萤火虫萤光素酶报告基因检测试剂盒 闪光型萤火虫萤光素酶报告基因检测试剂盒|Luciferase Reporter Gene Assay Kit

萤火虫萤光素酶报告基因检测试剂盒 闪光型萤火虫萤光素酶报告基因检测试剂盒|Luciferase Reporter Gene Assay Kit

产品说明书

FAQ

COA

已发表文献

产品描述

萤火虫萤光素酶(Firefly luciferase)是一种分子量约为61 kDa的蛋白,在ATP、镁离子和氧气存在的条件下,能够催化萤光素(luciferin)氧化成oxyluciferin,在luciferin氧化的过程中会发出波长为560 nm左右的生物荧光,该萤光可通过化学发光仪进行测定。检测原理如图所示:

萤火虫萤光素酶报告基因检测试剂盒 闪光型萤火虫萤光素酶报告基因检测试剂盒|Luciferase Reporter Gene Assay Kit

1:萤火虫萤光素酶检测原理图

Luciferase Reporter Gene Assay kit是一闪光型萤火虫萤光素酶报告基因检测试剂盒,具有灵敏度高的特点,可以高灵敏的检测萤光素酶在哺乳动物细胞中的表达。

 

产品组分

组分编号

组分名称

产品编号/规格

11401JP60(100 T)

11401JP76(500 T)

11401JP80(1000 T)

11401-A

细胞裂解液

20 mL

5×20 mL

10×20 mL

11401-B

萤火虫萤光素酶检测试剂

10 mL

5×10 mL

10×10 mL

 

运输和保存方式

干冰运输。-20℃保存,有效期1年。

试剂盒内萤火虫萤光素酶检测试剂不能反复冻融,建议分装-20℃或-80℃保存。

 

注意事项

1)检测过程中需自备耗材和设备包括如下:PBS;100 μL移液器或者排枪;不透光白色酶标板;Luminometer发光计、多功能酶标仪或者其他能够检测生物发光的仪器;

2)反应温度:酶促反应对温度较为敏感,加样检测前务必将所有试剂平衡至室温20-25℃)再使用;

3)检测仪器:能检测化学发光的仪器都适用,但由于不同仪器的设置和灵敏度不同,测得的光信号值也会不同;

4)检测设置:Luminescence,350-700 nm,建议检测时间设为2-10 sec;

5)检测板:为防止孔间干扰,推荐使用不透光白色酶标板。黑色酶标板也可用,但因黑色会吸收光信号,可能会降低信号;

6)单管荧光测定仪测定,每个样品与测定试剂混合后到测定前的时间应保持一致;

7)为了您的安全和健康,请穿实验服并戴一次性手套;

8)本产品仅作科研用途!

 

实验步骤

I.前处理

1.细胞

1)构建相应的载体。

2)转染步骤请参照相关的说明书。

3)将细胞裂解液充分混匀,按如下方式加入细胞裂解液,充分裂解细胞。

a: 对于贴壁细胞,吸尽细胞培养液,按照下表比例加入细胞裂解液,轻轻旋转培养皿或者培养板使裂解液完全覆盖细胞;

b: 对于悬浮细胞,离心弃去上清,按照下表比例加入裂解液。

细胞培养板

96孔板

48孔板

24孔板

12孔板

6孔板

裂解液加入量

100 μL

150 μL

200 μL

300 μL

500 μL

冰上孵育5 min,充分裂解细胞。

【注】:裂解产物可室温保存6 h;4℃保存16 h;-80℃可长期存放(裂解产物不能多次反复冻融),本试剂盒裂解液数量按照24孔板添加量进行配制,如需要更多可单独购买(CAT#11406)。

5)(选作)10000-16000 rpm离心1 min,取上清。

2.叶片组织(以烟草叶片为例,仅供参考)

1)构建相应的载体。

2)挑取转化有重组质粒的农杆菌单菌落,接种到2 mL LB液体培养基(添加相应抗生素)中,28℃ 220 rpm培养过夜。

3)农杆菌培养至OD600为1.0,1700× g离心5 min收集菌体后,用1/2MS液体培养基清洗菌体2次;用含有150 μmol/L乙酰丁香酮的1/2MS液体培养基将农杆菌的OD600调至1.0。

4)将待检测的农杆菌菌液进行混合,使每种菌液的OD600为0.5。

5)选取生长期为1个月左右完全伸展的烟草叶片,将混合好的菌液用1 mL注射器(去掉针头)从烟草叶背面进行注射。为保证实验结果的一致性,需要将对照载体和待检测目标载体的菌液注射在同一叶片的不同部位上, 以保证相同的生长背景。

6)正常温室生长条件下,24-48 h即可取样观察。

7)取3-4片直径为6-8 mm的叶盘,放入2 mL的 EP 管(提前放入3-4个小钢珠)中,液氮中冷冻,使用破碎仪进行研磨破碎(45 Hz,30 s)。破碎完全后在EP管中加入100 μL裂解液。

8)冰上孵育5 min左右,充分裂解叶片。

9)10000-16000 rpm离心1 min,取上清。

3.原生质体(仅供参考)

构建相应的载体。

制备原生质体(参考相关文献:Yoo SD, Cho YH, Sheen J (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565–1572)。

2 mL EP管中加入相应的载体(加入量需要摸索),加入100 μL原生质体悬浮液。轻摇混匀后,加入110 μL PEG-CaCl2溶液,轻弹混匀。在室温放置10-15 min。

4)加入440 μL W5溶液,上下颠倒以停止转化。

5)200× g 室温离心5 min,弃去上清,加入800 μL WI溶液重悬原生质体。

室温避光培养16-24 h。

7)将原生质体加入2 mL离心管中,离心收集原生质体,加入100 μL左右的裂解液。

8)冰上孵育5 min左右,充分裂解原生质体。

9)(选做)10000-16000 rpm离心1 min,取上清。

 

II.荧光检测

1)按照仪器说明书要求将荧光测定仪打开,设定参数,测定时间为10 sec,测定间隔为2 sec。

2)取20 μL裂解液加入测量管中(保持每次样品的加样量一致),另外加入100 μL萤火虫萤光素酶检测试剂,震板混匀

2-3次,充分混匀后测定RLU(Relative light unit)

3)分析数据。

①实验设计:根据不同实验目的,在每个培养板中都应设置对照组、实验组和空白对照组。为了保证实验准确性,理论上每个实验组(包括对照组)都应当减去空白对照组的萤火虫萤光素酶的发光测量值。

a.空白对照组:

背景F:未转染细胞+萤火虫萤光素酶检测试剂。

注:空白对照组的样品量必须与实验样品量相同,包含与实验样品相同的培养基/血清组合,并加上完全相同的检测试剂。

b.实验组:转染细胞经实验化合物处理(即实验组F)。

c.对照组:转染细胞不经处理,用以标准化结果(即对照组F)。

②计算结果:

实验组=实验组F-背景F。

对照组=对照组F-背景F。

表达倍数=实验组/对照组。

 

相关产品

产品名称

货号

规格

Firefly Glo Luciferase Reporter Gene Assay Kit辉光型萤火虫萤光素酶报告基因检测试剂盒

11404JP60/80

100/1000 T

Dual Glo Luciferase Reporter Gene Assay Kit 辉光型双萤光素酶报告基因检测试剂盒

11405JP60/80

100/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100/500/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-TK Luciferase Reporter Plasmid(pGMLR-TK海肾荧光素酶报告基因质粒)

11557JP03

1 μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1 μg

Hieff TransTM Liposomal Transfection Reagent 脂质体核酸转染试剂

40802JP03

1 mL

 HB220325

Q11401 有很多,现在单要裂解液

A有货号 11406.

Q该试剂盒中裂解后一定要离心吗?

A可以选做。

Q测定时间为 10 s,测定间隔为 2 s,为什么这样推荐?如果这样设置,96 孔板这样设置,会导致每孔时间相差很大。仪器可以同时出数据。工程师建议设置动力学检测, 设置总时间。

A不同仪器,设置时间可以不一样。单管手动检测,就按说明书设置会更好。

Q酶标仪检测吗?

A带有化学发光模块的可以。

Q加入检测试剂后,产生的荧光稳定吗?多长时间内检测数据是准确的?

