

批号、生产日期见瓶身。

注意事项

为了您的安全和健康,请穿实验服并戴一次性手套操作!

本产品主要用于科研领域,不宜用于临床诊断或其他用途。

优级胎牛血清 (南美)(FBS, Superfine)说明书

优级胎牛血清 (南美)(FBS, Superfine)说明书

产品详情

货号

规格

价格

QFED10001-500ml

500ml

5500.00

QFED10001-50ml

50ml

询价

QFED10001-10ml

10ml

询价

 

产品描述

南美胎牛血清(优级)具有优惠、性价比高的特点,来源清晰。适用于多种细胞的培养,如大多数动物器官细胞的培养,肿瘤细胞和癌细胞的培养,以及部分融合细胞的实验和培养。它还可用于细胞系的保存和组织器官的培养、单克隆抗体的研制、绝大多数肿瘤细胞的培养,也可用于少数干细胞的培养,如脂肪干细胞。此材料来源于美国农业部认证的原料,和我们其他等级的原料一样经过同样的过滤方案和最终的质量控制测试。这种胎牛血清通过100nm (0.1 mm)孔径分级过滤器进行过滤。在分装之前,每批血清使用真池技术进行混合,以确保各瓶之间的均匀性和一致性。

产品特点

低内毒素,无细菌,支原体,噬菌体,病毒等污染;

无外源添加因子,不含技术,抗生素等;

产品应用

已通过本公司300多种细胞株和上百种原代细胞的验证,细胞生长速度快,状态良好。

运输与保存方法

干冰运输,-20°C冻存。

 

注意事项

注意事项

请在2°C-8°C的环境中解冻,不宜在较高温度下进行解冻;注意:解冻温度较高会导致血清浑浊,沉淀增加,品质下降,

血清解冻过程中请不时摇匀(小心勿造成气泡),使血清成分和温度均匀,从而减少沉淀的产生。

血清解冻后应尽快用完,尽量避免反复冻融。

血清不宜在是室温中长时间放置,使用后尽快放回2°C-8°C中。

高温解冻,举例摇晃,反复冻融,放置时间过长等,请勿超过一个月。

声明

本产品仅供科学研究或进一步生产使用,不可用于临床诊断或治疗;

为保持本产品的最佳使用效果,请勿反复进行冻融操作。

特级胎牛血清(澳洲)说明书

特级胎牛血清(澳洲)说明书

产品详情

货号

规格

价格

QFED10002-500ml

500ml

8000.00

QFED10002-10*500ml

10*500ml

75000.00






产品描述

牛血清由于包含丰富的营养成分,通常被添加到细胞培养液中,用于促进和维持脊椎动物、哺乳动物、昆虫及其他物种细胞的生长。胎牛血清的来源地很多,其中澳大利亚来源的牛血清被认为是品质更优、更安全的血清。

产品特点

澳大利亚来源,具有可追溯性,现货;无无菌心脏穿刺取血;3次0.1μm无菌过滤;用途比 较广,适用于各种癌细胞株,娇贵细胞,原代细胞,干细胞(胚胎干细胞,间充质干细胞等)培养。严格QC标准进行微生物、内毒素、血红蛋白、IgG含量等多项检测(内毒素水平:≤10 EU/ml,血红蛋白水平:≤ 30 毫克/分升);经过细胞培养和杂交瘤细胞培养验证。澳洲牛血清(新西兰)也用于科研和诊断试剂,疫苗生产和研发,同时也能够用于作为免疫反应中的阻断剂和蛋白配体反应中的固定剂。

产品应用

     适用于各种癌细胞株,娇贵细胞,原代细胞,干细胞(胚胎干细胞,间充质干细胞等)培养;是做干细胞培养的良好选择在细胞培养过程中,经常加入5%-20%的胎牛血清,推荐使用的Jinpan胎牛血清浓度是10%。高浓度的血清可能改变细胞的基因表达谱,影响后续实验的结果,我们在实验中使用10%Jinpan澳洲胎牛血清培养293T细胞,效果非常好。但是有些细胞也会使用5%或者20%Jinpan胎牛血清,要根据具体 胞选择合适的Jinpan胎牛血清浓度。

运输与保存方法

干冰运输,-20℃保存,有效期5年。

注意事项

注意事项

1、需要长期保存的血清必须储存于-20℃ – 70℃ 低温冰箱中。4℃冰箱中保存时间切勿超过1个月。切勿将血清在 37℃放置太久,否则血清会变得浑浊,同时血清中的有效成分会被破坏,而影响血清质量。如果一次无法用完一瓶,可将4045ml分装于无菌50ml离心管中。由于血清结冰时体积会增加约10%,因此,血清在冻入低温冰箱前,必须预留一定体积空间,否则易发生污染或玻璃瓶冻裂。

2、提供的血清为无菌,无需再过滤除菌。如发现血清有悬浮物,则可将血清加入培养液内一起过滤,切勿直接过滤血清。

3、瓶装血清解冻需采用逐步解冻法:-20℃ -70℃ 低温冰箱中的血清放入4℃冰箱中溶解1.然后移入室温,待全部溶解后再分装,一般以50ml无菌离心管可分装4045ml。在溶解过程中须规则摇晃均匀(小心勿造成气泡),使温度 与成分均一,减少沈淀的发生。.切勿直接将血清从-20℃进入37℃解冻,这样因温度改变太大,容易造成蛋白质凝集而出现沉淀。

