嘌呤霉素Puromycin 嘌呤霉素盐酸盐 氨基糖苷类抗生素|CAS 58-58-2

嘌呤霉素Puromycin 嘌呤霉素盐酸盐 氨基糖苷类抗生素|CAS 58-58-2

产品说明书

FAQ

COA

已发表文献

嘌呤霉素(Puromycin)是由白黑链霉菌(Streptomyces alboniger)发酵代谢产生的一种氨基糖苷类抗生素,通过抑制蛋白质合成而杀死革兰氏阳性菌,各种动物和昆虫细胞。某种特殊情况下有效作用大肠杆菌。作用机制在于嘌呤霉素是氨酰-tRNA分子3´末端的类似物,能够与核糖体的A位点结合并掺入到延伸的肽链中。嘌呤霉素同A位点结合后,不会参与随后的任何反应,从而导致蛋白质合成的提前终止并释放出C-末端含有嘌呤霉素的不成熟多肽。

嘌呤霉素产生菌Streptomyces alboniger内发现的pac基因编码嘌呤霉素N-乙酰转移酶(PAC),赋予机体对嘌呤霉素产生抗性。这一特性如今普遍应用于筛选特定携带pac基因质粒的哺乳动物稳定转染细胞株。

嘌呤霉素在细胞稳转株筛选中的普遍应用与慢病毒载体的特性有关,现在商业化的慢病毒载体多数都携带pac基因。在某些特定情况下,嘌呤霉素亦可以用来筛选转化携带pac基因质粒的大肠杆菌菌株。

 

产品信息

货号

60210JP25/60210JP60/60210JP72/60210JP76/60210JP80

规格

25 mg/100 mg/250 mg/500 mg/1 g

CAS号(CAS NO.)

58-58-2

分子式(Molecular Fomular)

C22H29N7O5·2HCl

分子量(Molecular Weight)

544.43 g/mol

纯度(Purity)

≥98%

外观(Appearance)

白色至米白色粉末

结构(Structure)

嘌呤霉素Puromycin 嘌呤霉素盐酸盐 氨基糖苷类抗生素|CAS 58-58-2嘌呤霉素Puromycin 嘌呤霉素盐酸盐 氨基糖苷类抗生素|CAS 58-58-2

 

储存条件

-25~-15℃保存,有效期2年。

 

使用说明

1. 建议使用浓度

哺乳动物细胞:1-10 μg/mL,最佳浓度需要杀灭曲线来确定。

大肠杆菌:LB琼脂培养基筛选稳定转化pac基因的大肠杆菌,使用浓度为125 μg/mL。

【注】:使用嘌呤霉素筛选大肠杆菌稳转株需要精确的pH值调节,而且受宿主细胞本身的影响。

2.溶解方法

用蒸馏水溶解嘌呤霉素配制成50 mg/mL的母液,经0.22 μm滤膜过滤除菌后分装于-25~-15℃冻存;也可溶于甲醇,配制成10 mg/mL的储存液。

3. 嘌呤霉素杀灭曲线的确定(以shRNA转染或者慢病毒转导为例)

嘌呤霉素有效筛选浓度跟细胞类型、生长状态、细胞密度、细胞代谢情况及细胞所处细胞周期位置等有关。为了筛选到稳定表达的shRNA细胞株,确定杀死未转染/转导细胞的最低浓度嘌呤霉素至关重要。建议初次做实验的客户一定要建立适合自身实验体系的杀死曲线(kill curve)。

1)Day 1:24孔板内5~8×104 cells/孔的密度铺板,铺足够量的孔以进行后续的梯度实验。37℃细胞孵育过夜。

2)Day 2:①准备筛选培养基:含不同浓度嘌呤霉素的新鲜培养基(如0-15 μg/mL,至少5个梯度);②往孵育过夜后的细胞内更换新鲜配制的筛选培养基;之后37℃孵育细胞。

