Golgi-Tracker Red (高尔基体红色荧光探针)(C1043)

Golgi-Tracker Red (高尔基体红色荧光探针)

产品编号: C1043

产品包装:1mg
选择包装

1mg

说明书下载

1428.00 10

价格: ¥ 1428.00

产品简介
使用说明
产品图片
相关产品
相关论文
产品问答
产品编号 产品名称 产品包装 产品价格
C1043 Golgi-Tracker Red (高尔基体红色荧光探针) 1mg 1428.00元

Golgi-Tracker Red是一种高尔基体红色荧光探针,是神经鞘脂(sphingolipid)类荧光探针中的一种,可以用于活细胞高尔基体特异性荧光染色。
Golgi-Tracker Red为采用Molecular Probes公司的BODIPY TR进行了荧光标记的C5-ceramide。Ceramide或其类似物可以选择性地和高尔基体结合,因此荧光标记的ceramide可以用作高尔基体特异性的荧光探针。Golgi-Tracker Red可以用于活细胞的高尔基体荧光标记,但不适合用于固定细胞的标记。Golgi-Tracker Red的化学结构式参考图1。
Golgi-Tracker Red (高尔基体红色荧光探针)(C1043) 图1.Golgi-Tracker Red的化学结构式。 Golgi-Tracker Red分子式为C39H50BF2N3O4S,分子量为705.71,呈红色荧光,最大激发波长为589nm,最大发射波长为617nm。Golgi-Tracker Red的激发光谱和发射光谱参考图2。
Golgi-Tracker Red (高尔基体红色荧光探针)(C1043) 图2. Golgi-Tracker Red的激发光谱和发射光谱。 Golgi-Tracker Red常用于活细胞的脂类运输和代谢研究,相比较于传统的同类型探针NBD C6-ceramide,其呈现出更高的摩尔吸光系数和光量子产量,且光稳定性更强。除了以上应用,本探针还可用来测定Schwann细胞内脂类合成的速率,以及标记细胞轮廓以便于共聚焦显微镜下观察形态运动。
本Golgi-Tracker Red探针已与BSA形成复合物。本产品所属的神经鞘脂类荧光探针与BSA形成复合物后,对活细胞高尔基体的标记会更加高效。
本试剂盒提供了Golgi-Tracker Red稀释液,使Golgi-Tracker Red的使用更加便捷。
按照1:100的比例稀释,可以配制3ml Golgi-Tracker Red工作液;按照1:200的比例稀释,可以配制6ml Golgi-Tracker Red工作液。
包装清单:

产品编号 产品名称 包装
C1043-1 Golgi-Tracker Red (33.3mg/ml, 30µl) 1mg
C1043-2 Golgi-Tracker Red稀释液 6ml
说明书 1份

保存条件:
-20℃保存,半年有效。Golgi-Tracker Red需-20℃避光保存。
注意事项:
对于微量的液体,每次使用前先离心数秒钟,使液体充分沉降到管底。
荧光染料均存在淬灭问题,请尽量注意避光,以减缓荧光淬灭。
需自备盖玻片和载玻片(可以向碧云天订购)。
Golgi-Tracker Red可以用于活细胞的高尔基体荧光标记,但不适合用于固定细胞高尔基体的荧光标记。
本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:
1.Golgi-Tracker Red工作液的配制:
a.取少量Golgi-Tracker Red按照1:100的比例加入到Golgi-Tracker Red稀释液中。例如取10µl Golgi-Tracker Red加入到1ml Golgi-Tracker Red稀释液中。混匀后即为Golgi-Tracker Red工作液。
注:工作液中Golgi-Tracker Red的浓度可以根据实际情况进行适当调整,推荐的稀释比例调整范围为1:50-1:200。
b.Golgi-Tracker Red工作液可以在首次使用后回收保存于4℃或-20℃,并重复使用。1-2天内可以4℃保存,更长时间则需-20℃保存。使用至达不到预期效果时可以废弃。
2.活细胞高尔基体的荧光标记:
a.去除细胞培养液,用适量的溶液如HBSS with Ca2+ & Mg2+ (Hanks’ Balanced Salt Solution with Ca2+ & Mg2+)洗涤生长在盖玻片上的细胞。注:HBSS with Ca2+ & Mg2+ (C0219)可以向碧云天订购;对于悬浮细胞的染色可以参考贴壁细胞的染色方法进行。
b.去除洗涤液,加入步骤1配制好的Golgi-Tracker Red染色工作液,与细胞4℃共孵育30分钟。
c.回收Golgi-Tracker Red染色工作液,用冰浴预冷的细胞培养液洗涤细胞3次左右,换新鲜培养液37℃孵育30分钟。
d.用新鲜培养液再洗涤一次,随后通常用荧光显微镜或激光共聚焦显微镜进行观察。此时可观察到高尔基体呈明亮的强荧光染色,而细胞内的其他膜系统呈比较微弱的荧光染色。