A加入后海肾会有荧光猝灭的情况,越快越好,尽量 5min 内检测完成。

[1] Hao Y, Fan X, Shi Y, et al. Next-generation unnatural monosaccharides reveal that JPRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nat Commun. 2019;10(1):4065. Published 2019 Sep 6. doi:10.1038/s41467-019-11942-y(IF:11.878)
[2] Wang X, Qin X, Yan M, et al. Loss of exosomal miR-3188 in cancer-associated fibroblasts contributes to HNC progression. J Exp Clin Cancer Res. 2019;38(1):151. Published 2019 Apr 8. doi:10.1186/s13046-019-1144-9(IF:11.161)
[3] Yin T, Liu Y, Yang M, Wang L, Zhou J, Huo M. Novel Chitosan Derivatives with Reversible Cationization and Hydrophobicization for Tumor Cytoplasm-Specific Burst Co-delivery of siRNA and Chemotherapeutics. ACS Appl Mater Interfaces. 2020;12(13):14770-14783. doi:10.1021/acsami.9b19373(IF:8.758)
[4] He Y, Qu J, Wei L, et al. Generation and Effect Testing of a SARS-CoV-2 RBD-Targeted Polyclonal Therapeutic Antibody Based on a 2-D Airway Organoid Screening System. Front Immunol. 2021;12:689065. Published 2021 Oct 18. doi:10.3389/fimmu.2021.689065(IF:7.561)
[5] Sun H, Chen D, Zhan S, et al. Design and Discovery of Natural Cyclopeptide Skeleton Based Programmed Death Ligand 1 Inhibitor as Immune Modulator for Cancer Therapy. J Med Chem. 2020;63(19):11286-11301. doi:10.1021/acs.jmedchem.0c01262(IF:6.205)
[6] Li S, Zhang L, Zhang G, et al. A nonautophagic role of ATG5 in regulating cell growth by targeting c-Myc for proteasome-mediated degradation. iScience. 2021;24(11):103296. Published 2021 Oct 16. doi:10.1016/j.isci.2021.103296(IF:5.458)
[7] Yang N, Xiong Y, Wang Y, et al. ADAP Y571 Phosphorylation Is Required to Prime STAT3 for Activation in TLR4-Stimulated Macrophages. J Immunol. 2021;206(4):814-826. doi:10.4049/jimmunol.2000569(IF:5.422)
[8] He S, Ma R, Liu Z, et al. Overexpression of BnaAGL11, a MADS-Box Transcription Factor, Regulates Leaf Morphogenesis and Senescence in Brassica napus. J Agric Food Chem. 2022;70(11):3420-3434. doi:10.1021/acs.jafc.1c07622(IF:5.279)
[9] Zhang RY, Zhou SH, He CB, et al. Adjuvant-Protein Conjugate Vaccine with Built-In TLR7 Agonist on S1 Induces Potent Immunity against SARS-CoV-2 and Variants of Concern. ACS Infect Dis. 2022;8(7):1367-1375. doi:10.1021/acsinfecdis.2c00259(IF:5.084)
[10] Li Y, Chen T, Wang W, et al. A high-efficiency Agrobacterium-mediated transient expression system in the leaves of Artemisia annua L. Plant Methods. 2021;17(1):106. Published 2021 Oct 16. doi:10.1186/s13007-021-00807-5(IF:4.993)
[11] Li D, Jiang K, Teng D, et al. Discovery of New Estrogen-Related Receptor α Agonists via a Combination Strategy Based on Shape Screening and Ensemble Docking. J Chem Inf Model. 2022;62(3):486-497. doi:10.1021/acs.jcim.1c00662(IF:4.956)
[12] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[13] Zhou FL, Li SC, Zhu Y, et al. Integrating yeast chemical genomics and mammalian cell pathway analysis [published correction appears in Acta Pharmacol Sin. 2020 May;41(5):729]. Acta Pharmacol Sin. 2019;40(9):1245-1255. doi:10.1038/s41401-019-0231-y(IF:4.010)
[14] Zhu G, Li X, Li J, et al. Arsenic trioxide (ATO) induced degradation of Cyclin D1 sensitized PD-1/PD-L1 checkpoint inhibitor in oral and esophageal squamous cell carcinoma. J Cancer. 2020;11(22):6516-6529. Published 2020 Sep 21. doi:10.7150/jca.47111(IF:3.565)
[15] Xie Y, Li X, Ge J. Cyclophilin A-FoxO1 signaling pathway in endothelial cell apoptosis. Cell Signal. 2019;61:57-65. doi:10.1016/j.cellsig.2019.04.014(IF:3.388)
[16] Wang Y, Bibi M, Min P, Deng W, Zhang Y, Du J. SOX2 promotes hypoxia-induced breast cancer cell migration by inducing NEDD9 expression and subsequent activation of Rac1/HIF-1α signaling. Cell Mol Biol Lett. 2019;24:55. Published 2019 Aug 22. doi:10.1186/s11658-019-0180-y(IF:3.367)
[17] Jian Y, Qiao Q, Tang J, Qin X. Origin recognition complex 1 regulates phospholipase Cδ1 to inhibit cell proliferation, migration and epithelial-mesenchymal transition in lung adenocarcinoma. Oncol Lett. 2022;24(2):252. Published 2022 Jun 10. doi:10.3892/ol.2022.13372(IF:2.967)

产品描述

萤火虫萤光素酶(Firefly luciferase)是一种分子量约为61 kDa的蛋白,在ATP、镁离子和氧气存在的条件下,能够催化萤光素(luciferin)氧化成oxyluciferin,在luciferin氧化的过程中会发出波长为560 nm左右的生物荧光,该萤光可通过化学发光仪进行测定。检测原理如图所示:

萤火虫萤光素酶报告基因检测试剂盒 闪光型萤火虫萤光素酶报告基因检测试剂盒|Luciferase Reporter Gene Assay Kit

1:萤火虫萤光素酶检测原理图

Luciferase Reporter Gene Assay kit是一闪光型萤火虫萤光素酶报告基因检测试剂盒,具有灵敏度高的特点,可以高灵敏的检测萤光素酶在哺乳动物细胞中的表达。

 

产品组分

组分编号

组分名称

产品编号/规格

11401JP60(100 T)

11401JP76(500 T)

11401JP80(1000 T)

11401-A

细胞裂解液

20 mL

5×20 mL

10×20 mL

11401-B

萤火虫萤光素酶检测试剂

10 mL

5×10 mL

10×10 mL

 

运输和保存方式

干冰运输。-20℃保存,有效期1年。

试剂盒内萤火虫萤光素酶检测试剂不能反复冻融,建议分装-20℃或-80℃保存。

 

注意事项

1)检测过程中需自备耗材和设备包括如下:PBS;100 μL移液器或者排枪;不透光白色酶标板;Luminometer发光计、多功能酶标仪或者其他能够检测生物发光的仪器;

2)反应温度:酶促反应对温度较为敏感,加样检测前务必将所有试剂平衡至室温20-25℃)再使用;

3)检测仪器:能检测化学发光的仪器都适用,但由于不同仪器的设置和灵敏度不同,测得的光信号值也会不同;

4)检测设置:Luminescence,350-700 nm,建议检测时间设为2-10 sec;

5)检测板:为防止孔间干扰,推荐使用不透光白色酶标板。黑色酶标板也可用,但因黑色会吸收光信号,可能会降低信号;

6)单管荧光测定仪测定,每个样品与测定试剂混合后到测定前的时间应保持一致;

7)为了您的安全和健康,请穿实验服并戴一次性手套;

8)本产品仅作科研用途!

 

实验步骤

I.前处理

1.细胞

1)构建相应的载体。

2)转染步骤请参照相关的说明书。

3)将细胞裂解液充分混匀,按如下方式加入细胞裂解液,充分裂解细胞。

a: 对于贴壁细胞,吸尽细胞培养液,按照下表比例加入细胞裂解液,轻轻旋转培养皿或者培养板使裂解液完全覆盖细胞;

b: 对于悬浮细胞,离心弃去上清,按照下表比例加入裂解液。

细胞培养板

96孔板

48孔板

24孔板

12孔板

6孔板

裂解液加入量

100 μL

150 μL

200 μL

300 μL

500 μL

冰上孵育5 min,充分裂解细胞。

【注】:裂解产物可室温保存6 h;4℃保存16 h;-80℃可长期存放(裂解产物不能多次反复冻融),本试剂盒裂解液数量按照24孔板添加量进行配制,如需要更多可单独购买(CAT#11406)。

5)(选作)10000-16000 rpm离心1 min,取上清。

2.叶片组织(以烟草叶片为例,仅供参考)

1)构建相应的载体。

2)挑取转化有重组质粒的农杆菌单菌落,接种到2 mL LB液体培养基(添加相应抗生素)中,28℃ 220 rpm培养过夜。

3)农杆菌培养至OD600为1.0,1700× g离心5 min收集菌体后,用1/2MS液体培养基清洗菌体2次;用含有150 μmol/L乙酰丁香酮的1/2MS液体培养基将农杆菌的OD600调至1.0。

4)将待检测的农杆菌菌液进行混合,使每种菌液的OD600为0.5。

5)选取生长期为1个月左右完全伸展的烟草叶片,将混合好的菌液用1 mL注射器(去掉针头)从烟草叶背面进行注射。为保证实验结果的一致性,需要将对照载体和待检测目标载体的菌液注射在同一叶片的不同部位上, 以保证相同的生长背景。

6)正常温室生长条件下,24-48 h即可取样观察。

7)取3-4片直径为6-8 mm的叶盘,放入2 mL的 EP 管(提前放入3-4个小钢珠)中,液氮中冷冻,使用破碎仪进行研磨破碎(45 Hz,30 s)。破碎完全后在EP管中加入100 μL裂解液。

8)冰上孵育5 min左右,充分裂解叶片。

9)10000-16000 rpm离心1 min,取上清。

3.原生质体(仅供参考)

构建相应的载体。

制备原生质体(参考相关文献:Yoo SD, Cho YH, Sheen J (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565–1572)。

2 mL EP管中加入相应的载体(加入量需要摸索),加入100 μL原生质体悬浮液。轻摇混匀后,加入110 μL PEG-CaCl2溶液,轻弹混匀。在室温放置10-15 min。

4)加入440 μL W5溶液,上下颠倒以停止转化。

5)200× g 室温离心5 min,弃去上清,加入800 μL WI溶液重悬原生质体。

室温避光培养16-24 h。

7)将原生质体加入2 mL离心管中,离心收集原生质体,加入100 μL左右的裂解液。

8)冰上孵育5 min左右,充分裂解原生质体。

9)(选做)10000-16000 rpm离心1 min,取上清。

 

II.荧光检测

1)按照仪器说明书要求将荧光测定仪打开,设定参数,测定时间为10 sec,测定间隔为2 sec。

2)取20 μL裂解液加入测量管中(保持每次样品的加样量一致),另外加入100 μL萤火虫萤光素酶检测试剂,震板混匀

2-3次,充分混匀后测定RLU(Relative light unit)

3)分析数据。

①实验设计:根据不同实验目的,在每个培养板中都应设置对照组、实验组和空白对照组。为了保证实验准确性,理论上每个实验组(包括对照组)都应当减去空白对照组的萤火虫萤光素酶的发光测量值。

a.空白对照组:

背景F:未转染细胞+萤火虫萤光素酶检测试剂。

注:空白对照组的样品量必须与实验样品量相同,包含与实验样品相同的培养基/血清组合,并加上完全相同的检测试剂。

b.实验组:转染细胞经实验化合物处理(即实验组F)。

c.对照组:转染细胞不经处理,用以标准化结果(即对照组F)。

②计算结果:

实验组=实验组F-背景F。

对照组=对照组F-背景F。

表达倍数=实验组/对照组。

 

相关产品

产品名称

货号

规格

Firefly Glo Luciferase Reporter Gene Assay Kit辉光型萤火虫萤光素酶报告基因检测试剂盒

11404JP60/80

100/1000 T

Dual Glo Luciferase Reporter Gene Assay Kit 辉光型双萤光素酶报告基因检测试剂盒

11405JP60/80

100/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100/500/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-TK Luciferase Reporter Plasmid(pGMLR-TK海肾荧光素酶报告基因质粒)

11557JP03

1 μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1 μg

Hieff TransTM Liposomal Transfection Reagent 脂质体核酸转染试剂

40802JP03

1 mL

 HB220325

Q11401 有很多,现在单要裂解液

A有货号 11406.

Q该试剂盒中裂解后一定要离心吗?

A可以选做。

Q测定时间为 10 s,测定间隔为 2 s,为什么这样推荐?如果这样设置,96 孔板这样设置,会导致每孔时间相差很大。仪器可以同时出数据。工程师建议设置动力学检测, 设置总时间。

A不同仪器,设置时间可以不一样。单管手动检测,就按说明书设置会更好。

Q酶标仪检测吗?

A带有化学发光模块的可以。

Q加入检测试剂后,产生的荧光稳定吗?多长时间内检测数据是准确的?