4、热灭活是指56℃, 30分钟加热已解冻的血清.加热过程中须规则摇晃均匀.此热处理的目的是使血清中的补体成分灭活.除非必须,一般不建议作此热处理,因为热处理会造成血清沉淀物显著增多,而且还会影响血清的质量.补体 参与反应有:细胞毒作用, 平滑肌细胞收缩, 肥大细胞和血小板释放组胺, 增强吞噬作用, 促进淋巴细胞和巨噬细胞 发生化学趋化和活化。

5、血清中的沉淀物 絮状物:主要是血清中的脂蛋白变性及解冻后血清中纤维蛋白造成,这些絮状物不会影响血清本身 的质量.可用离心3000rpm,5分钟去除,也可不用处理。 显微镜下小黑点“:经过热处理过的血清,沉淀物 的形成会显著增多。有些沉淀物在显微镜下观察象小黑点“,常误认为血清受污染。一般情况下,此小黑 点不会影响细胞生长,但如果怀疑血清质量,则应立即停止使用,更换另一批号的血清。

 

为了您的安全和健康,请穿实验服并戴一次性手套操作!

本产品主要用于科研领域,不宜用于临床诊断或其他用途。

透析胎牛血清说明书


Gemini 品牌 1985 年成立于美国,是一家为医学研究与药物发现、细胞治疗研究提供高品质的细胞培养原材料,包含动物源以及人源的血清、血浆、培养试剂。胎牛血清血源地涵盖澳大利亚、新西兰、巴拿马、乌拉圭、巴西和阿根廷等。除了动物来源的血液制品,还提供人 AB 型血清,为细胞治疗、单抗药物研发助力。‍

 

透析胎牛血清说明书

货号#

geminibio 100-108

透析从 FBS 中去除许多小分子,例如葡萄糖、盐和一些非蛋白质结合的血清分子。这个过程通常不会去除与血清结合的激素,但它可能会降低某些细胞类型的生长促进能力。透析过程是通过具有 10,000 分子量截止膜的超滤来完成的。血清在 4°C 下处理,并仔细监测 pH、渗透压和葡萄糖浓度。• 无菌过滤 • 支原体测试和病毒筛查 • 干冰运输。-20 至 -10°C 冷冻保存

胎牛血清


胎牛血清

简要描述:胎牛血清,牛血清,牛血清白蛋白

详细介绍

产品咨询

上海金畔生物科技有限公司胎牛血清,牛血清,牛血清白蛋白专业代理,具体产品信息欢迎电询:

产品名称 型号 编 号 包装规格 血源(国家) 计费重量(毫升)

销售价格

(含税)

胎牛血清 过滤 FBS500-S 500ml 澳大利亚/新西兰 500ml ¥4,540.00

新生小牛血清 60天)

过滤 NBCS500-S 500ml 澳大利亚/新西兰 500ml ¥980.00
新生小牛血清10天) 过滤 NCS500-S 500ml 澳大利亚/新西兰 500ml ¥1,120.00
新生牛血清 过滤 NCS1L-S 1000ml 澳大利亚/新西兰 1000ml ¥1,840.00
牛血清 (0.2um) 过滤 CS500-S 500ml 澳大利亚/新西兰 500ml ¥900.00
成年牛血清(0.45um) 过滤 ABS4.5- 0.45 4.5 L 澳大利亚/新西兰 4500ml ¥2,500.00
产品名称 型号 编号 包装规格 血源(国家) 计费重量/千克 销售价格 (含税)
牛血清白蛋白 标准 SBSA 100g 澳大利亚/新西兰   ¥2,120.00
牛血清白蛋白 标准 SBSA 500g 澳大利亚/新西兰   ¥6,240.00
牛血清白蛋白 标准 SBSA 1 kg 澳大利亚/新西兰   ¥8,200.00
牛血清白蛋白 标准 SBSA 10 kg 澳大利亚/新西兰 10 kg ¥72,800.00
牛血清白蛋白 高纯度 PBSA 100g 澳大利亚   ¥2,500.00
牛血清白蛋白 高纯度 PBSA 500g 澳大利亚   ¥7,820.00
牛血清白蛋白 高纯度 PBSA 1 kg 澳大利亚   ¥9,640.00
牛血清白蛋白 高纯度 PBSA 10 kg 澳大利亚 10 kg ¥89,420.00

上海金畔生物科技有限公司

胎牛血清(南美特级) 动物细胞培养基|Fetal Bovine Serum Origin South America Gold

胎牛血清(南美特级) 动物细胞培养基|Fetal Bovine Serum Origin South America Gold

产品说明书

FAQ

COA

已发表文献

 

Yeasen胎牛血清(特级)3100 nm过滤和支原体、病毒筛查,经过严格检验测试后全自动化罐装,规范化生产,品质保证,含有丰富的细胞生长所需的营养成分,适用于培养大部分常规细胞系

 

产品性质

中文别名(Chinese Synonym)

胎牛血清(特级)

英文别名(English Synonym)

Fetal Bovine Serum Gold

内毒素水平

≤5 EU/mL

血红蛋白含量

≤0.02%(w/v)