3)Day 4:更换新鲜的筛选培养基,并观察细胞存活率。

4)根据细胞的生长状态,约2-3天更换新鲜的筛选培养基。

5)每日监测细胞,观察存活细胞率,从而确定抗生素筛选开始4-6天内有效杀死非转染或所有非转导细胞的药物最低浓度。

4. 哺乳动物稳定转染细胞株的筛选

等转染含有pac基因的质粒后,细胞在含有嘌呤霉素的培养基中增殖,以筛选出稳定转染子。

1)细胞转染48 h后,将细胞(原样或稀释)置于含有适当浓度嘌呤霉素的新鲜培养基中培养。

【注】:当细胞处于分裂活跃期时,抗生素作用最明显。细胞过于密集,抗生素产生的效力会明显下降。最好进行细胞分盘使其密度不超过25%。

2)每隔2-3天,移除和更换含有嘌呤霉素的培养基。

3)筛选7天后评估细胞形成的病灶。病灶可能需要额外的一周或者更多时间,这依赖于宿主细胞系和转染筛选效率。

【注】:每日进行细胞生长状态的观察。嘌呤霉素的筛选至少需要48 h,有效浓度嘌呤霉素的筛选周期一般在3-10天。

4)转移和放置5-10个抗性克隆到一个35 mm的培养皿中,用选择培养基继续培养7天。此次富集培养是为日后的细胞毒性实验做准备。

 

注意事项

1.嘌呤霉素为有毒化合物,操作时请小心拿放。

2.为了您的安全和健康,请穿实验服并戴一次性手套操作。

3.本产品仅用于科研用途,禁止用于人身上。

 

 

相关产品推荐:

产品名称

产品编号

Carbenicillin, Disodium Salt 羧苄青霉素钠

60202JP

Ampicillin, Sodium Salt 氨苄青霉素钠

60203

Doxycycline hyclate 盐酸强力霉素

60204JP

Chloramphenicol, USP Grade 氯霉素,USP级

60205JP

Kanamycin Sulfate 硫酸卡那霉素

60206JP

Puromycin Dihydrochloride嘌呤霉素盐酸盐

60210JP

Tetracyclin HCl 四环素盐酸盐(USP)

60212JP

Vancomycin Hydrochloride 盐酸万古霉素

60213JP

Gentamycin Sulfate Salt    硫酸庆大霉素

60214JP

Spectinomycin Hydrochloride 盐酸壮观霉素

60215JP

盐酸博莱霉素

60216JP

Phleomycin (20mg/ml in solution) 腐草霉素

60217JP

Blasticidin S  杀稻瘟菌素S (灭瘟素)

60218JP

Nystatin 制真菌素

60219JP

G418 Sulfate (Geneticin) 遗传霉素

60220JP

Hygromycin B 潮霉素B

60225JP

Erythromycin 红霉素

60228JP

Timentin 特美汀

60230JP

Aureobasidin A (AbA)金担子素A

60231JP

Polymyxin B Sulfate 多粘菌素B硫酸盐

60242JP

 