A加入后海肾会有荧光猝灭的情况,越快越好,尽量 5min 内检测完成。

[1] Hao Y, Fan X, Shi Y, et al. Next-generation unnatural monosaccharides reveal that JPRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nat Commun. 2019;10(1):4065. Published 2019 Sep 6. doi:10.1038/s41467-019-11942-y(IF:11.878)
[2] Wang X, Qin X, Yan M, et al. Loss of exosomal miR-3188 in cancer-associated fibroblasts contributes to HNC progression. J Exp Clin Cancer Res. 2019;38(1):151. Published 2019 Apr 8. doi:10.1186/s13046-019-1144-9(IF:11.161)
[3] Yin T, Liu Y, Yang M, Wang L, Zhou J, Huo M. Novel Chitosan Derivatives with Reversible Cationization and Hydrophobicization for Tumor Cytoplasm-Specific Burst Co-delivery of siRNA and Chemotherapeutics. ACS Appl Mater Interfaces. 2020;12(13):14770-14783. doi:10.1021/acsami.9b19373(IF:8.758)
[4] He Y, Qu J, Wei L, et al. Generation and Effect Testing of a SARS-CoV-2 RBD-Targeted Polyclonal Therapeutic Antibody Based on a 2-D Airway Organoid Screening System. Front Immunol. 2021;12:689065. Published 2021 Oct 18. doi:10.3389/fimmu.2021.689065(IF:7.561)
[5] Sun H, Chen D, Zhan S, et al. Design and Discovery of Natural Cyclopeptide Skeleton Based Programmed Death Ligand 1 Inhibitor as Immune Modulator for Cancer Therapy. J Med Chem. 2020;63(19):11286-11301. doi:10.1021/acs.jmedchem.0c01262(IF:6.205)
[6] Li S, Zhang L, Zhang G, et al. A nonautophagic role of ATG5 in regulating cell growth by targeting c-Myc for proteasome-mediated degradation. iScience. 2021;24(11):103296. Published 2021 Oct 16. doi:10.1016/j.isci.2021.103296(IF:5.458)
[7] Yang N, Xiong Y, Wang Y, et al. ADAP Y571 Phosphorylation Is Required to Prime STAT3 for Activation in TLR4-Stimulated Macrophages. J Immunol. 2021;206(4):814-826. doi:10.4049/jimmunol.2000569(IF:5.422)
[8] He S, Ma R, Liu Z, et al. Overexpression of BnaAGL11, a MADS-Box Transcription Factor, Regulates Leaf Morphogenesis and Senescence in Brassica napus. J Agric Food Chem. 2022;70(11):3420-3434. doi:10.1021/acs.jafc.1c07622(IF:5.279)
[9] Zhang RY, Zhou SH, He CB, et al. Adjuvant-Protein Conjugate Vaccine with Built-In TLR7 Agonist on S1 Induces Potent Immunity against SARS-CoV-2 and Variants of Concern. ACS Infect Dis. 2022;8(7):1367-1375. doi:10.1021/acsinfecdis.2c00259(IF:5.084)
[10] Li Y, Chen T, Wang W, et al. A high-efficiency Agrobacterium-mediated transient expression system in the leaves of Artemisia annua L. Plant Methods. 2021;17(1):106. Published 2021 Oct 16. doi:10.1186/s13007-021-00807-5(IF:4.993)
[11] Li D, Jiang K, Teng D, et al. Discovery of New Estrogen-Related Receptor α Agonists via a Combination Strategy Based on Shape Screening and Ensemble Docking. J Chem Inf Model. 2022;62(3):486-497. doi:10.1021/acs.jcim.1c00662(IF:4.956)
[12] Liu J, Chen X, Liu Y, et al. Characterization of SARS-CoV-2 worldwide transmission based on evolutionary dynamics and specific viral mutations in the spike protein. Infect Dis Poverty. 2021;10(1):112. Published 2021 Aug 21. doi:10.1186/s40249-021-00895-4(IF:4.388)
[13] Zhou FL, Li SC, Zhu Y, et al. Integrating yeast chemical genomics and mammalian cell pathway analysis [published correction appears in Acta Pharmacol Sin. 2020 May;41(5):729]. Acta Pharmacol Sin. 2019;40(9):1245-1255. doi:10.1038/s41401-019-0231-y(IF:4.010)
[14] Zhu G, Li X, Li J, et al. Arsenic trioxide (ATO) induced degradation of Cyclin D1 sensitized PD-1/PD-L1 checkpoint inhibitor in oral and esophageal squamous cell carcinoma. J Cancer. 2020;11(22):6516-6529. Published 2020 Sep 21. doi:10.7150/jca.47111(IF:3.565)
[15] Xie Y, Li X, Ge J. Cyclophilin A-FoxO1 signaling pathway in endothelial cell apoptosis. Cell Signal. 2019;61:57-65. doi:10.1016/j.cellsig.2019.04.014(IF:3.388)
[16] Wang Y, Bibi M, Min P, Deng W, Zhang Y, Du J. SOX2 promotes hypoxia-induced breast cancer cell migration by inducing NEDD9 expression and subsequent activation of Rac1/HIF-1α signaling. Cell Mol Biol Lett. 2019;24:55. Published 2019 Aug 22. doi:10.1186/s11658-019-0180-y(IF:3.367)
[17] Jian Y, Qiao Q, Tang J, Qin X. Origin recognition complex 1 regulates phospholipase Cδ1 to inhibit cell proliferation, migration and epithelial-mesenchymal transition in lung adenocarcinoma. Oncol Lett. 2022;24(2):252. Published 2022 Jun 10. doi:10.3892/ol.2022.13372(IF:2.967)

高斯萤光素酶报告基因细胞裂解液(RG135S)

高斯萤光素酶报告基因细胞裂解液

产品编号: RG135S

产品包装:10ml
选择包装

10ml 100ml

说明书下载

48.00 10

价格: ¥ 48.00

产品简介
使用说明
产品文件
相关产品
相关论文
产品问答
产品编号 产品名称 产品包装 产品价格
RG135S 高斯萤光素酶报告基因细胞裂解液 10ml 48.00元
RG135M 高斯萤光素酶报告基因细胞裂解液 100ml 268.00元

碧云天生产的高斯萤光素酶报告基因细胞裂解液(Gaussia Luciferase Reporter Gene Assay Cell Lysis Buffer),也称高斯萤光素酶检测细胞裂解液(Gaussia Luciferase Assay Cell Lysis Buffer)。本产品裂解后的细胞样品,主要用于高斯萤光素酶报告基因检测试剂盒(RG021)和Gaussia-Lumi™高斯萤光素酶报告基因检测试剂盒(RG072)的检测。本产品制备的样品不适合用于萤火虫萤光素酶报告基因或海肾萤光素酶报告基因的检测。

使用高斯萤光素酶报告基因检测试剂盒(RG021)时,如果需要更多的高斯萤光素酶报告基因细胞裂解液,可以使用本产品。使用Gaussia-Lumi™高斯萤光素酶报告基因检测试剂盒(RG072)时,如果希望用于检测细胞裂解样品,也可以使用本产品。

包装清单:
产品编号 产品名称 包装
RG135S 高斯萤光素酶报告基因细胞裂解液 10ml
RG135M 高斯萤光素酶报告基因细胞裂解液 100ml
说明书 1份
保存条件:

-20℃保存,一年有效。

注意事项:

本产品裂解后的样品不适合直接用于萤火虫萤光素酶报告基因或海肾萤光素酶报告基因的检测。

本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。

为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:
1. 细胞的准备:
接种细胞,同时设置不含细胞的培养液孔作为阴性对照,按照细胞培养的常规方法培养细胞。如有需要,可用质粒转染细胞或用病毒感染细胞,或加入药物处理细胞。根据具体情况,继续培养16-72小时。
2. 裂解液的准备:
融解高斯萤光素酶报告基因细胞裂解液。
3. 细胞裂解液的制备:
去除细胞培养液,用PBS洗涤1次,每孔加入高斯萤光素酶报告基因细胞裂解液(96孔板每孔加入100μl,48孔、24孔、12孔或6孔板,每孔酌情加入约100-500μl裂解液),在摇床上以中等速度摇动裂解15分钟。在光学显微镜下检查细胞是否完全溶解,如果溶解不完全,继续摇动裂解15分钟。后续就可以使用高斯萤光素酶报告基因检测试剂盒(RG021)或Gaussia-Lumi™高斯萤光素酶报告基因检测试剂盒(RG072)进行报告基因的检测了。如果不能立即检测,可以将裂解液样品存放于-20℃,至少可保存一个月。

相关产品:

产品编号 产品名称 包装
RG021 高斯萤光素酶报告基因检测试剂盒 100/1000次
RG072 Gaussia-Lumi™高斯萤光素酶报告基因检测试剂盒 100/1000次
RG135 高斯萤光素酶报告基因细胞裂解液 10/100ml
D2098 pGLuc (报告基因质粒) 1/100µg
D2100 pGLuc-Dura (报告基因质粒) 1/100µg
D2103 pGLuc-TA (报告基因质粒) 1/100µg
D2104 pGLuc-Dura-TA (报告基因质粒) 1/100µg
D2107 pGLuc-Dura-miR (报告基因质粒) 1/100µg
D2114 pARE-GLuc-Dura (报告基因质粒) 1/100µg
D2181 pISRE-TA-GLuc-Dura (报告基因质粒) 1/100µg
D2209 pNFκB-TA-GLuc-Dura (报告基因质粒) 1/100µg
D2225 pp53-TA-GLuc-Dura (报告基因质粒) 1/100µg
D2261 pSTAT3-TA-GLuc-Dura (报告基因质粒) 1/100µg
D2204 pNFκB-GLuc-Dura (报告基因质粒) 1/100µg
D2764 pGLuc-Dura-SV40-N (报告基因质粒) 1/100µg
D2770 pGLuc-Dura-SV40-C (报告基因质粒) 1/100µg
FCP966 BeyoGold™全黑96孔细胞培养板(平底带盖, 独立包装) 80个/盒,320个/箱
FCP968 BeyoGold™全白96孔细胞培养板(平底带盖, 独立包装) 80个/盒,320个/箱
FCP963 BeyoGold™白色透明底96孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP965 BeyoGold™黑色透明底96孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP981 BeyoGold™ 384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP983 BeyoGold™全白384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP985 BeyoGold™全黑384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP986 BeyoGold™白色透明底384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP987 BeyoGold™黑色透明底384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱

高斯萤光素酶报告基因细胞裂解液(RG135S)
高斯萤光素酶报告基因细胞裂解液(RG135S)

物质安全数据单

下载

高斯萤光素酶报告基因细胞裂解液(RG135S)
质检证书
输入批号搜寻COA

搜索

相关产品请点击如下按钮:
报告基因相关

使用本产品的文献:

双萤光素酶报告基因检测试剂盒|Dual Luciferase Reporter Gene Assay Kit

双萤光素酶报告基因检测试剂盒|Dual Luciferase Reporter Gene Assay Kit

产品说明书

FAQ

COA

已发表文献

产品描述

萤火虫萤光素酶(Firefly luciferase)是一种分子量约为61 kDa的蛋白,在ATP、镁离子和氧气存在的条件下,能够催化萤光素(luciferin)氧化成oxyluciferin,在氧化的过程中会发出波长为560 nm左右的生物萤光。海肾萤光素酶(Renilla luciferase)是一种分子量约为36 kDa的蛋白,在氧气存在的条件下,可以催化腔肠素(coelenterazine)氧化成coelenteramide,在氧化的过程中会发出波长为480nm左右的生物萤光。两种生物萤光都可通过化学发光仪进行测定。检测原理如图所示:

双萤光素酶报告基因检测试剂盒|Dual Luciferase Reporter Gene Assay Kit 
1:萤火虫和海肾萤光素酶检测原理图

通常将目的基因的5´UTR或启动子克隆至Firefly Luciferase的上游,或3´UTR克隆至Firefly Luciferase的下游,通过检测萤火虫萤光素酶的量来检测启动子或调控元件的转录调控作用。Renilla Luciferase作为内参,来消除细胞数量转染效率等的差异。Dual Luciferase Reporter Gene Assay Kit首先以萤光素为底物来检测萤火虫萤光素酶报告基因的活性,之后在淬灭该萤光反应的同时,以腔肠素为底物检测海肾萤光素酶报告基因的活性。该试剂盒具有灵敏度的特点

 

产品组分

组分编号

组分名称

产品编号/规格

11402JP60100 T

11402JP801000 T

11402-A

细胞裂解液

20 mL

10×20 mL

11402-B

萤火虫萤光素酶缓冲液

10 mL

10×10 mL

11402-C

萤火虫萤光素酶底物(50 ×

200 μL

10×200 μL

11402-D

海肾萤光素酶缓冲液

10 mL

10×10 mL

11402-E

海肾萤光素酶底物(50 ×

200 μL

10×200 μL

 

运输和保存方式

干冰运输。 -20℃保存,有效期1

萤火虫萤光素酶反应工作液和海肾萤光素酶反应工作液现配现用,且不能反复冻融,建议分装-20℃-80℃分装保存。

 

实验步骤

I.前处理

 

1.细胞

1构建相应的载体。

2转染步骤请参照相关的说明书。

3)将细胞裂解液充分混匀,按如下方式加入细胞裂解液,充分裂解细胞。

a: 对于贴壁细胞,吸尽细胞培养液,按照下表比例加入细胞裂解液,轻轻旋转培养皿或者培养板使裂解液完全覆盖细胞;

b: 对于悬浮细胞,离心弃去上清,按照下表比例加入裂解液

细胞培养板

96孔板

48孔板

24孔板

12孔板

6孔板

裂解液加入量

100 μL

150 μL

200 μL

300 μL

500 μL

4)冰上孵育5 min,充分裂解细胞。
裂解产物可室温保存6 h4℃保存16 h80℃可长期存放。(裂解产物不能多次反复冻融)

5)(选作)10000-16000 rpm离心1 min,取上清。

 

2.叶片组织(以烟草叶片为例,仅供参考)
1)构建相应的载体。
2挑取转化有重组质粒的农杆菌单菌落,接种到2 mL LB液体培养基(添加相应抗生素)中,28℃ 220 rpm培养过夜。
3农杆菌培养至OD6001.01700× g离心5 min收集菌体后,用1/2MS液体培养基清洗菌体2次;用含有150 μmol/L乙酰丁香酮的1/2MS液体培养基将农杆菌的OD600调至1.0
4将待检测的农杆菌菌液进行混合,使每种菌液的OD6000.5
5选取生长期为1个月左右完全伸展的烟草叶片,将混合好的菌液用1 mL注射器(去掉针头)从烟草叶背面进行注射。为保证实验结果的一致性,需要将对照载体和待检测目标载体的菌液注射在同一叶片的不同部位上, 以保证相同的生长背景。
6)正常温室生长条件下,24-48 h即可取样观察。
73-4直径为6-8 mm的叶盘,放入2 mLEP(提前放入3-4小钢珠)中,液氮中冷冻使用破碎仪进行研磨破碎(45 Hz30 s)。破碎完全后在EP管中加入100 μL裂解液。
8)冰上孵育5 min左右,充分裂解叶片。
910000-16000 rpm离心1 min,取上清。

 

3.原生质体(仅供参考)
1)构建相应的载体。
2)制备原生质体参考文献Yoo SD, Cho YH, Sheen J (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565–1572)。

3)WI溶液配置:0.5 M甘露醇和20mm KCl 溶于4 mm MJP (pH 5.7),可在室温下保存。
W5溶液配置:154 mM NaCl, 125 mM CaCl2 和5 mM KCl溶于2 mm MJP (pH 5.7),可在室温下保存。

4)2 mL EP管中加入相应的载体(加入量需要摸索),加入100 μL原生质体悬浮液。轻摇混匀后,加入110 μL PEG-CaCl2溶液,轻弹混匀。在室温放置10-15 min
5加入440 μL W5溶液,上下颠倒以停止转化。
6200 × g 室温离心5 min,弃去上清,加入800 μL WI溶液重悬原生质体。
7)室温避光培养16-24 h

8)将原生质体加入2 mL离心管中,离心收集原生质体,加入100 μL左右的裂解液。
9)冰上孵育5 min左右,充分裂解原生质体。
10)(选做)10000-16000 rpm离心1 min,取上清。

 

II.萤光检测

1)取20 μL裂解液,加至培养板中。按照实验需要,可设置3-5孔重复。

2)配制萤火虫萤光素酶反应工作液和海肾萤光素酶反应液,即萤火虫萤光素酶底物(50 ×)和海肾萤光素酶底物(50 ×分别用对应的缓冲液稀释至1 ×工作液。并孵育至室温。

3)加入100 μL萤火虫萤光素酶反应液,震板混匀,检测萤火虫萤光素酶的活力,检测尽量在30 min内完成。

4)加入100 μL海肾萤光素酶反应液,震板混匀,检测海肾萤光素酶的活力,检测尽量在30 min内完成。

5)分析数据。

实验设计:根据不同实验目的,在每个培养板中都应设置对照组实验组和空白对照组。为了保证实验准确性,理论上每个实验组(包括对照组)都应当减去空白对照组的萤火虫和海肾萤光素酶的发光测量值。
 

a.空白对照 

背景F:未转染细胞+萤火虫萤光素酶检测试剂。

背景R:未转染细胞+萤火虫萤光素酶检测试剂+海肾萤光素酶检测试剂。

注:空白对照组的样品量必须与实验样品量相同,包含与实验样品相同的培养基/血清组合,并加上完全相同的检测试剂。

b.实验组:转染细胞经实验化合物处理(即实验组F和实验组R)

c.对照组:转染细胞不经处理,用以标准化结果(即对照组F和对照组R)

计算结果:

实验组比值=(实验组F-背景F/(实验组R-背景R)

对照组比值=(对照组F-背景F/(对照组R-背景R)

表达倍数=实验组比值/对照组比值。

双萤光素酶报告基因检测试剂盒|Dual Luciferase Reporter Gene Assay Kit

2:细胞样品萤火虫和海肾萤光素酶检测流程图

 

注意事项

1)检测过程中需自备耗材和设备包括如下:PBS100 μL移液器或者排枪不透光白色酶标Luminometer发光计多功能酶标仪或者其他能够检测生物发光的仪器;

2)反应温度:酶促反应对温度较为敏感,加样检测前务必将所有试剂平衡至室温20-25℃再使用;

3)检测仪器:能检测化学发光的仪器都适用,但由于不同仪器的设置和灵敏度不同,测得的光信号值也会不同

4)检测设置:Luminescence350-700 nm,建议检测时间设为2-10 sec

5)检测板:为防止孔间干扰,推荐使用不透光白色酶标板黑色酶标板也可用,但因黑色会吸收光信号,可能会降低信号;

6)单管萤光测定仪测定,每个样品与测定试剂混合后到测定前的时间应保持一致;

7E组分海肾萤光素酶底物易挥发,注意密封保存

8为了您的安全和健康,请穿实验服并戴一次性手套。

9本产品仅作科研用途!

 

相关产品

产品名称

货号

规格

Firefly Glo Luciferase Reporter Gene Assay Kit辉光型萤火虫萤光素酶报告基因检测试剂盒

11404JP60/80

100/1000 T

Dual Glo Luciferase Reporter Gene Assay Kit 辉光型双萤光素酶报告基因检测试剂盒

11405JP60/80

100/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫萤光素酶报告基因检测试剂盒

11401JP60/76/80

100/500/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc萤光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (萤光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-TK Luciferase Reporter PlasmidpGMLR-TK海肾萤光素酶报告基因质粒)

11557JP03

1 μg

pGMLR-CMV Luciferase Reporter PlasmidpGMLR-CMV海肾萤光素酶报告基因质粒)

11558JP03

1 μg

Hieff Trans Liposomal Transfection Reagent 脂质体核酸转染试剂

40802JP03

1 mL

HB230504

Q:细胞裂解之后的裂解液能否在-80℃保存?

A可保存在-80℃,基本与蛋白的保存方法类似。裂解后的样本可在 -80 ℃保存半年-20 ℃保存一个月。

Q双荧光素酶报告基因检测试剂盒中的两个底物是否需要避光的?

A这两个底物操作过程中不需要严格避光。保存的时候避光保存,更重要的保存条件是低温,尤其是腔肠素,推荐80℃保存。

Q双荧光素酶报告基因载体共转染时比例该如何进行优化与调整?

A比例:根据具体实验情况进行调整。建议做预实验:如海参载体萤火虫载体比例分别用 1:101:201:501:100。萤火虫荧光素酶检测发光值大于海参荧光素酶发光值的比例比较好。

Q:海肾和萤火虫是在同一个孔里面检测吗?萤火虫的萤光不会影响海肾的萤光吗?能否分开检测呢?

A:同一个孔里检测。不会相互影响,我们的海肾荧光素酶底物中有淬灭萤火虫荧光值的物质。可以分开检测,但是在一个孔里检测会更加准确。

Q:使用的是promega的仪器进行检测,发现海肾的本底值偏高很多,是为什么呢?

A:我们的产品与promega的仪器不适配,会导致本底值偏高。使用酶标仪检测不会出现这种情况,建议使用酶标仪检测。

Q:W5和WI指的是什么呢?

A:

WI solution Prepare 4 mM MJP (pH 5.7) containing 0.5 M mannitol and 20 mM KCl. The prepared WI solution can be stored at room temperature (22-25 °C).
W5 solution Prepare 2 mM MJP (pH 5.7) containing 154 mM NaCl, 125 mM CaCl2 and 5 mM KCl. The prepared W5 solution can be stored at room temperature.