支原体检测

阴性

灭菌处理

三次100 nm过滤

 

运输和保存方法

运输方式干冰运输

保存方式:-20℃至-10℃可保存5年

【注】一旦解冻,血清应该保存在2℃到8℃冰箱,存储时间不宜超过6周。如果需要长期保存,建议将血清先进行分装后重新冷冻保存。

 

解冻的方式(二者选一)

1) 将血清从-20℃存储条件下取出,放置于2℃至8℃冰箱中过夜。然后将血清转移到37℃的水浴中,不时的摇动瓶身混合里面的液体。解冻以后不要在37℃水浴放置太长时间。

2) 直接将血清从-20℃取出后,放置于37℃水浴中,不断摇晃瓶身使其加快解冻和混合。

【注】如果不晃动瓶身,当温度超过40℃的时候沉积在瓶底的物质有可能会发生蛋白变形,出现沉淀。

 

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作。

2)本产品仅作科研用途!

 

HB211231

 

 

Q: 请问我们的血清拿到之后还需要热灭活吗?

A: 现在商业化的血清产品,基本上出厂之前都经过了灭活处理,所以一般情况下,就不需要再操作一次灭活了

Q: 解冻后血清中有悬浮物质/絮状沉淀,因怎样处理?

A: 血清中沉淀物的出现有许多种原因,但最普遍的原因是由于血清中脂蛋白的变性所造成,而血纤维蛋白(形成凝血的蛋白之一)在血清解冻后,也会存在于血清中,亦是造成沉淀物的主要原因之一。但这些絮状沉淀物,并不影响血清本身的质量。

去除这些絮状沉淀物,可以将血清分装至无菌离心管内,以400g稍微离心,上清液即可接着加入培养基内一起过滤.我们不建议您以过滤的方法去除这些絮状物,因为它可能会阻塞您的过滤膜我们建议您在使用血清的时候,注意正确的血清解冻步骤,并尽量避免灭活血清及长时间的将血清置于高温环境中

Q:为什么我们的血清看着比较黄,竞品公司血清比较红?