嘌呤霉素Puromycin 嘌呤霉素盐酸盐 氨基糖苷类抗生素|CAS 58-58-2

暂无内容

[1] Meng F, Yu Z, Zhang D, et al. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021;81(20):4147-4164.e7. doi:10.1016/j.molcel.2021.07.040(IF:17.970)
[2] Chen S, Liu S, Wang J, et al. TBK1-Mediated DRP1 Targeting Confers Nucleic Acid Sensing to Reprogram Mitochondrial Dynamics and Physiology. Mol Cell. 2020;80(5):810-827.e7. doi:10.1016/j.molcel.2020.10.018(IF:15.584)
[3] Zhao Q, Zheng K, Ma C, et al. PTPS Facilitates Compartmentalized LTBP1 S-Nitrosylation and Promotes Tumor Growth under Hypoxia. Mol Cell. 2020;77(1):95-107.e5. doi:10.1016/j.molcel.2019.09.018(IF:14.548)
[4] Mo J, Liu F, Sun X, et al. Inhibition of the FACT Complex Targets Aberrant Hedgehog Signaling and Overcomes Resistance to Smoothened Antagonists. Cancer Res. 2021;81(11):3105-3120. doi:10.1158/0008-5472.CAN-20-3186(IF:12.701)
[5] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[6] Mao L, Chen J, Lu X, et al. Proteomic analysis of lung cancer cells reveals a critical role of BCAT1 in cancer cell metastasis. Theranostics. 2021;11(19):9705-9720. Published 2021 Sep 27. doi:10.7150/thno.61731(IF:11.556)
[7] Han L, Zhang F, Liu Y, et al. Uterus globulin associated protein 1 (UGRP1) binds podoplanin (PDPN) to promote a novel inflammation pathway during Streptococcus pneumoniae infection. Clin Transl Med. 2022;12(6):e850. doi:10.1002/ctm2.850(IF:11.492)
[8] Zhang M, Liu F, Zhou P, et al. The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy. Autophagy. 2019;15(7):1150-1162. doi:10.1080/15548627.2019.1578040(IF:11.059)
[9] Zhang S, Yang Z, Bao W, et al. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy. 2020;16(4):735-749. doi:10.1080/15548627.2019.1632122(IF:11.059)
[10] Zhang Y, Ding H, Wang X, et al. MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Rep. 2021;37(5):109949. doi:10.1016/j.celrep.2021.109949(IF:9.423)
[11] Jiang Y, Dong Y, Luo Y, et al. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Rep. 2021;34(7):108713. doi:10.1016/j.celrep.2021.108713(IF:9.423)
[12] Sun Q, Ye Y, Gui A, et al. MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett. 2022;537:215678. doi:10.1016/j.canlet.2022.215678(IF:8.679)
[13] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[14] Zhang P, Zhang Z, Fu Y, et al. K63-linked ubiquitination of DYRK1A by TRAF2 alleviates Sprouty 2-mediated degradation of EGFR. Cell Death Dis. 2021;12(6):608. Published 2021 Jun 11. doi:10.1038/s41419-021-03887-2(IF:8.469)
[15] Zhao T, Li Y, Shen K, Wang Q, Zhang J. Knockdown of OLR1 weakens glycolytic metabolism to repress colon cancer cell proliferation and chemoresistance by downregulating SULT2B1 via c-MYC. Cell Death Dis. 2021;13(1):4. Published 2021 Dec 17. doi:10.1038/s41419-021-04174-w(IF:8.469)
[16] Lai Y, Lin F, Wang X, et al. STYK1/NOK Promotes Metastasis and Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer by Suppressing FoxO1 Signaling. Front Cell Dev Biol. 2021;9:621147. Published 2021 Jul 6. doi:10.3389/fcell.2021.621147(IF:6.684)
[17] Jiang ZJ, Shen QH, Chen HY, Yang Z, Shuai MQ, Zheng S. Galectin-1 Restores Immune Tolerance to Liver Transplantation Through Activation of Hepatic Stellate Cells. Cell Physiol Biochem. 2018;48(3):863-879. doi:10.1159/000491955(IF:5.500)
[18] Tan K, Wu W, Zhu K, Lu L, Lv Z. Identification and Characterization of a Glucometabolic Prognostic Gene Signature in Neuroblastoma based on N6-methyladenosine Eraser ALKBH5. J Cancer. 2022;13(7):2105-2125. Published 2022 Mar 28. doi:10.7150/jca.69408(IF:4.207)
[19] Zhang F, Liu R, Liu C, Zhang H, Lu Y. Nanos3, a cancer-germline gene, promotes cell proliferation, migration, chemoresistance, and invasion of human glioblastoma. Cancer Cell Int. 2020;20:197. Published 2020 May 26. doi:10.1186/s12935-020-01272-1(IF:4.175)
[20] Sun X, Ding S, Lu S, Wang Z, Chen X, Shen K. Identification of Ten Mitosis Genes Associated with Tamoxifen Resistance in Breast Cancer. Onco Targets Ther. 2021;14:3611-3624. Published 2021 Jun 4. doi:10.2147/OTT.S290426(IF:4.147)
[21] Peng X, Yang L, Ma Y, et al. IKKβ activation promotes amphisome formation and extracellular vesicle secretion in tumor cells. Biochim Biophys Acta Mol Cell Res. 2021;1868(1):118857. doi:10.1016/j.bbamcr.2020.118857(IF:4.105)
[22] Jin Y, Li Y, Wang X, Yang Y. Secretory leukocyte protease inhibitor suppresses HPV E6-expressing HNSCC progression by mediating NF-κB and Akt pathways. Cancer Cell Int. 2019;19:220. Published 2019 Aug 23. doi:10.1186/s12935-019-0942-7(IF:3.439)
[23] Wu S, Luo C, Li F, Hameed NUF, Jin Q, Zhang J. Silencing expression of PHF14 in glioblastoma promotes apoptosis, mitigates proliferation and invasiveness via Wnt signal pathway. Cancer Cell Int. 2019;19:314. Published 2019 Nov 27. doi:10.1186/s12935-019-1040-6(IF:3.439)
[24] Wu S, Luo C, Hameed NUF, Wang Y, Zhuang D. UCP2 silencing in glioblastoma reduces cell proliferation and invasiveness by inhibiting p38 MAPK pathway. Exp Cell Res. 2020;394(1):112110. doi:10.1016/j.yexcr.2020.112110(IF:3.383)
[25] Zhou J, Ding J, Ma X, et al. The NRF2/KEAP1 Pathway Modulates Nasopharyngeal Carcinoma Cell Radiosensitivity via ROS Elimination. Onco Targets Ther. 2020;13:9113-9122. Published 2020 Sep 11. doi:10.2147/OTT.S260169(IF:3.337)
[26] Zhang F, Liu R, Zhang H, Liu C, Liu C, Lu Y. Suppressing Dazl modulates tumorigenicity and stemness in human glioblastoma cells. BMC Cancer. 2020;20(1):673. Published 2020 Jul 18. doi:10.1186/s12885-020-07155-y(IF:3.150)