相关产品:

产品编号 产品名称 包装
C1002 DAPI 5mg/ml×0.2ml
C1005/C1006 DAPI染色液 10ml/50ml
C1011 Hoechst 33258 10mg
C1017/C1018 Hoechst 33258染色液 10ml/50ml
C1022 Hoechst 33342 10mg
C1025/C1026 Hoechst 33342染色液 10ml/50ml
C1027/C1028/C1029 Hoechst 33342活细胞染色液(100X) 0.1ml/0.5ml/3ml
C1033 Actin-Tracker Green (微丝绿色荧光探针) 0.2ml
C1036 DiI (细胞膜红色荧光探针) 10mg
C1038 DiO (细胞膜绿色荧光探针) 10mg
C1039-10mg DiD (细胞膜远红外荧光探针) 10mg
C1041 ER-Tracker Red (内质网红色荧光探针) 20μl
C1042S ER-Tracker Green (内质网绿色荧光探针) 20μl
C1043 Golgi-Tracker Red (高尔基体红色荧光探针) 1mg
C1045S Golgi-Tracker Green (高尔基体绿色荧光探针) 1mg
C1046 Lyso-Tracker Red (溶酶体红色荧光探针) 50μl
C1047S Lyso-Tracker Green (溶酶体绿色荧光探针) 50μl
C1048 Mito-Tracker Green (线粒体绿色荧光探针) 50μg
C1049-50μg Mito-Tracker Red CMXRos (线粒体红色荧光探针) 50μg
C1049-250μg Mito-Tracker Red CMXRos (线粒体红色荧光探针) 50μg×5
C1050 Tubulin-Tracker Red (抗体法微管红色荧光探针) 40μl
C1051S Tubulin-Tracker Green (抗体法微管绿色荧光探针) 40μl
C1991S 细胞膜红色荧光染色试剂盒(DiI) 200-1000次
C1993S 细胞膜绿色荧光染色试剂盒(DiO) 200-1000次
C1995S 细胞膜远红外荧光染色试剂盒(DiD) 200-1000次
C2005 JC-1 1mg
C2007 Rhodamine 123 5mg

Golgi-Tracker Red (高尔基体红色荧光探针)(C1043)

相关产品请点击如下按钮:
荧光染色
细胞器荧光探针

使用本产品的文献:

1. Zhang Z, Mo D, Ling F, Wang C, Li A, Zhao X, Li Y, Chen Y.
Characterization and promoter activity analysis of a new porcine gene: NICE-3.
DNA Cell Biol . 2010 Mar;29(3):141-7. (IF 3.191)

2. Wu Z, Tang M, Tian T, Wu J, Deng Y, Dong X, Tan Z, Weng X, Liu Z, Wang C, Zhou X.
A specific probe for two-photon fluorescence lysosomal imaging.
Talanta . 2011 Dec 15;87:216-21. (IF 5.339)

3. Wang SB, Shi Q, Xu Y, Xie WL, Zhang J, Tian C, Guo Y, Wang K, Zhang BY, Chen C, Gao C,Dong XP.
Protein Disulfide Isomerase Regulates Endoplasmic Reticulum Stress and the Apoptotic Processduring Prion Infection and PrP Mutant-Induced Cytotoxicity.
PLoS One .2012;7(6):e38221. (IF 2.74)

4. Chen L, Li J, Liu Z, Ma Z, Zhang W, Du L, Xu W, Fang H, Li M.
A novel pH “off-on” fluorescent probes for lysosome imaging.
RSC Adv . 2013 May;12:13412-6. (IF 3.119)

5. He Y, Wang J, Gou L, Shen C, Chen L, Yi C, Wei X, Yang J.
Comprehensive analysis of expression profile reveals the ubiquitous distribution of PPPDE peptidase domain 1, a Golgi apparatus component, and its implications in clinical cancer.
Biochimie . 2013 Jul;95(7):1466-75. (IF 3.413)