 

Q:检测萤火虫荧光素酶,酶标仪使用什么样的板子呢?

A:白色不透明的酶标板,图片见说明书

 

Q:裂解液不够用了,怎么办呢?

A:10ml PBS里加入0.3ml Triton

[1] Wang Z, Lu Z, Lin S, et al. Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity. 2022;55(6):1067-1081.e8. doi:10.1016/j.immuni.2022.04.017(IF:43.474)
[2] Chen Y, Lu Z, Qi C, et al. N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer. 2022;21(1):111. Published 2022 May 10. doi:10.1186/s12943-022-01549-1(IF:27.401)
[3] Yao J, Wu D, Zhang C, et al. Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation. Nat Immunol. 2021;22(10):1268-1279. doi:10.1038/s41590-021-01023-y(IF:25.606)
[4] Sun B, Yang X, Hou F, et al. Regulation of host and virus genes by neuronal miR-138 favours herpes simplex virus 1 latency. Nat Microbiol. 2021;6(5):682-696. doi:10.1038/s41564-020-00860-1(IF:17.745)
[5] Tian WH, Ye JY, Cui MQ, et al. A transcription factor STOP1-centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis. Mol Plant. 2021;14(9):1554-1568. doi:10.1016/j.molp.2021.06.024(IF:13.164)
[6] Qiao J, Jiang H, Lin Y, et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Mol Plant. 2021;14(10):1683-1698. doi:10.1016/j.molp.2021.06.023(IF:13.164)
[7] Wang Y, Wang Z, Shao C, et al. Melatonin may suppress lung adenocarcinoma progression via regulation of the circular noncoding RNA hsa_circ_0017109/miR-135b-3p/TOX3 axis [published online ahead of print, 2022 Jun 4]. J Pineal Res. 2022;e12813. doi:10.1111/jpi.12813(IF:13.007)
[8] Chen H, Moreno-Moral A, Pesce F, et al. WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling [published correction appears in Nat Commun. 2019 Sep 9;10(1):4085]. Nat Commun. 2019;10(1):3616. Published 2019 Aug 9. doi:10.1038/s41467-019-11551-9(IF:11.878)
[9] Xiang X, Fu Y, Zhao K, et al. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2. Theranostics. 2021;11(10):4929-4944. Published 2021 Mar 4. doi:10.7150/thno.55672(IF:11.556)
[10] Xu Y, Jiang Y, Wang Y, et al. LINC00473-modified bone marrow mesenchymal stem cells incorporated thermosensitive PLGA hydrogel transplantation for steroid-induced osteonecrosis of femoral head: A detailed mechanistic study and validity evaluation. Bioeng Transl Med. 2021;7(2):e10275. Published 2021 Dec 8. doi:10.1002/btm2.10275(IF:10.711)
[11] Huang X, He M, Huang S, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription [published correction appears in Mol Cancer. 2022 Jun 2;21(1):122]. Mol Cancer. 2019;18(1):166. Published 2019 Nov 21. doi:10.1186/s12943-019-1098-8(IF:10.679)
[12] Ma L, An R, Jiang L, et al. Effects of ZmHIPP on lead tolerance in maize seedlings: Novel ideas for soil bioremediation. J Hazard Mater. 2022;430:128457. doi:10.1016/j.jhazmat.2022.128457(IF:10.588)
[13] Xu C, Fan L, Lin Y, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes. 2021;13(1):1980347. doi:10.1080/19490976.2021.1980347(IF:10.245)
[14] Xiang Y, Bian X, Wei T, et al. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. New Phytol. 2021;232(6):2400-2417. doi:10.1111/nph.17761(IF:10.152)
[15] Gao Y, Li Z, Yang C, et al. Pseudomonas syringae activates ZAT18 to inhibit salicylic acid accumulation by repressing EDS1 transcription for bacterial infection. New Phytol. 2022;233(3):1274-1288. doi:10.1111/nph.17870(IF:10.152)
[16] Zhao H, Lu J, Yan T, et al. Opioid receptor signaling suppresses leukemia through both catalytic and non-catalytic functions of TET2. Cell Rep. 2022;38(4):110253. doi:10.1016/j.celrep.2021.110253(IF:9.423)
[17] He R, Shi J, Xu D, et al. SULF2 enhances GDF15-SMAD axis to facilitate the initiation and progression of pancreatic cancer. Cancer Lett. 2022;538:215693. doi:10.1016/j.canlet.2022.215693(IF:8.679)
[18] Wu Q, Li L, Miao C, et al. Osteopontin promotes hepatocellular carcinoma progression through inducing JAK2/STAT3/NOX1-mediated ROS production. Cell Death Dis. 2022;13(4):341. Published 2022 Apr 13. doi:10.1038/s41419-022-04806-9(IF:8.469)
[19] Wu Y, Wang L, Ansah EO, et al. The sucrose transport regulator OsDOF11 mediates cytokinin degradation during rice development. Plant Physiol. 2022;189(2):1083-1094. doi:10.1093/plphys/kiac104(IF:8.340)
[20] Ruan J, Chen H, Zhu T, et al. Brassinosteroids repress the seed maturation program during the seed-to-seedling transition. Plant Physiol. 2021;186(1):534-548. doi:10.1093/plphys/kiab089(IF:8.340)
[21] Hou Y, Lu H, Li J, et al. A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2'3'-cGAMP. Cell Chem Biol. 2022;29(1):133-144.e20. doi:10.1016/j.chembiol.2021.08.006(IF:8.116)
[22] Cao L, Zhang Y, Mi J, et al. α-Hederin inhibits the platelet activating factor-induced metastasis of HCC cells through disruption of PAF/PTAFR axis cascaded STAT3/MMP-2 expression. Pharmacol Res. 2022;178:106180. doi:10.1016/j.phrs.2022.106180(IF:7.658)
[23] Xie S, Wei H, Peng A, et al. Ikzf2 Regulates the Development of ICOS+ Th Cells to Mediate Immune Response in the Spleen of S. japonicum-Infected C57BL/6 Mice. Front Immunol. 2021;12:687919. Published 2021 Aug 12. doi:10.3389/fimmu.2021.687919(IF:7.561)
[24] Song Y, Guo Y, Li X, et al. RBM39 Alters Phosphorylation of c-Jun and Binds to Viral RNA to Promote PRRSV Proliferation. Front Immunol. 2021;12:664417. Published 2021 May 17. doi:10.3389/fimmu.2021.664417(IF:7.561)
[25] Zeng J, Li G, Xia Y, et al. miR-204/COX5A axis contributes to invasion and chemotherapy resistance in estrogen receptor-positive breast cancers. Cancer Lett. 2020;492:185-196. doi:10.1016/j.canlet.2020.07.027(IF:7.360)
[26] Li D, Zhou J, Zheng C, et al. OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. Plant Cell Environ. 2022;45(5):1584-1602. doi:10.1111/pce.14288(IF:7.228)
[27] Sun J, Shi Y, Shi H, et al. Intracellular Low Iron Exerts Anti-BK Polyomavirus Effect by Inhibiting the Protein Synthesis of Exogenous Genes. Microbiol Spectr. 2021;9(3):e0109421. doi:10.1128/Spectrum.01094-21(IF:7.171)
[28] Sun Q, Xu Y, Yuan F, et al. Rho family GTPase 1 (RND1), a novel regulator of p53, enhances ferroptosis in glioblastoma. Cell Biosci. 2022;12(1):53. Published 2022 May 3. doi:10.1186/s13578-022-00791-w(IF:7.133)
[29] Yuan F, Sun Q, Zhang S, et al. The dual role of p62 in ferroptosis of glioblastoma according to p53 status. Cell Biosci. 2022;12(1):20. Published 2022 Feb 25. doi:10.1186/s13578-022-00764-z(IF:7.133)
[30] Liu J, Gao L, Zhan N, et al. Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. J Exp Clin Cancer Res. 2020;39(1):137. Published 2020 Jul 16. doi:10.1186/s13046-020-01641-8(IF:7.068)
[31] Sun C, Li D, Gao Z, et al. OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice [published correction appears in J Integr Plant Biol. 2022 May;64(5):1131]. J Integr Plant Biol. 2022;64(1):118-134. doi:10.1111/jipb.13183(IF:7.061)
[32] Xiang Y, Sun X, Bian X, et al. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J Exp Bot. 2021;72(4):1399-1410. doi:10.1093/jxb/eraa507(IF:6.992)
[33] Zhou H, Li X, Wu RX, et al. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling. Cell Prolif. 2021;54(5):e13026. doi:10.1111/cpr.13026(IF:6.831)
[34] Tao J, Li S, Wang Q, et al. Construction of a high-density genetic map based on specific-locus amplified fragment sequencing and identification of loci controlling anthocyanin pigmentation in Yunnan red radish [published online ahead of print, 2022 Jan 19]. Hortic Res. 2022;9:uhab031. doi:10.1093/hr/uhab031(IF:6.793)
[35] Ma X, Yuan Y, Li C, et al. Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of LcACS1/4 and LcACO2/3 in litchi. Hortic Res. 2021;8(1):105. Published 2021 May 1. doi:10.1038/s41438-021-00540-z(IF:6.793)
[36] Zhang R, Chang J, Li J, et al. Disruption of the bHLH transcription factor Abnormal Tapetum 1 causes male sterility in watermelon. Hortic Res. 2021;8(1):258. Published 2021 Dec 1. doi:10.1038/s41438-021-00695-9(IF:6.793)
[37] Sun Y, Wang L, Xu X, et al. FOXO4 Inhibits the Migration and Metastasis of Colorectal Cancer by Regulating the APC2/β-Catenin Axis. Front Cell Dev Biol. 2021;9:659731. Published 2021 Sep 23. doi:10.3389/fcell.2021.659731(IF:6.684)
[38] Zhang Y, Hu R, Xi B, Nie D, Xu H, Liu A. Mechanisms of Senescence-Related NKG2D Ligands Release and Immune Escape Induced by Chemotherapy in Neuroblastoma Cells. Front Cell Dev Biol. 2022;10:829404. Published 2022 Mar 2. doi:10.3389/fcell.2022.829404(IF:6.684)
[39] Zhu L, Qi W, Yang G, et al. Toxoplasma gondii Rhoptry Protein 7 (ROP7) Interacts with NLRP3 and Promotes Inflammasome Hyperactivation in THP-1-Derived Macrophages. Cells. 2022;11(10):1630. Published 2022 May 12. doi:10.3390/cells11101630(IF:6.600)