嘌呤霉素(Puromycin)是由白黑链霉菌(Streptomyces alboniger)发酵代谢产生的一种氨基糖苷类抗生素,通过抑制蛋白质合成而杀死革兰氏阳性菌,各种动物和昆虫细胞。某种特殊情况下有效作用大肠杆菌。作用机制在于嘌呤霉素是氨酰-tRNA分子3´末端的类似物,能够与核糖体的A位点结合并掺入到延伸的肽链中。嘌呤霉素同A位点结合后,不会参与随后的任何反应,从而导致蛋白质合成的提前终止并释放出C-末端含有嘌呤霉素的不成熟多肽。

嘌呤霉素产生菌Streptomyces alboniger内发现的pac基因编码嘌呤霉素N-乙酰转移酶(PAC),赋予机体对嘌呤霉素产生抗性。这一特性如今普遍应用于筛选特定携带pac基因质粒的哺乳动物稳定转染细胞株。

嘌呤霉素在细胞稳转株筛选中的普遍应用与慢病毒载体的特性有关,现在商业化的慢病毒载体多数都携带pac基因。在某些特定情况下,嘌呤霉素亦可以用来筛选转化携带pac基因质粒的大肠杆菌菌株。

 

产品信息

货号

60210JP25/60210JP60/60210JP72/60210JP76/60210JP80

规格

25 mg/100 mg/250 mg/500 mg/1 g

CAS号(CAS NO.)