A:血红蛋白的原因,血红蛋白含量比较高,血清就会比较红,血红蛋白含量较少,所以会比较黄,血清本质是黄的。

[1] Hu S, Peng L, Xu C, Wang Z, Song A, Chen FX. SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape. Mol Cell. 2021;81(21):4425-4439.e6. doi:10.1016/j.molcel.2021.08.029(IF:17.970)
[2] Tu J, Li W, Yang S, et al. Single-Cell Transcriptome Profiling Reveals Multicellular Ecosystem of Nucleus Pulposus during Degeneration Progression. Adv Sci (Weinh). 2022;9(3):e2103631. doi:10.1002/advs.202103631(IF:16.806)
[3] Zhang W, Liu J, Li X, et al. Precise Chemodynamic Therapy of Cancer by Trifunctional Bacterium-Based Nanozymes. ACS Nano. 2021;15(12):19321-19333. doi:10.1021/acsnano.1c05605(IF:15.881)
[4] Zhao C, Xie Y, Xu L, et al. Structures of a mammalian TRPM8 in closed state. Nat Commun. 2022;13(1):3113. Published 2022 Jun 3. doi:10.1038/s41467-022-30919-y(IF:14.919)
[5] Cai Z, Zhang Y, Zhang W, et al. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol. 2022;52:102321. doi:10.1016/j.redox.2022.102321(IF:11.799)
[6] Li S, Zhang J, Qian S, et al. S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (Lond). 2021;41(2):154-170. doi:10.1002/cac2.12130(IF:10.392)
[7] Yang X, Qiu Q, Liu G, et al. Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria. J Control Release. 2022;341:329-340. doi:10.1016/j.jconrel.2021.11.037(IF:9.776)
[8] Wang X, Qi Y, Wang Z, et al. RPAP2 regulates a transcription initiation checkpoint by inhibiting assembly of pre-initiation complex. Cell Rep. 2022;39(4):110732. doi:10.1016/j.celrep.2022.110732(IF:9.423)
[9] Ma Z, Zhang Y, Zhang J, et al. Ultrasmall Peptide-Coated Platinum Nanoparticles for Precise NIR-II Photothermal Therapy by Mitochondrial Targeting. ACS Appl Mater Interfaces. 2020;12(35):39434-39443. doi:10.1021/acsami.0c11469(IF:8.758)
[10] Sun Q, Ye Y, Gui A, et al. MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett. 2022;537:215678. doi:10.1016/j.canlet.2022.215678(IF:8.679)
[11] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[12] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[13] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[14] Liu Z, Tao C, Li S, et al. circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing. Elife. 2021;10:e69457. Published 2021 Oct 14. doi:10.7554/eLife.69457(IF:8.146)
[15] Cao J, Peng X, Li H, et al. Ultrasound-assisted continuous-flow synthesis of PEGylated MIL-101(Cr) nanoparticles for hematopoietic radioprotection. Mater Sci Eng C Mater Biol Appl. 2021;129:112369. doi:10.1016/j.msec.2021.112369(IF:7.328)
[16] Ma H, Lin J, Li L, et al. Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. Chemosphere. 2021;282:131149. doi:10.1016/j.chemosphere.2021.131149(IF:7.086)
[17] Chen Y, Chen Y, Jiang X, et al. Vascular Adventitial Fibroblasts-Derived FGF10 Promotes Vascular Smooth Muscle Cells Proliferation and Migration in vitro and the Neointima Formation in vivo. J Inflamm Res. 2021;14:2207-2223. Published 2021 May 25. doi:10.2147/JIR.S305204(IF:6.922)
[18] Wang Y, Zhao M, Li W, et al. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol. 2021;9:656153. Published 2021 Apr 1. doi:10.3389/fcell.2021.656153(IF:6.684)
[19] Liu W, Wu Z, Yu Y, et al. Functional Evaluation of KEL as an Oncogenic Gene in the Progression of Acute Erythroleukemia. Oxid Med Cell Longev. 2022;2022:5885342. Published 2022 Jan 30. doi:10.1155/2022/5885342(IF:6.543)
[20] Wang G, Wang H, Jin Y, et al. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota. Food Res Int. 2022;155:111003. doi:10.1016/j.foodres.2022.111003(IF:6.475)
[21] Zhi W, Li S, Wan Y, Wu F, Hong L. Short-term starvation synergistically enhances cytotoxicity of Niraparib via Akt/mTOR signaling pathway in ovarian cancer therapy [published correction appears in Cancer Cell Int. 2022 Mar 21;22(1):131]. Cancer Cell Int. 2022;22(1):18. Published 2022 Jan 11. doi:10.1186/s12935-022-02447-8(IF:5.722)
[22] Wang Q, Zhu Y, Li Z, et al. Up-regulation of SPC25 promotes breast cancer. Aging (Albany NY). 2019;11(15):5689-5704. doi:10.18632/aging.102153(IF:5.515)
[23] Liu XF, Zhu XD, Feng LH, et al. Physical activity improves outcomes of combined lenvatinib plus anti-PD-1 therapy in unresectable hepatocellular carcinoma: a retrospective study and mouse model. Exp Hematol Oncol. 2022;11(1):20. Published 2022 Apr 4. doi:10.1186/s40164-022-00275-0(IF:5.133)
[24] Gao Z, Wang T, Li R, et al. The discovery of a novel series of potential ERRα inverse agonists based on p-nitrobenzenesulfonamide template for triple-negative breast cancer in vivo. J Enzyme Inhib Med Chem. 2022;37(1):125-134. doi:10.1080/14756366.2021.1995728(IF:5.051)
[25] Liu ZZ, Duan XX, Yuan MC, et al. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci. 2022;294:120370. doi:10.1016/j.lfs.2022.120370(IF:5.037)
[26] Wu Z, Wang Q, Yang H, et al. Discovery of Natural Products Targeting NQO1 via an Approach Combining Network-Based Inference and Identification of Privileged Substructures. J Chem Inf Model. 2021;61(5):2486-2498. doi:10.1021/acs.jcim.1c00260(IF:4.956)
[27] Yang X, Miao BS, Wei CY, et al. Lymphoid-specific helicase promotes the growth and invasion of hepatocellular carcinoma by transcriptional regulation of centromere protein F expression. Cancer Sci. 2019;110(7):2133-2144. doi:10.1111/cas.14037(IF:4.751)
[28] Dai Y, Li Y, Lin G, et al. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line [published online ahead of print, 2022 Jun 21]. Fish Shellfish Immunol. 2022;127:681-689. doi:10.1016/j.fsi.2022.06.022(IF:4.581)