[40] Zeng H, Li L, Gao Y, Wu G, Hou Z, Liu S. Long noncoding RNA UCA1 regulates HCV replication and antiviral response via miR-145-5p/SOCS7/IFN pathway. Int J Biol Sci. 2021;17(11):2826-2840. Published 2021 Jul 5. doi:10.7150/ijbs.59227(IF:6.582)
[41] Zhao P, Zhu Y, Sun L, et al. Circulating Exosomal miR-1-3p from Rats with Myocardial Infarction Plays a Protective Effect on Contrast-Induced Nephropathy via Targeting ATG13 and activating the AKT Signaling Pathway. Int J Biol Sci. 2021;17(4):972-985. Published 2021 Mar 2. doi:10.7150/ijbs.55887(IF:6.582)
[42] Cui W, Wang S, Han K, et al. Ferredoxin 1 is downregulated by the accumulation of abscisic acid in an ABI5-dependent manner to facilitate rice stripe virus infection in Nicotiana benthamiana and rice. Plant J. 2021;107(4):1183-1197. doi:10.1111/tpj.15377(IF:6.486)
[43] Wang Y, He S, Long Y, et al. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize. Plant J. 2022;109(4):980-991. doi:10.1111/tpj.15609(IF:6.486)
[44] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[45] Meng X, Deng Y, He S, Niu L, Zhu H. m6A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigenesis by Regulating the miR-150-5p/E2F3 Axis. Front Oncol. 2021;11:629947. Published 2021 Feb 18. doi:10.3389/fonc.2021.629947(IF:6.244)
[46] Yu Q, Zhang W, Zhou X, Shen W, Xing C, Yang X. Regulation of lnc-TLCD2-1 on Radiation Sensitivity of Colorectal Cancer and Comprehensive Analysis of Its Mechanism. Front Oncol. 2021;11:714159. Published 2021 Jul 15. doi:10.3389/fonc.2021.714159(IF:6.244)
[47] Zhang XY, Chen ZC, Li N, et al. Exosomal transfer of activated neutrophil-derived lncRNA CRNDE promotes proliferation and migration of airway smooth muscle cells in asthma. Hum Mol Genet. 2022;31(4):638-650. doi:10.1093/hmg/ddab283(IF:6.150)
[48] Yang HY, Liu M, Sheng Y, et al. All-trans retinoic acid impairs glucose-stimulated insulin secretion by activating the RXR/SREBP-1c/UCP2 pathway. Acta Pharmacol Sin. 2022;43(6):1441-1452. doi:10.1038/s41401-021-00740-2(IF:6.150)
[49] Jiang T, Peng D, Shi W, et al. IL-6/STAT3 Signaling Promotes Cardiac Dysfunction by Upregulating FUNDC1-Dependent Mitochondria-Associated Endoplasmic Reticulum Membranes Formation in Sepsis Mice. Front Cardiovasc Med. 2022;8:790612. Published 2022 Jan 18. doi:10.3389/fcvm.2021.790612(IF:6.050)
[50] Ji H, Zhang K, Pan G, et al. Deoxyelephantopin Induces Apoptosis and Enhances Chemosensitivity of Colon Cancer via miR-205/Bcl2 Axis. Int J Mol Sci. 2022;23(9):5051. Published 2022 May 2. doi:10.3390/ijms23095051(IF:5.924)
[51] Li H, Luo Y, Ma B, et al. Hierarchical Action of Mulberry miR156 in the Vegetative Phase Transition. Int J Mol Sci. 2021;22(11):5550. Published 2021 May 24. doi:10.3390/ijms22115550(IF:5.924)
[52] Li H, Ma B, Luo Y, et al. The Mulberry SPL Gene Family and the Response of MnSPL7 to Silkworm Herbivory through Activating the Transcription of MnTT2L2 in the Catechin Biosynthesis Pathway. Int J Mol Sci. 2022;23(3):1141. Published 2022 Jan 20. doi:10.3390/ijms23031141(IF:5.924)
[53] Xia S, Wang Z, Chen L, et al. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal. Biochem Pharmacol. 2021;192:114730. doi:10.1016/j.bcp.2021.114730(IF:5.858)
[54] Feng Y, He PY, Kong WD, et al. Apoptosis-promoting properties of miR-3074-5p in MC3T3-E1 cells under iron overload conditions. Cell Mol Biol Lett. 2021;26(1):37. Published 2021 Aug 16. doi:10.1186/s11658-021-00281-w(IF:5.787)
[55] Li D, Wang Z, Sun S, et al. VvMYB15 and VvWRKY40 Positively Co-regulated Anthocyanin Biosynthesis in Grape Berries in Response to Root Restriction [published correction appears in Front Plant Sci. 2022 Feb 22;13:850160]. Front Plant Sci. 2021;12:789002. Published 2021 Dec 9. doi:10.3389/fpls.2021.789002(IF:5.754)
[56] Ding J, Karim H, Li Y, et al. Re-examination of the APETALA2/Ethylene-Responsive Factor Gene Family in Barley (Hordeum vulgare L.) Indicates a Role in the Regulation of Starch Synthesis. Front Plant Sci. 2021;12:791584. Published 2021 Dec 1. doi:10.3389/fpls.2021.791584(IF:5.754)
[57] Geng M, Hua Y, Liu Y, et al. Evolutionary history and functional characterization of Lj-TICAM-a and Lj-TICAM-b formed via lineage-specific tandem duplication in lamprey (Lampetra japonica). Genomics. 2021;113(4):2756-2768. doi:10.1016/j.ygeno.2021.06.022(IF:5.736)
[58] Hou F, Sun Z, Deng Y, et al. Interactome and Ubiquitinome Analyses Identify Functional Targets of Herpes Simplex Virus 1 Infected Cell Protein 0. Front Microbiol. 2022;13:856471. Published 2022 Apr 18. doi:10.3389/fmicb.2022.856471(IF:5.640)
[59] Zhou L, Ao L, Yan Y, et al. Levo-corydalmine Attenuates Vincristine-Induced Neuropathic Pain in Mice by Upregulating the Nrf2/HO-1/CO Pathway to Inhibit Connexin 43 Expression. Neurotherapeutics. 2020;17(1):340-355. doi:10.1007/s13311-019-00784-7(IF:5.552)
[60] Lei B, Liu J, Yao Z, et al. NF-κB-Induced Upregulation of miR-146a-5p Promoted Hippocampal Neuronal Oxidative Stress and Pyroptosis via TIGAR in a Model of Alzheimer's Disease. Front Cell Neurosci. 2021;15:653881. Published 2021 Apr 16. doi:10.3389/fncel.2021.653881(IF:5.505)
[61] Hsueh CY, Huang Q, Gong H, et al. A positive feed-forward loop between Fusobacteriumnucleatum and ethanol metabolism reprogramming drives laryngeal cancer progression and metastasis. iScience. 2022;25(2):103829. Published 2022 Jan 30. doi:10.1016/j.isci.2022.103829(IF:5.458)
[62] Zhang S, Xing M, Chen G, Tong L, Zhang H, Du D. Up-regulation of miR-335 and miR-674-3p in the rostral ventrolateral medulla contributes to stress-induced hypertension. J Neurochem. 2022;161(5):387-404. doi:10.1111/jnc.15589(IF:5.372)
[63] Fan Z, Yang G, Zhang W, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med. 2021;25(21):10197-10212. doi:10.1111/jcmm.16957(IF:5.310)
[64] Wang W, Li T, Chen Q, Deng B, Deng L, Zeng K. Transcription Factor CsWRKY65 Participates in the Establishment of Disease Resistance of Citrus Fruits to Penicillium digitatum. J Agric Food Chem. 2021;69(20):5671-5682. doi:10.1021/acs.jafc.1c01411(IF:5.279)
[65] Jin CL, Ye M, Song ZW, et al. Lysine Interacts with Frizzled7 to Activate β-Catenin in Satellite Cell-Participated Skeletal Muscle Growth. J Agric Food Chem. 2022;70(12):3745-3756. doi:10.1021/acs.jafc.2c01027(IF:5.279)
[66] Xia H, Shen Y, Hu R, et al. Methylation of MYBA1 is Associated with the Coloration in "Manicure Finger" Grape Skin. J Agric Food Chem. 2021;69(51):15649-15659. doi:10.1021/acs.jafc.1c04550(IF:5.279)
[67] Huang Y, Zheng W, Ji C, et al. Circular RNA circRPPH1 promotes breast cancer progression via circRPPH1-miR-512-5p-STAT1 axis. Cell Death Discov. 2021;7(1):376. Published 2021 Dec 6. doi:10.1038/s41420-021-00771-y(IF:5.241)
[68] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[69] Chen H, Luo J, Chen S, et al. Non-drug efflux function of ABCC5 promotes enzalutamide resistance in castration-resistant prostate cancer via upregulation of P65/AR-V7. Cell Death Discov. 2022;8(1):241. Published 2022 May 3. doi:10.1038/s41420-022-00951-4(IF:5.241)
[70] Du XF, Cui HT, Pan HH, et al. Role of the miR-133a-5p/FBXO6 axis in the regulation of intervertebral disc degeneration. J Orthop Translat. 2021;29:123-133. Published 2021 Jun 19. doi:10.1016/j.jot.2021.05.004(IF:5.191)
[71] Zhou Y, Zheng R, Liu S, et al. Host E3 ligase HUWE1 attenuates the proapoptotic activity of the MERS-CoV accessory protein ORF3 by promoting its ubiquitin-dependent degradation. J Biol Chem. 2022;298(2):101584. doi:10.1016/j.jbc.2022.101584(IF:5.157)
[72] Chen S, Deng Y, Chen H, et al. Neuronal miR-138 Represses HSV-2 Lytic Infection by Regulating Viral and Host Genes with Mechanistic Differences from HSV-1. J Virol. 2022;96(9):e0034922. doi:10.1128/jvi.00349-22(IF:5.103)
[73] Wang D, Li Y, Liu Y, et al. NPM1 promotes cell proliferation by targeting PRDX6 in colorectal cancer. Int J Biochem Cell Biol. 2022;147:106233. doi:10.1016/j.biocel.2022.106233(IF:5.085)
[74] Deng Z, Zheng L, Xie X, Wei H, Peng J. GPA peptide enhances Nur77 expression in intestinal epithelial cells to exert a protective effect against DSS-induced colitis. FASEB J. 2020;34(11):15364-15378. doi:10.1096/fj.202000391RR(IF:4.966)
[75] Huang X, Sun L, Wen S, et al. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci. 2020;111(9):3338-3349. doi:10.1111/cas.14516(IF:4.966)