58-58-2

分子式(Molecular Fomular)

C22H29N7O5·2HCl

分子量(Molecular Weight)

544.43 g/mol

纯度(Purity)

≥98%

外观(Appearance)

白色至米白色粉末

结构(Structure)

嘌呤霉素Puromycin 嘌呤霉素盐酸盐 氨基糖苷类抗生素|CAS 58-58-2嘌呤霉素Puromycin 嘌呤霉素盐酸盐 氨基糖苷类抗生素|CAS 58-58-2

 

储存条件

-25~-15℃保存,有效期2年。

 

使用说明

1. 建议使用浓度

哺乳动物细胞:1-10 μg/mL,最佳浓度需要杀灭曲线来确定。

大肠杆菌:LB琼脂培养基筛选稳定转化pac基因的大肠杆菌,使用浓度为125 μg/mL。

【注】:使用嘌呤霉素筛选大肠杆菌稳转株需要精确的pH值调节,而且受宿主细胞本身的影响。

2.溶解方法

用蒸馏水溶解嘌呤霉素配制成50 mg/mL的母液,经0.22 μm滤膜过滤除菌后分装于-25~-15℃冻存;也可溶于甲醇,配制成10 mg/mL的储存液。

3. 嘌呤霉素杀灭曲线的确定(以shRNA转染或者慢病毒转导为例)

嘌呤霉素有效筛选浓度跟细胞类型、生长状态、细胞密度、细胞代谢情况及细胞所处细胞周期位置等有关。为了筛选到稳定表达的shRNA细胞株,确定杀死未转染/转导细胞的最低浓度嘌呤霉素至关重要。建议初次做实验的客户一定要建立适合自身实验体系的杀死曲线(kill curve)。

1)Day 1:24孔板内5~8×104 cells/孔的密度铺板,铺足够量的孔以进行后续的梯度实验。37℃细胞孵育过夜。

2)Day 2:①准备筛选培养基:含不同浓度嘌呤霉素的新鲜培养基(如0-15 μg/mL,至少5个梯度);②往孵育过夜后的细胞内更换新鲜配制的筛选培养基;之后37℃孵育细胞。

3)Day 4:更换新鲜的筛选培养基,并观察细胞存活率。

4)根据细胞的生长状态,约2-3天更换新鲜的筛选培养基。

5)每日监测细胞,观察存活细胞率,从而确定抗生素筛选开始4-6天内有效杀死非转染或所有非转导细胞的药物最低浓度。

4. 哺乳动物稳定转染细胞株的筛选

等转染含有pac基因的质粒后,细胞在含有嘌呤霉素的培养基中增殖,以筛选出稳定转染子。

1)细胞转染48 h后,将细胞(原样或稀释)置于含有适当浓度嘌呤霉素的新鲜培养基中培养。

【注】:当细胞处于分裂活跃期时,抗生素作用最明显。细胞过于密集,抗生素产生的效力会明显下降。最好进行细胞分盘使其密度不超过25%。

2)每隔2-3天,移除和更换含有嘌呤霉素的培养基。

3)筛选7天后评估细胞形成的病灶。病灶可能需要额外的一周或者更多时间,这依赖于宿主细胞系和转染筛选效率。

【注】:每日进行细胞生长状态的观察。嘌呤霉素的筛选至少需要48 h,有效浓度嘌呤霉素的筛选周期一般在3-10天。

4)转移和放置5-10个抗性克隆到一个35 mm的培养皿中,用选择培养基继续培养7天。此次富集培养是为日后的细胞毒性实验做准备。

 

注意事项

1.嘌呤霉素为有毒化合物,操作时请小心拿放。

2.为了您的安全和健康,请穿实验服并戴一次性手套操作。

3.本产品仅用于科研用途,禁止用于人身上。

 

 

相关产品推荐:

产品名称

产品编号

Carbenicillin, Disodium Salt 羧苄青霉素钠

60202JP

Ampicillin, Sodium Salt 氨苄青霉素钠

60203

Doxycycline hyclate 盐酸强力霉素

60204JP

Chloramphenicol, USP Grade 氯霉素,USP级

60205JP

Kanamycin Sulfate 硫酸卡那霉素

60206JP

Puromycin Dihydrochloride嘌呤霉素盐酸盐

60210JP

Tetracyclin HCl 四环素盐酸盐(USP)