[29] Qin F, Zhang W, Zhang M, et al. Adipose-Derived Stem Cells Improve the Aging Skin of Nude Mice by Promoting Angiogenesis and Reducing Local Tissue Water. Aesthet Surg J. 2021;41(7):NP905-NP913. doi:10.1093/asj/sjab001(IF:4.283)
[30] Luo H, Zheng J, Chen Y, et al. Utility Evaluation of Porcine Enteroids as PDCoV Infection Model in vitro. Front Microbiol. 2020;11:821. Published 2020 Apr 23. doi:10.3389/fmicb.2020.00821(IF:4.236)
[31] Ma H, Ding Z, Xie Y, et al. Methylglyoxal produced by tumor cells through formaldehyde-enhanced Warburg effect potentiated polarization of tumor-associated macrophages. Toxicol Appl Pharmacol. 2022;438:115910. doi:10.1016/j.taap.2022.115910(IF:4.219)
[32] Peng X, Wang K, Zhang C, et al. The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics. Free Radic Res. 2021;55(11-12):1080-1093. doi:10.1080/10715762.2021.2018426(IF:4.148)
[33] Niu Y, Liu F, Wang X, et al. miR-183-5p Promotes HCC Migration/Invasion via Increasing Aerobic Glycolysis. Onco Targets Ther. 2021;14:3649-3658. Published 2021 Jun 4. doi:10.2147/OTT.S304117(IF:4.147)
[34] Sun J, Zhou YQ, Xu BY, et al. STING/NF-κB/IL-6-Mediated Inflammation in Microglia Contributes to Spared Nerve Injury (SNI)-Induced Pain Initiation [published online ahead of print, 2021 Nov 2]. J Neuroimmune Pharmacol. 2021;10.1007/s11481-021-10031-6. doi:10.1007/s11481-021-10031-6(IF:4.147)
[35] Duan H, Lei Z, Xu F, et al. PARK2 Suppresses Proliferation and Tumorigenicity in Non-small Cell Lung Cancer. Front Oncol. 2019;9:790. Published 2019 Aug 23. doi:10.3389/fonc.2019.00790(IF:4.137)
[36] Liu Q, Tian R, Yu P, Shu M. miR-221/222 suppression induced by activation of the cAMP/PKA/CREB1 pathway is required for cAMP-induced bidirectional differentiation of glioma cells. FEBS Lett. 2021;595(22):2829-2843. doi:10.1002/1873-3468.14208(IF:4.124)
[37] Zeng WJ, Lu C, Shi Y, et al. Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res. 2020;1867(10):118795. doi:10.1016/j.bbamcr.2020.118795(IF:4.105)
[38] Pan H, Chai W, Liu X, Yu T, Sun L, Yan M. DYNC1H1 regulates NSCLC cell growth and metastasis by IFN-γ-JAK-STAT signaling and is associated with an aberrant immune response. Exp Cell Res. 2021;409(1):112897. doi:10.1016/j.yexcr.2021.112897(IF:3.905)
[39] Qin F, Huang J, Zhang W, et al. The Paracrine Effect of Adipose-Derived Stem Cells Orchestrates Competition between Different Damaged Dermal Fibroblasts to Repair UVB-Induced Skin Aging. Stem Cells Int. 2020;2020:8878370. Published 2020 Dec 17. doi:10.1155/2020/8878370(IF:3.869)
[40] Wang L, Hu D, Xie B, Xie L. Blockade of Myd88 signaling by a novel MyD88 inhibitor prevents colitis-associated colorectal cancer development by impairing myeloid-derived suppressor cells. Invest New Drugs. 2022;40(3):506-518. doi:10.1007/s10637-022-01218-6(IF:3.850)
[41] Xie H, Zhang C, Zhang J, et al. An in vitro cell model to study microglia activation in diabetic retinopathy. Cell Biol Int. 2022;46(1):129-138. doi:10.1002/cbin.11710(IF:3.612)
[42] Li X, Wang X, Miao L, Guo Y, Yuan R, Tian H. Design, synthesis, and neuroprotective effects of novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opened derivatives. Biochem Biophys Res Commun. 2021;556:99-105. doi:10.1016/j.bbrc.2021.03.171(IF:3.575)
[43] Zhu Y, Wu H, Yang X, Xiong Z, Zhao T, Gan X. LINC00514 facilitates cell proliferation, migration, invasion, and epithelial-mesenchymal transition in non-small cell lung cancer by acting on the Wnt/β-catenin signaling pathway. Bioengineered. 2022;13(5):13654-13666. doi:10.1080/21655979.2022.2084246(IF:3.269)
[44] Wang XH, Gao JW, Bao JP, et al. GATA4 promotes the senescence of nucleus pulposus cells via NF-κB pathway. Arch Gerontol Geriatr. 2022;101:104676. doi:10.1016/j.archger.2022.104676(IF:3.250)
[45] Huang D, Xiong M, Xu X, et al. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochem Biophys Res Commun. 2020;529(2):289-295. doi:10.1016/j.bbrc.2020.05.226(IF:2.985)
[46] Ma H, Song X, Huang P, et al. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutat Res Genet Toxicol Environ Mutagen. 2021;865:503337. doi:10.1016/j.mrgentox.2021.503337(IF:2.873)
[47] Wang D, Xue Z, Wu H, Shi G, Feng S, Zhao L. Hepatoprotective effect and structural analysis of Hedysarum polysaccharides in vivo and in vitro [published online ahead of print, 2022 Apr 28]. J Food Biochem. 2022;e14188. doi:10.1111/jfbc.14188(IF:2.720)
[48] Xiao L, Zhang S, Zheng Q, Zhang S. Dysregulation of KIF14 regulates the cell cycle and predicts poor prognosis in cervical cancer: a study based on integrated approaches. Braz J Med Biol Res. 2021;54(11):e11363. Published 2021 Sep 3. doi:10.1590/1414-431X2021e11363(IF:2.590)
[49] Li T, Liu Y, Zhang Q, Sun W, Dong Y. A steroid-induced osteonecrosis model established using an organ-on-a-chip platform. Exp Ther Med. 2021;22(4):1070. doi:10.3892/etm.2021.10504(IF:2.447)
[50] Zheng GD, Hu PJ, Chao YX, et al. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway. Food Sci Nutr. 2019;7(3):1104-1112. Published 2019 Feb 10. doi:10.1002/fsn3.953(IF:1.747)
[51] Ying J, Huang HH, Zhang MM, Chen JF. Up-regulation of SOCS4 promotes cell proliferation and migration in esophageal squamous cell carcinoma. Transl Cancer Res. 2021;10(5):2416-2427. doi:10.21037/tcr-21-700(IF:1.241)