[76] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[77] Yu MC, Ding GY, Ma P, et al. CircRNA UBAP2 serves as a sponge of miR-1294 to increase tumorigenesis in hepatocellular carcinoma through regulating c-Myc expression. Carcinogenesis. 2021;42(10):1293-1303. doi:10.1093/carcin/bgab068(IF:4.944)
[78] Wang Q, Ren D, Bi Y, et al. Association and functional study between ADIPOQ and metabolic syndrome in elderly Chinese Han population. Aging (Albany NY). 2020;12(24):25819-25827. doi:10.18632/aging.104203(IF:4.831)
[79] Yuan J, Li X, Zhang G, et al. USP39 mediates p21-dependent proliferation and neoplasia of colon cancer cells by regulating the p53/p21/CDC2/cyclin B1 axis. Mol Carcinog. 2021;60(4):265-278. doi:10.1002/mc.23290(IF:4.784)
[80] Tang Y, Wang L, Qu Z, et al. BSISTER transcription factors directly binds to the promoter of IAA19 and IAA29 genes to up-regulate gene expression and promote the root development. Plant Sci. 2022;321:111324. doi:10.1016/j.plantsci.2022.111324(IF:4.729)
[81] Li D, Liu B, Wang Z, et al. Sugar accumulation may be regulated by a transcriptional cascade of ABA-VvGRIP55-VvMYB15-VvSWEET15 in grape berries under root restriction. Plant Sci. 2022;322:111288. doi:10.1016/j.plantsci.2022.111288(IF:4.729)
[82] Gan Z, Yuan X, Shan N, et al. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit. Plant Sci. 2021;309:110948. doi:10.1016/j.plantsci.2021.110948(IF:4.729)
[83] Bai HL, Kang CM, Sun ZQ, et al. TTDA inhibited apoptosis by regulating the p53-Bax/Bcl2 axis in glioma. Exp Neurol. 2020;331:113380. doi:10.1016/j.expneurol.2020.113380(IF:4.691)
[84] Zhang H, Hu Y, Gu B, Cui X, Zhang J. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera. Plant Cell Rep. 2022;41(8):1673-1691. doi:10.1007/s00299-022-02883-w(IF:4.570)
[85] Sun W, Zu S, Shao G, Wang W, Gong F. Long non-coding DANCR targets miR-185-5p to upregulate LIM and SH3 protein 1 promoting prostate cancer via the FAK/PI3K/AKT/GSK3β/snail pathway. J Gene Med. 2021;23(7):e3344. doi:10.1002/jgm.3344(IF:4.565)
[86] Luo SY, Wang JQ, Liu C, et al. Hif-1α/Hsf1/Hsp70 signaling pathway regulates redox homeostasis and apoptosis in large yellow croaker ( Larimichthys crocea) under environmental hypoxia. Zool Res. 2021;42(6):746-760. doi:10.24272/j.issn.2095-8137.2021.224(IF:4.560)
[87] Liu J, Zhu M, Tang Q. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-181a retards nasopharyngeal carcinoma development by mediating KDM5C. J Cancer Res Clin Oncol. 2021;147(10):2867-2877. doi:10.1007/s00432-021-03684-6(IF:4.553)
[88] Huang Y, Wan S, Yang M. Circ_0067680 expedites the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through miR-4429/CTNNB1/Wnt/β-catenin pathway. Biol Direct. 2021;16(1):16. Published 2021 Oct 14. doi:10.1186/s13062-021-00302-w(IF:4.540)
[89] Wang B, Cai Y, Li X, Kong Y, Fu H, Zhou J. ETV4 mediated lncRNA C2CD4D-AS1 overexpression contributes to the malignant phenotype of lung adenocarcinoma cells via miR-3681-3p/NEK2 axis. Cell Cycle. 2021;20(24):2607-2618. doi:10.1080/15384101.2021.2005273(IF:4.534)
[90] Geng S, Tu S, Fu W, Wang J, Bai Z. LncRNA PITPNA-AS1 stimulates cell proliferation and suppresses cell apoptosis in glioblastoma via targeting miR-223-3p/EGFR axis and activating PI3K/AKT signaling pathway. Cell Cycle. 2021;20(19):1988-1998. doi:10.1080/15384101.2021.1958503(IF:4.534)
[91] Ma X, Li C, Yuan Y, Zhao M, Li J. Xyloglucan endotransglucosylase/hydrolase genes LcXTH4/7/19 are involved in fruitlet abscission and are activated by LcEIL2/3 in litchi. Physiol Plant. 2021;173(3):1136-1146. doi:10.1111/ppl.13509(IF:4.500)
[92] Zhang L, Ouyang P, He G, et al. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. J Cell Mol Med. 2021;25(4):2148-2162. doi:10.1111/jcmm.16192(IF:4.486)
[93] Chen N, Ma B, Guo S, Yin B, Zhang J, Deng G. microRNA-196b alleviates lipopolysaccharide-induced inflammatory injury by targeting NRAS. Mol Immunol. 2022;147:10-20. doi:10.1016/j.molimm.2022.03.122(IF:4.407)
[94] Zhang Y, Wang X, Huang X, et al. Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion. Bone. 2021;143:115619. doi:10.1016/j.bone.2020.115619(IF:4.398)
[95] Zhou YM, Yao YL, Liu W, Shen XM, Shi LJ, Wu L. MicroRNA-134 inhibits tumor stem cell migration and invasion in oral squamous cell carcinomas via downregulation of PI3K-Akt signaling pathway by inhibiting LAMC2 expression. Cancer Biomark. 2020;29(1):51-67. doi:10.3233/CBM-191362(IF:4.388)
[96] Ma Y, Luo Q, Ou Y, et al. New insights into the proteins interacting with the promoters of silkworm fibroin genes. Sci Rep. 2021;11(1):15880. Published 2021 Aug 5. doi:10.1038/s41598-021-95400-0(IF:4.380)
[97] Zhu M, Li X, Sun R, et al. The C/EBPβ-Dependent Induction of TFDP2 Facilitates Porcine Reproductive and Respiratory Syndrome Virus Proliferation. Virol Sin. 2021;36(6):1341-1351. doi:10.1007/s12250-021-00403-w(IF:4.327)
[98] Yin Q, Wang J, Fu Q, Gu S, Rui Y. CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteoporosis. J Cell Mol Med. 2018;22(12):6112-6121. doi:10.1111/jcmm.13888(IF:4.302)
[99] Gao L, Liu J, Xu P, et al. AKT Inhibitor SC66 Inhibits Proliferation and Induces Apoptosis in Human Glioblastoma Through Down-Regulating AKT/β-Catenin Pathway. Front Pharmacol. 2020;11:1102. Published 2020 Jul 31. doi:10.3389/fphar.2020.01102(IF:4.225)
[100] Shan N, Zhang Y, Xu Y, et al. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biol. 2022;22(1):108. Published 2022 Mar 9. doi:10.1186/s12870-022-03498-9(IF:4.215)
[101] Cao Y, Bi M, Yang P, et al. Construction of yeast one-hybrid library and screening of transcription factors regulating LhMYBSPLATTER expression in Asiatic hybrid lilies (Lilium spp.). BMC Plant Biol. 2021;21(1):563. Published 2021 Nov 29. doi:10.1186/s12870-021-03347-1(IF:4.215)
[102] Ma J, Zhang X, Zhang H, Chen H. lncRNA MEG3 Suppresses the Progression of Ankylosis Spondylitis by Regulating the Let-7i/SOST Axis. Front Mol Biosci. 2020;7:173. Published 2020 Jul 24. doi:10.3389/fmolb.2020.00173(IF:4.188)
[103] Anwar M, Yu W, Yao H, Zhou P, Allan AC, Zeng L. NtMYB3, an R2R3-MYB from Narcissus, Regulates Flavonoid Biosynthesis. Int J Mol Sci. 2019;20(21):5456. Published 2019 Nov 1. doi:10.3390/ijms20215456(IF:4.183)
[104] Xu W, Chen B, Ke D, Chen X. MicroRNA-138-5p targets the NFIB-Snail1 axis to inhibit colorectal cancer cell migration and chemoresistance [published correction appears in Cancer Cell Int. 2020 Nov 3;20(1):533]. Cancer Cell Int. 2020;20:475. Published 2020 Oct 1. doi:10.1186/s12935-020-01573-5(IF:4.175)
[105] Tian C, Hu S, Yu J, Li W, Li P, Huang H. CREB1 transcription-activated lncRNA PVT1 promotes cardiac fibrosis via miR-145/HCN1 axis. Int J Cardiol. 2022;353:88-95. doi:10.1016/j.ijcard.2022.01.024(IF:4.164)
[106] Zhou Y, Zhu Y, Dong X, et al. Exosomes Derived from Pancreatic Cancer Cells Induce Osteoclast Differentiation Through the miR125a-5p/TNFRSF1B Pathway. Onco Targets Ther. 2021;14:2727-2739. Published 2021 Apr 19. doi:10.2147/OTT.S282319(IF:4.147)
[107] Zhu Y, Li P, Dan X, Kang X, Ma Y, Shi Y. miR-377 Inhibits Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells by Targeting FHL2. Genes (Basel). 2022;13(6):947. Published 2022 May 26. doi:10.3390/genes13060947(IF:4.096)
[108] Bu X, Zhao Y, Chang M, Ge X. Downregulation of lncRNA SNHG14 alleviates neurons injury by modulating the miR-181c-5p/BMF axis in ischemic stroke. Brain Res Bull. 2021;174:379-388. doi:10.1016/j.brainresbull.2021.06.026(IF:4.079)
[109] Guo H, Jiang Y, Gu Z, et al. ZFP36 protects against oxygen-glucose deprivation/reoxygenation-induced mitochondrial fragmentation and neuronal apoptosis through inhibiting NOX4-DRP1 pathway. Brain Res Bull. 2022;179:57-67. doi:10.1016/j.brainresbull.2021.12.003(IF:4.079)
[110] Yang L, Liu Z, Ma J, et al. CircRPPH1 serves as a sponge for miR-296-5p to enhance progression of breast cancer by regulating FOXP4 expression. Am J Transl Res. 2021;13(7):7556-7573. Published 2021 Jul 15. (IF:4.060)
[111] Gao G, Li X, Zhang J, Yu H. YY1 as a promoter regulating the circ_0001946/miR-671-5p/EGFR axis to promote chemotherapy resistance in breast cancer cells. Am J Transl Res. 2022;14(4):2550-2566. Published 2022 Apr 15. (IF:4.060)
[112] Xiao E, Zhang D, Zhan W, et al. circNFIX facilitates hepatocellular carcinoma progression by targeting miR-3064-5p/HMGA2 to enhance glutaminolysis. Am J Transl Res. 2021;13(8):8697-8710. Published 2021 Aug 15. (IF:4.060)