60212JP

Vancomycin Hydrochloride 盐酸万古霉素

60213JP

Gentamycin Sulfate Salt    硫酸庆大霉素

60214JP

Spectinomycin Hydrochloride 盐酸壮观霉素

60215JP

盐酸博莱霉素

60216JP

Phleomycin (20mg/ml in solution) 腐草霉素

60217JP

Blasticidin S  杀稻瘟菌素S (灭瘟素)

60218JP

Nystatin 制真菌素

60219JP

G418 Sulfate (Geneticin) 遗传霉素

60220JP

Hygromycin B 潮霉素B

60225JP

Erythromycin 红霉素

60228JP

Timentin 特美汀

60230JP

Aureobasidin A (AbA)金担子素A

60231JP

Polymyxin B Sulfate 多粘菌素B硫酸盐

60242JP

 

嘌呤霉素Puromycin 嘌呤霉素盐酸盐 氨基糖苷类抗生素|CAS 58-58-2

暂无内容

[1] Meng F, Yu Z, Zhang D, et al. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021;81(20):4147-4164.e7. doi:10.1016/j.molcel.2021.07.040(IF:17.970)
[2] Chen S, Liu S, Wang J, et al. TBK1-Mediated DRP1 Targeting Confers Nucleic Acid Sensing to Reprogram Mitochondrial Dynamics and Physiology. Mol Cell. 2020;80(5):810-827.e7. doi:10.1016/j.molcel.2020.10.018(IF:15.584)
[3] Zhao Q, Zheng K, Ma C, et al. PTPS Facilitates Compartmentalized LTBP1 S-Nitrosylation and Promotes Tumor Growth under Hypoxia. Mol Cell. 2020;77(1):95-107.e5. doi:10.1016/j.molcel.2019.09.018(IF:14.548)
[4] Mo J, Liu F, Sun X, et al. Inhibition of the FACT Complex Targets Aberrant Hedgehog Signaling and Overcomes Resistance to Smoothened Antagonists. Cancer Res. 2021;81(11):3105-3120. doi:10.1158/0008-5472.CAN-20-3186(IF:12.701)
[5] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5(IF:12.423)
[6] Mao L, Chen J, Lu X, et al. Proteomic analysis of lung cancer cells reveals a critical role of BCAT1 in cancer cell metastasis. Theranostics. 2021;11(19):9705-9720. Published 2021 Sep 27. doi:10.7150/thno.61731(IF:11.556)
[7] Han L, Zhang F, Liu Y, et al. Uterus globulin associated protein 1 (UGRP1) binds podoplanin (PDPN) to promote a novel inflammation pathway during Streptococcus pneumoniae infection. Clin Transl Med. 2022;12(6):e850. doi:10.1002/ctm2.850(IF:11.492)
[8] Zhang M, Liu F, Zhou P, et al. The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy. Autophagy. 2019;15(7):1150-1162. doi:10.1080/15548627.2019.1578040(IF:11.059)
[9] Zhang S, Yang Z, Bao W, et al. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy. 2020;16(4):735-749. doi:10.1080/15548627.2019.1632122(IF:11.059)
[10] Zhang Y, Ding H, Wang X, et al. MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Rep. 2021;37(5):109949. doi:10.1016/j.celrep.2021.109949(IF:9.423)
[11] Jiang Y, Dong Y, Luo Y, et al. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Rep. 2021;34(7):108713. doi:10.1016/j.celrep.2021.108713(IF:9.423)
[12] Sun Q, Ye Y, Gui A, et al. MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett. 2022;537:215678. doi:10.1016/j.canlet.2022.215678(IF:8.679)
[13] Jin R, Zhao A, Han S, et al. The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 2021;12(10):942. Published 2021 Oct 13. doi:10.1038/s41419-021-04249-8(IF:8.469)
[14] Zhang P, Zhang Z, Fu Y, et al. K63-linked ubiquitination of DYRK1A by TRAF2 alleviates Sprouty 2-mediated degradation of EGFR. Cell Death Dis. 2021;12(6):608. Published 2021 Jun 11. doi:10.1038/s41419-021-03887-2(IF:8.469)