 

Yeasen胎牛血清(特级)3100 nm过滤和支原体、病毒筛查,经过严格检验测试后全自动化罐装,规范化生产,品质保证,含有丰富的细胞生长所需的营养成分,适用于培养大部分常规细胞系

 

产品性质

中文别名(Chinese Synonym)

胎牛血清(特级)

英文别名(English Synonym)

Fetal Bovine Serum Gold

内毒素水平

≤5 EU/mL

血红蛋白含量

≤0.02%(w/v)

支原体检测

阴性

灭菌处理

三次100 nm过滤

 

运输和保存方法

运输方式干冰运输

保存方式:-20℃至-10℃可保存5年

【注】一旦解冻,血清应该保存在2℃到8℃冰箱,存储时间不宜超过6周。如果需要长期保存,建议将血清先进行分装后重新冷冻保存。

 

解冻的方式(二者选一)

1) 将血清从-20℃存储条件下取出,放置于2℃至8℃冰箱中过夜。然后将血清转移到37℃的水浴中,不时的摇动瓶身混合里面的液体。解冻以后不要在37℃水浴放置太长时间。

2) 直接将血清从-20℃取出后,放置于37℃水浴中,不断摇晃瓶身使其加快解冻和混合。

【注】如果不晃动瓶身,当温度超过40℃的时候沉积在瓶底的物质有可能会发生蛋白变形,出现沉淀。

 

注意事项

1)为了您的安全和健康,请穿实验服并戴一次性手套操作。

2)本产品仅作科研用途!

 

HB211231

 

 

Q: 请问我们的血清拿到之后还需要热灭活吗?

A: 现在商业化的血清产品,基本上出厂之前都经过了灭活处理,所以一般情况下,就不需要再操作一次灭活了

Q: 解冻后血清中有悬浮物质/絮状沉淀,因怎样处理?

A: 血清中沉淀物的出现有许多种原因,但最普遍的原因是由于血清中脂蛋白的变性所造成,而血纤维蛋白(形成凝血的蛋白之一)在血清解冻后,也会存在于血清中,亦是造成沉淀物的主要原因之一。但这些絮状沉淀物,并不影响血清本身的质量。

去除这些絮状沉淀物,可以将血清分装至无菌离心管内,以400g稍微离心,上清液即可接着加入培养基内一起过滤.我们不建议您以过滤的方法去除这些絮状物,因为它可能会阻塞您的过滤膜我们建议您在使用血清的时候,注意正确的血清解冻步骤,并尽量避免灭活血清及长时间的将血清置于高温环境中

Q:为什么我们的血清看着比较黄,竞品公司血清比较红?