6. Zhang E, Luo S, Tan X, Shi C.
Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent.
Biomaterials . 2014 Jan;35(2):771-8. (IF 10.317)

7. Du F, Min Y, Zeng F, Yu C, Wu S.
A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells.
Small . 2014 Mar 12;10(5):964-72. (IF 11.459)

8. Wu L, Yang X, Duan X, Cui L, Li G.
Exogenous expression of marine lectins DlFBL and SpRBL induces cancer cell apoptosis possibly through PRMT5-E2F-1 pathway.
SCI REP-UK . 2014 Mar 28;4:4505. (IF 3.998)

9. Yang X, Wu L, Duan X, Cui L, Luo J, Li G.
Adenovirus carrying gene encoding Haliotis discus discus sialic acid binding lectin induces cancer cell apoptosis.
Mar Drugs . 2014 Jun 30;12(7):3994-4004. (IF 4.073)

10. Xu Y, Xu J, Shan W, Liu M, Cui Y, Li L, Liu C, Huang Y.
The transport mechanism of integrin αvβ3 receptor targeting nanoparticles in Caco-2 cells.
INT J PHARMACOL . 2016 Mar 16;500(1-2):42-53. (IF 0.692)

11. Li G, Gao Y, Cui L, Wu L, Yang X, Chen J.
Anguilla japonica lectin 1 delivery through adenovirus vector induces apoptotic cancer cell deaththrough interaction with PRMT5.
J Gene Med . 2016 Apr;18(4-6):65-74. (IF 3.258)

12. Huang BH, Geng ZR, Ma XY, Zhang C, Zhang ZY, Wang ZL.
Lysosomal ATP imaging in living cells by a water-soluble cationic polythiophene derivative.
Biosens Bioelectron . 2016 Sep 15;83:213-20. (IF 10.257)

13. Chen X, Zhang X, Wang HY, Chen Z, Wu FG.
Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent PlasmaMembrane Imaging Reagent.
Langmuir . 2016 Oct 4;32(39):10126-10135. (IF 3.557)

14. Sun W, Li L, Yang QQ, Zhang ZR, Huang Y.
Two birds, one stone: dual targeting of the cancer cell surface and subcellular mitochondria by thegalectin-3-binding peptide G3-C12.
Acta Pharmacol Sin . 2017 Jan 9. doi: 10.1038/aps.2016.137. [Epub ahead of print] (IF 5.064)

15. Xia D,He Y,Li Q,Hu C,Huang W,Zhang Y,Wan F,Wang C,Gan Y
Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium.
J Control Release . 2018 Jan 10;269:159-170. (IF 7.727)

16. E S,Mao QX,Yuan XL,Kong XL,Chen XW,Wang JH
Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots.
Nanoscale . 2018 Jul 9;10(26):12788-12796. (IF 6.895)

17. Song X,Li R,Deng H,Li Y,Cui Y,Zhang H,Dai W,He B,Zheng Y,Wang X,Zhang Q
Receptor mediated transcytosis in biological barrier: The influence of receptor character and their ligand density on the transmembrane pathway of active-targeting nanocarriers.
Biomaterials. 2018 Oct;180:78-90. (IF 10.317)

18. Cai MJ,Zhan FX,Kong XN,Zhu SZ,Cui Y,Wang Q
RING domain of zinc finger protein like 1 is essential for cell proliferation in endometrial cancer cell line RL95-2.
Gene . 2018 Nov 30;677:17-23. (IF 2.984)

19. Li X,Du X,Ni J
Zn2+ Aggravates Tau Aggregation and Neurotoxicity.
Int J Mol Sci. 2019 Jan 23;20(3). pii: E487. (IF 4.556)

20. Liu Y,Li Q,Xiong X,Zhou Z
Improved mitochondrial targeting effect of HPMA copolymer by SS20 peptide mediation and nonendocytosis pathway.
J Pept Sci . 2019 Feb;25(2):e3144. (IF 1.877)

21. Shao Z,Thomas Y,Hembach L,Xing X,Duan D,Moerschbacher BM,Bulone V,Tirichine L,Bowler C
Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diato
New Phytol. 2019 Mar;221(4):1890-1905. (IF 8.512)