[15] Zhao T, Li Y, Shen K, Wang Q, Zhang J. Knockdown of OLR1 weakens glycolytic metabolism to repress colon cancer cell proliferation and chemoresistance by downregulating SULT2B1 via c-MYC. Cell Death Dis. 2021;13(1):4. Published 2021 Dec 17. doi:10.1038/s41419-021-04174-w(IF:8.469)
[16] Lai Y, Lin F, Wang X, et al. STYK1/NOK Promotes Metastasis and Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer by Suppressing FoxO1 Signaling. Front Cell Dev Biol. 2021;9:621147. Published 2021 Jul 6. doi:10.3389/fcell.2021.621147(IF:6.684)
[17] Jiang ZJ, Shen QH, Chen HY, Yang Z, Shuai MQ, Zheng S. Galectin-1 Restores Immune Tolerance to Liver Transplantation Through Activation of Hepatic Stellate Cells. Cell Physiol Biochem. 2018;48(3):863-879. doi:10.1159/000491955(IF:5.500)
[18] Tan K, Wu W, Zhu K, Lu L, Lv Z. Identification and Characterization of a Glucometabolic Prognostic Gene Signature in Neuroblastoma based on N6-methyladenosine Eraser ALKBH5. J Cancer. 2022;13(7):2105-2125. Published 2022 Mar 28. doi:10.7150/jca.69408(IF:4.207)
[19] Zhang F, Liu R, Liu C, Zhang H, Lu Y. Nanos3, a cancer-germline gene, promotes cell proliferation, migration, chemoresistance, and invasion of human glioblastoma. Cancer Cell Int. 2020;20:197. Published 2020 May 26. doi:10.1186/s12935-020-01272-1(IF:4.175)
[20] Sun X, Ding S, Lu S, Wang Z, Chen X, Shen K. Identification of Ten Mitosis Genes Associated with Tamoxifen Resistance in Breast Cancer. Onco Targets Ther. 2021;14:3611-3624. Published 2021 Jun 4. doi:10.2147/OTT.S290426(IF:4.147)
[21] Peng X, Yang L, Ma Y, et al. IKKβ activation promotes amphisome formation and extracellular vesicle secretion in tumor cells. Biochim Biophys Acta Mol Cell Res. 2021;1868(1):118857. doi:10.1016/j.bbamcr.2020.118857(IF:4.105)
[22] Jin Y, Li Y, Wang X, Yang Y. Secretory leukocyte protease inhibitor suppresses HPV E6-expressing HNSCC progression by mediating NF-κB and Akt pathways. Cancer Cell Int. 2019;19:220. Published 2019 Aug 23. doi:10.1186/s12935-019-0942-7(IF:3.439)
[23] Wu S, Luo C, Li F, Hameed NUF, Jin Q, Zhang J. Silencing expression of PHF14 in glioblastoma promotes apoptosis, mitigates proliferation and invasiveness via Wnt signal pathway. Cancer Cell Int. 2019;19:314. Published 2019 Nov 27. doi:10.1186/s12935-019-1040-6(IF:3.439)
[24] Wu S, Luo C, Hameed NUF, Wang Y, Zhuang D. UCP2 silencing in glioblastoma reduces cell proliferation and invasiveness by inhibiting p38 MAPK pathway. Exp Cell Res. 2020;394(1):112110. doi:10.1016/j.yexcr.2020.112110(IF:3.383)
[25] Zhou J, Ding J, Ma X, et al. The NRF2/KEAP1 Pathway Modulates Nasopharyngeal Carcinoma Cell Radiosensitivity via ROS Elimination. Onco Targets Ther. 2020;13:9113-9122. Published 2020 Sep 11. doi:10.2147/OTT.S260169(IF:3.337)
[26] Zhang F, Liu R, Zhang H, Liu C, Liu C, Lu Y. Suppressing Dazl modulates tumorigenicity and stemness in human glioblastoma cells. BMC Cancer. 2020;20(1):673. Published 2020 Jul 18. doi:10.1186/s12885-020-07155-y(IF:3.150)