A:血红蛋白的原因,血红蛋白含量比较高,血清就会比较红,血红蛋白含量较少,所以会比较黄,血清本质是黄的。

[1] Hu S, Peng L, Xu C, Wang Z, Song A, Chen FX. SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape. Mol Cell. 2021;81(21):4425-4439.e6. doi:10.1016/j.molcel.2021.08.029(IF:17.970)
[2] Tu J, Li W, Yang S, et al. Single-Cell Transcriptome Profiling Reveals Multicellular Ecosystem of Nucleus Pulposus during Degeneration Progression. Adv Sci (Weinh). 2022;9(3):e2103631. doi:10.1002/advs.202103631(IF:16.806)
[3] Zhang W, Liu J, Li X, et al. Precise Chemodynamic Therapy of Cancer by Trifunctional Bacterium-Based Nanozymes. ACS Nano. 2021;15(12):19321-19333. doi:10.1021/acsnano.1c05605(IF:15.881)
[4] Zhao C, Xie Y, Xu L, et al. Structures of a mammalian TRPM8 in closed state. Nat Commun. 2022;13(1):3113. Published 2022 Jun 3. doi:10.1038/s41467-022-30919-y(IF:14.919)
[5] Cai Z, Zhang Y, Zhang W, et al. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol. 2022;52:102321. doi:10.1016/j.redox.2022.102321(IF:11.799)
[6] Li S, Zhang J, Qian S, et al. S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (Lond). 2021;41(2):154-170. doi:10.1002/cac2.12130(IF:10.392)
[7] Yang X, Qiu Q, Liu G, et al. Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria. J Control Release. 2022;341:329-340. doi:10.1016/j.jconrel.2021.11.037(IF:9.776)
[8] Wang X, Qi Y, Wang Z, et al. RPAP2 regulates a transcription initiation checkpoint by inhibiting assembly of pre-initiation complex. Cell Rep. 2022;39(4):110732. doi:10.1016/j.celrep.2022.110732(IF:9.423)
[9] Ma Z, Zhang Y, Zhang J, et al. Ultrasmall Peptide-Coated Platinum Nanoparticles for Precise NIR-II Photothermal Therapy by Mitochondrial Targeting. ACS Appl Mater Interfaces. 2020;12(35):39434-39443. doi:10.1021/acsami.0c11469(IF:8.758)
[10] Sun Q, Ye Y, Gui A, et al. MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett. 2022;537:215678. doi:10.1016/j.canlet.2022.215678(IF:8.679)
[11] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[12] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[13] Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight. 2022;7(10):e157874. Published 2022 May 23. doi:10.1172/jci.insight.157874(IF:8.315)
[14] Liu Z, Tao C, Li S, et al. circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing. Elife. 2021;10:e69457. Published 2021 Oct 14. doi:10.7554/eLife.69457(IF:8.146)
[15] Cao J, Peng X, Li H, et al. Ultrasound-assisted continuous-flow synthesis of PEGylated MIL-101(Cr) nanoparticles for hematopoietic radioprotection. Mater Sci Eng C Mater Biol Appl. 2021;129:112369. doi:10.1016/j.msec.2021.112369(IF:7.328)
[16] Ma H, Lin J, Li L, et al. Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. Chemosphere. 2021;282:131149. doi:10.1016/j.chemosphere.2021.131149(IF:7.086)
[17] Chen Y, Chen Y, Jiang X, et al. Vascular Adventitial Fibroblasts-Derived FGF10 Promotes Vascular Smooth Muscle Cells Proliferation and Migration in vitro and the Neointima Formation in vivo. J Inflamm Res. 2021;14:2207-2223. Published 2021 May 25. doi:10.2147/JIR.S305204(IF:6.922)
[18] Wang Y, Zhao M, Li W, et al. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol. 2021;9:656153. Published 2021 Apr 1. doi:10.3389/fcell.2021.656153(IF:6.684)
[19] Liu W, Wu Z, Yu Y, et al. Functional Evaluation of KEL as an Oncogenic Gene in the Progression of Acute Erythroleukemia. Oxid Med Cell Longev. 2022;2022:5885342. Published 2022 Jan 30. doi:10.1155/2022/5885342(IF:6.543)
[20] Wang G, Wang H, Jin Y, et al. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota. Food Res Int. 2022;155:111003. doi:10.1016/j.foodres.2022.111003(IF:6.475)
[21] Zhi W, Li S, Wan Y, Wu F, Hong L. Short-term starvation synergistically enhances cytotoxicity of Niraparib via Akt/mTOR signaling pathway in ovarian cancer therapy [published correction appears in Cancer Cell Int. 2022 Mar 21;22(1):131]. Cancer Cell Int. 2022;22(1):18. Published 2022 Jan 11. doi:10.1186/s12935-022-02447-8(IF:5.722)
[22] Wang Q, Zhu Y, Li Z, et al. Up-regulation of SPC25 promotes breast cancer. Aging (Albany NY). 2019;11(15):5689-5704. doi:10.18632/aging.102153(IF:5.515)
[23] Liu XF, Zhu XD, Feng LH, et al. Physical activity improves outcomes of combined lenvatinib plus anti-PD-1 therapy in unresectable hepatocellular carcinoma: a retrospective study and mouse model. Exp Hematol Oncol. 2022;11(1):20. Published 2022 Apr 4. doi:10.1186/s40164-022-00275-0(IF:5.133)
[24] Gao Z, Wang T, Li R, et al. The discovery of a novel series of potential ERRα inverse agonists based on p-nitrobenzenesulfonamide template for triple-negative breast cancer in vivo. J Enzyme Inhib Med Chem. 2022;37(1):125-134. doi:10.1080/14756366.2021.1995728(IF:5.051)
[25] Liu ZZ, Duan XX, Yuan MC, et al. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci. 2022;294:120370. doi:10.1016/j.lfs.2022.120370(IF:5.037)
[26] Wu Z, Wang Q, Yang H, et al. Discovery of Natural Products Targeting NQO1 via an Approach Combining Network-Based Inference and Identification of Privileged Substructures. J Chem Inf Model. 2021;61(5):2486-2498. doi:10.1021/acs.jcim.1c00260(IF:4.956)
[27] Yang X, Miao BS, Wei CY, et al. Lymphoid-specific helicase promotes the growth and invasion of hepatocellular carcinoma by transcriptional regulation of centromere protein F expression. Cancer Sci. 2019;110(7):2133-2144. doi:10.1111/cas.14037(IF:4.751)