22. Li X,Cao C,Wei P,Xu M,Liu Z,Liu L,Zhong Y,Li R,Zhou Y,Yi T
Self-Assembly of Amphiphilic Peptides for Recognizing High Furin-Expressing Cancer Cells.
ACS APPL MATER INTER. 2019 Apr 3;11(13):12327-12334. (IF 8.758)

23. Lu S,Zhang J,Lian X,Sun L,Meng K,Chen Y,Sun Z,Yin X,Li Y,Zhao J,Wang T,Zhang G,He QY
A hidden human proteome encoded by ‘non-coding’ genes.
Nucleic Acids Res. 2019 Sep 5;47(15):8111-8125. (IF 11.501)

24. Yuyou Qiu,Yiying Gao,Daojiang Yu,Li Zhong,Weichao Cai,Jiang Ji,Fenghao Geng,Guangyu Tang,Huojun Zhang,Jianping Cao,Jie Zhang,Shuyu Zhang
Genome-Wide Analysis Reveals Zinc Transporter ZIP9 Regulated by DNA Methylation Promotes Radiation-Induced Skin Fibrosis via the TGF-β Signaling Pathway
J Invest Dermatol. 2020 Jan;140(1):94-102.e7.;doi: 10.1016/j.jid.2019.04.027. (IF 7.143)

25. Zhaoyang Wang,Jiaoyan Jia,Lu Wang,Feng Li,Yiliang Wang,Yuzhou Jiang,Xiaowei Song,Shurong Qin,Kai Zheng,Ju Ye,Zhe Ren,Yifei Wang,Shuhua Qi
Anti-HSV-1 activity of Aspergillipeptide D, a cyclic pentapepetide isolated from fungus Aspergillus sp. SCSIO 41501
Virol J. 2020 Mar 19;17(1):41.;doi: 10.1186/s12985-020-01315-z. (IF 2.579)

26. Ming-Hong Sun,Xiao-Han Li,Yao Xu,Yi Xu,Zhen-Nan Pan,Shao-Chen Sun
Citrinin exposure disrupts organelle distribution and functions in mouse oocytes
Environ Res. 2020 Jun;185:109476.;doi: 10.1016/j.envres.2020.109476. (IF 5.715)

27. Zhi-Fei Liu,Jian-Fei Ji,Xiao-Feng Jiang,Tong Shao,Dong-Dong Fan,Xin-Hang Jiang,Ai-Fu Lin,Li-Xin Xiang,Jian-Zhong Shao
Characterization of cGAS homologs in innate and adaptive mucosal immunities in zebrafish gives evolutionary insights into cGAS-STING pathway
FASEB J. 2020 Jun;34(6):7786-7809.;doi: 10.1096/fj.201902833R. (IF 4.966)

28. Li-Ping Gao,Yue-Zhang Wu,Kang Xiao,Xue-Hua Yang,Dong-Dong Chen,Qi Shi,Xiao-Ping Dong
Generation and characterization of two strains of transgene mice expressing chimeric MiniSOG-MusPrP
J NEUROSCI METH. 2020 Jul 15;341:108764.;doi: 10.1016/j.jneumeth.2020.108764. (IF 2.214)

29. Suresh Veeraperumal,Hua-Mai Qiu,Shan-Shan Zeng,Wan-Zhi Yao,Bao-Peng Wang,Yang Liu,Kit-Leong Cheong
Polysaccharides from Gracilaria lemaneiformis promote the HaCaT keratinocytes wound healing by polarised and directional cell migration
CARBOHYD POLYM. 2020 Aug 1;241:116310.;doi: 10.1016/j.carbpol.2020.116310. (IF 7.182)

30. Yaxian Zheng,Liyun Xing,Liqiang Chen,Rui Zhou,Jiawei Wu,Xi Zhu,Lian Li,Yucheng Xiang,Ruinan Wu,Ling Zhang,Yuan Huang
Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier
Biomaterials. 2020 Dec;262:120323.;doi: 10.1016/j.biomaterials.2020.120323. (IF 10.317)

31. Yuan-Jing Zou,Meng-Meng Shan,Zhen-Nan Pan,Meng-Hao Pan,Xiao-Han Li,Shao-Chen Sun
Loss of Arf Guanine Nucleotide Exchange Factor GBF1 Activity Disturbs Organelle Dynamics in Mouse Oocytes
Microsc Microanal. 2021 Apr;27(2):400-408.;doi: 10.1017/S1431927620024885. (IF 3.414)