[28] Dai Y, Li Y, Lin G, et al. Non-pathogenic grass carp reovirus infection leads to both apoptosis and autophagy in a grass carp cell line [published online ahead of print, 2022 Jun 21]. Fish Shellfish Immunol. 2022;127:681-689. doi:10.1016/j.fsi.2022.06.022(IF:4.581)
[29] Qin F, Zhang W, Zhang M, et al. Adipose-Derived Stem Cells Improve the Aging Skin of Nude Mice by Promoting Angiogenesis and Reducing Local Tissue Water. Aesthet Surg J. 2021;41(7):NP905-NP913. doi:10.1093/asj/sjab001(IF:4.283)
[30] Luo H, Zheng J, Chen Y, et al. Utility Evaluation of Porcine Enteroids as PDCoV Infection Model in vitro. Front Microbiol. 2020;11:821. Published 2020 Apr 23. doi:10.3389/fmicb.2020.00821(IF:4.236)
[31] Ma H, Ding Z, Xie Y, et al. Methylglyoxal produced by tumor cells through formaldehyde-enhanced Warburg effect potentiated polarization of tumor-associated macrophages. Toxicol Appl Pharmacol. 2022;438:115910. doi:10.1016/j.taap.2022.115910(IF:4.219)
[32] Peng X, Wang K, Zhang C, et al. The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics. Free Radic Res. 2021;55(11-12):1080-1093. doi:10.1080/10715762.2021.2018426(IF:4.148)
[33] Niu Y, Liu F, Wang X, et al. miR-183-5p Promotes HCC Migration/Invasion via Increasing Aerobic Glycolysis. Onco Targets Ther. 2021;14:3649-3658. Published 2021 Jun 4. doi:10.2147/OTT.S304117(IF:4.147)
[34] Sun J, Zhou YQ, Xu BY, et al. STING/NF-κB/IL-6-Mediated Inflammation in Microglia Contributes to Spared Nerve Injury (SNI)-Induced Pain Initiation [published online ahead of print, 2021 Nov 2]. J Neuroimmune Pharmacol. 2021;10.1007/s11481-021-10031-6. doi:10.1007/s11481-021-10031-6(IF:4.147)
[35] Duan H, Lei Z, Xu F, et al. PARK2 Suppresses Proliferation and Tumorigenicity in Non-small Cell Lung Cancer. Front Oncol. 2019;9:790. Published 2019 Aug 23. doi:10.3389/fonc.2019.00790(IF:4.137)
[36] Liu Q, Tian R, Yu P, Shu M. miR-221/222 suppression induced by activation of the cAMP/PKA/CREB1 pathway is required for cAMP-induced bidirectional differentiation of glioma cells. FEBS Lett. 2021;595(22):2829-2843. doi:10.1002/1873-3468.14208(IF:4.124)
[37] Zeng WJ, Lu C, Shi Y, et al. Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res. 2020;1867(10):118795. doi:10.1016/j.bbamcr.2020.118795(IF:4.105)
[38] Pan H, Chai W, Liu X, Yu T, Sun L, Yan M. DYNC1H1 regulates NSCLC cell growth and metastasis by IFN-γ-JAK-STAT signaling and is associated with an aberrant immune response. Exp Cell Res. 2021;409(1):112897. doi:10.1016/j.yexcr.2021.112897(IF:3.905)
[39] Qin F, Huang J, Zhang W, et al. The Paracrine Effect of Adipose-Derived Stem Cells Orchestrates Competition between Different Damaged Dermal Fibroblasts to Repair UVB-Induced Skin Aging. Stem Cells Int. 2020;2020:8878370. Published 2020 Dec 17. doi:10.1155/2020/8878370(IF:3.869)
[40] Wang L, Hu D, Xie B, Xie L. Blockade of Myd88 signaling by a novel MyD88 inhibitor prevents colitis-associated colorectal cancer development by impairing myeloid-derived suppressor cells. Invest New Drugs. 2022;40(3):506-518. doi:10.1007/s10637-022-01218-6(IF:3.850)
[41] Xie H, Zhang C, Zhang J, et al. An in vitro cell model to study microglia activation in diabetic retinopathy. Cell Biol Int. 2022;46(1):129-138. doi:10.1002/cbin.11710(IF:3.612)
[42] Li X, Wang X, Miao L, Guo Y, Yuan R, Tian H. Design, synthesis, and neuroprotective effects of novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opened derivatives. Biochem Biophys Res Commun. 2021;556:99-105. doi:10.1016/j.bbrc.2021.03.171(IF:3.575)
[43] Zhu Y, Wu H, Yang X, Xiong Z, Zhao T, Gan X. LINC00514 facilitates cell proliferation, migration, invasion, and epithelial-mesenchymal transition in non-small cell lung cancer by acting on the Wnt/β-catenin signaling pathway. Bioengineered. 2022;13(5):13654-13666. doi:10.1080/21655979.2022.2084246(IF:3.269)
[44] Wang XH, Gao JW, Bao JP, et al. GATA4 promotes the senescence of nucleus pulposus cells via NF-κB pathway. Arch Gerontol Geriatr. 2022;101:104676. doi:10.1016/j.archger.2022.104676(IF:3.250)
[45] Huang D, Xiong M, Xu X, et al. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochem Biophys Res Commun. 2020;529(2):289-295. doi:10.1016/j.bbrc.2020.05.226(IF:2.985)
[46] Ma H, Song X, Huang P, et al. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutat Res Genet Toxicol Environ Mutagen. 2021;865:503337. doi:10.1016/j.mrgentox.2021.503337(IF:2.873)
[47] Wang D, Xue Z, Wu H, Shi G, Feng S, Zhao L. Hepatoprotective effect and structural analysis of Hedysarum polysaccharides in vivo and in vitro [published online ahead of print, 2022 Apr 28]. J Food Biochem. 2022;e14188. doi:10.1111/jfbc.14188(IF:2.720)
[48] Xiao L, Zhang S, Zheng Q, Zhang S. Dysregulation of KIF14 regulates the cell cycle and predicts poor prognosis in cervical cancer: a study based on integrated approaches. Braz J Med Biol Res. 2021;54(11):e11363. Published 2021 Sep 3. doi:10.1590/1414-431X2021e11363(IF:2.590)
[49] Li T, Liu Y, Zhang Q, Sun W, Dong Y. A steroid-induced osteonecrosis model established using an organ-on-a-chip platform. Exp Ther Med. 2021;22(4):1070. doi:10.3892/etm.2021.10504(IF:2.447)
[50] Zheng GD, Hu PJ, Chao YX, et al. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway. Food Sci Nutr. 2019;7(3):1104-1112. Published 2019 Feb 10. doi:10.1002/fsn3.953(IF:1.747)
[51] Ying J, Huang HH, Zhang MM, Chen JF. Up-regulation of SOCS4 promotes cell proliferation and migration in esophageal squamous cell carcinoma. Transl Cancer Res. 2021;10(5):2416-2427. doi:10.21037/tcr-21-700(IF:1.241)