[113] Wang H, Song X, Song C, Wang X, Cao H. m6A-seq analysis of microRNAs reveals that the N6-methyladenosine modification of miR-21-5p affects its target expression. Arch Biochem Biophys. 2021;711:109023. doi:10.1016/j.abb.2021.109023(IF:4.013)
[114] Huang Y, Wu P, Zheng J, Qiu L. Identification of cis-acting elements in response to fenvalerate in the CYP6B7 promoter of Helicoverpa armigera. Pestic Biochem Physiol. 2022;183:105060. doi:10.1016/j.pestbp.2022.105060(IF:3.963)
[115] Li X, Wang N, She W, et al. Identification and Functional Analysis of the CgNAC043 Gene Involved in Lignin Synthesis from Citrusgrandis "San Hong". Plants (Basel). 2022;11(3):403. Published 2022 Jan 31. doi:10.3390/plants11030403(IF:3.935)
[116] Wu Y, Zhang M, Bi X, Hao L, Liu R, Zhang H. JPR1 mediated circ_0004018 suppresses angiogenesis in hepatocellular carcinoma via recruiting FUS and stabilizing TIMP2 expression. Exp Cell Res. 2021;408(2):112804. doi:10.1016/j.yexcr.2021.112804(IF:3.905)
[117] Luo E, Wang D, Yan G, et al. The NF-κB/miR-425-5p/MCT4 axis: A novel insight into diabetes-induced endothelial dysfunction. Mol Cell Endocrinol. 2020;500:110641. doi:10.1016/j.mce.2019.110641(IF:3.693)
[118] Zhang C, Wang Q, Liu AQ, et al. MicroRNA miR-155 inhibits cyprinid herpesvirus 3 replication via regulating AMPK-MAVS-IFN axis. Dev Comp Immunol. 2022;129:104335. doi:10.1016/j.dci.2021.104335(IF:3.636)
[119] Zhang G, Li G, Xiang Y, Zhang A. The transcription factor ZmMYB-CC10 improves drought tolerance by activating ZmAPX4 expression in maize. Biochem Biophys Res Commun. 2022;604:1-7. doi:10.1016/j.bbrc.2022.02.051(IF:3.575)
[120] Han T, Yan J, Xiang Y, Zhang A. Phosphorylation of ZmNAC84 at Ser-113 enhances the drought tolerance by directly modulating ZmSOD2 expression in maize. Biochem Biophys Res Commun. 2021;567:86-91. doi:10.1016/j.bbrc.2021.06.026(IF:3.575)
[121] Jiang H, Guo W, Yuan S, Song L. PLOD1 Is a Prognostic Biomarker and Mediator of Proliferation and Invasion in Osteosarcoma. Biomed Res Int. 2020;2020:3418398. Published 2020 Oct 19. doi:10.1155/2020/3418398(IF:3.411)
[122] Li Z, Chen Z, Feng Y, Hu G, Jiang Y. CircMMP11 acts as a ce-circRNA in breast cancer progression by regulating miR-1204. Am J Transl Res. 2020;12(6):2585-2599. Published 2020 Jun 15. (IF:3.375)
[123] Ma H, Liu T, Xu Y, Wang X, Wang J, Liu X. MiR-519d and miR-328-3p Combinatorially Suppress Breast Cancer Progression. Onco Targets Ther. 2020;13:12987-12997. Published 2020 Dec 18. doi:10.2147/OTT.S281962(IF:3.337)
[124] Chu P, He L, Zhu D, et al. Identification, expression and functional characterisation of CYP1A in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019;95:35-43. doi:10.1016/j.fsi.2019.10.022(IF:3.298)
[125] Yin D, Shao Y, Yang K, et al. Fowl adenovirus serotype 4 uses gga-miR-181a-5p expression to facilitate viral replication via targeting of STING. Vet Microbiol. 2021;263:109276. doi:10.1016/j.vetmic.2021.109276(IF:3.293)
[126] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[127] Meng J, Song X, Yan G, Wang H, Li H, Lou D. Dendrobine suppresses endoplasmic reticulum stress-induced apoptosis through upregulating microRNA miR-381-3p to decrease caspase-4. Bioengineered. 2021;12(1):4452-4463. doi:10.1080/21655979.2021.1956672(IF:3.269)
[128] Zhou Y, Pan A, Zhang Y, Li X. Hsa_circ_0039569 facilitates the progression of endometrial carcinoma by targeting the miR-197/high mobility group protein A1 axis. Bioengineered. 2022;13(2):4212-4225. doi:10.1080/21655979.2022.2027060(IF:3.269)
[129] Zhang Y, Yu Y, Cao X, Chen P. Role of lncRNA FAM83H antisense RNA1 (FAM83H-AS1) in the progression of non-small cell lung cancer by regulating the miR-545-3p/heparan sulfate 6-O-sulfotransferase (HS6ST2) axis. Bioengineered. 2022;13(3):6476-6489. doi:10.1080/21655979.2022.2031668(IF:3.269)
[130] Wu W, Wang L, Li S. Hox transcript antisense RNA knockdown inhibits osteosarcoma progression by regulating the phosphoinositide 3-kinase/AKT pathway through the microRNA miR-6888-3p/spleen tyrosine kinase axis. Bioengineered. 2022;13(4):9397-9410. doi:10.1080/21655979.2022.2059614(IF:3.269)
[131] Ge Z, Liu H, Ji T, et al. Long non-coding RNA 00960 promoted the aggressiveness of lung adenocarcinoma via the miR-124a/SphK1 axis. Bioengineered. 2022;13(1):1276-1287. doi:10.1080/21655979.2021.1996507(IF:3.269)
[132] Hao W, Lin F, Shi H, Guan Z, Jiang Y. Long non-coding RNA OIP5-AS1 regulates smoke-related chronic obstructive pulmonary disease via targeting micro RNA -410-3p/IL-13. Bioengineered. 2021;12(2):11664-11676. doi:10.1080/21655979.2021.2000199(IF:3.269)
[133] Shuang Y, Liu J, Niu J, Guo W, Li C. A novel circular RNA circPPFIA1 promotes laryngeal squamous cell carcinoma progression through sponging miR-340-3p and regulating ELK1 expression. Bioengineered. 2021;12(1):5220-5230. doi:10.1080/21655979.2021.1959866(IF:3.269)
[134] Zhou H, Jia X, Yang F, Shi P. miR-148a-3p suppresses the progression of acute myeloid leukemia via targeting cyclin-dependent kinase 6 (CDK6). Bioengineered. 2021;12(1):4508-4519. doi:10.1080/21655979.2021.1956400(IF:3.269)
[135] Mao K, Jin R, Ren Z, et al. miRNAs targeting CYP6ER1 and CarE1 are involved in nitenpyram resistance in Nilaparvata lugens. Insect Sci. 2022;29(1):177-187. doi:10.1111/1744-7917.12910(IF:3.262)
[136] Zhang W, Qin P, Gong X, et al. Identification of circRNAs in the Liver of Whitespotted Bamboo Shark (Chiloscyllium plagiosum). Front Genet. 2020;11:596308. Published 2020 Dec 11. doi:10.3389/fgene.2020.596308(IF:3.260)
[137] Xie D, Li S, Wu T, Wang X, Fang L. MiR-181c suppresses triple-negative breast cancer tumorigenesis by targeting MAP4K4. Pathol Res Pract. 2022;230:153763. doi:10.1016/j.prp.2022.153763(IF:3.250)
[138] Jia A, Yang ZW, Shi JY, Liu JM, Zhang K, Cui YF. MiR-325-3p Alleviates Acute Pancreatitis via Targeting RIPK3 [published online ahead of print, 2022 Jan 30]. Dig Dis Sci. 2022;10.1007/s10620-021-07322-6. doi:10.1007/s10620-021-07322-6(IF:3.199)
[139] Li M, Noshay JM, Dong X, Springer NM, Li Q. A capture-based assay for detection and characterization of transposon polymorphisms in maize [published online ahead of print, 2021 Apr 26]. G3 (Bethesda). 2021;11(7):jkab138. doi:10.1093/g3journal/jkab138(IF:3.154)
[140] Wu W, Duan C, Lv H, et al. MiR-let-7d-3p inhibits granulosa cell proliferation by targeting TLR4 in polycystic ovary syndrome. Reprod Toxicol. 2021;106:61-68. doi:10.1016/j.reprotox.2021.10.003(IF:3.143)
[141] Yu L, Ren Y. Long Noncoding RNA Small Nucleolar RNA Host Gene 3 Mediates Prostate Cancer Migration, Invasion, and Epithelial-Mesenchymal Transition by Sponging miR-487a-3p to Regulate TRIM25 [published online ahead of print, 2021 Jan 7]. Cancer Biother Radiopharm. 2021;10.1089/cbr.2020.3988. doi:10.1089/cbr.2020.3988(IF:3.099)
[142] Ye M, Ma J, Liu B, Liu X, Ma D, Dong K. Linc01105 acts as an oncogene in the development of neuroblastoma [published correction appears in Oncol Rep. 2021 Sep;46(3):]. Oncol Rep. 2019;42(4):1527-1538. doi:10.3892/or.2019.7257(IF:3.041)
[143] Huo W, Wang Y, Chen T, et al. Triclosan activates c-Jun/miR-218-1-3p/SLC35C1 signaling to regulate cell viability, migration, invasion and inflammatory response of trophoblast cells in vitro. BMC Pregnancy Childbirth. 2022;22(1):470. Published 2022 Jun 6. doi:10.1186/s12884-022-04791-z(IF:3.007)
[144] Dong L, Wang M, Gao X, et al. miR-9-5p promotes myogenic differentiation via the Dlx3/Myf5 axis. PeerJ. 2022;10:e13360. Published 2022 May 3. doi:10.7717/peerj.13360(IF:2.984)
[145] Chen J, Shi P, Zhang J, et al. CircRNA_0044556 diminishes the sensitivity of triple‑negative breast cancer cells to adriamycin by sponging miR‑145 and regulating NRAS. Mol Med Rep. 2022;25(2):51. doi:10.3892/mmr.2021.12567(IF:2.952)
[146] Ding X, Deng G, Liu J, et al. GOLM1 silencing inhibits the proliferation and motility of human glioblastoma cells via the Wnt/β-catenin signaling pathway. Brain Res. 2019;1717:117-126. doi:10.1016/j.brainres.2019.03.035(IF:2.929)
[147] Yang F, Chen R. Loss of PHLDA1 has a protective role in OGD/R-injured neurons via regulation of the GSK-3β/Nrf2 pathway. Hum Exp Toxicol. 2021;40(11):1909-1920. doi:10.1177/09603271211014596(IF:2.903)
[148] Wang L, Zhang L, Wang L. SNHG7 Contributes to the Progression of Non-Small-Cell Lung Cancer via the SNHG7/miR-181a-5p/E2F7 Axis. Cancer Manag Res. 2020;12:3211-3222. Published 2020 May 7. doi:10.2147/CMAR.S240964(IF:2.886)
[149] Tian Y, Guan Y, Su Y, Luo W, Yang G, Zhang Y. MiR-582-5p Inhibits Bladder Cancer-Genesis by Suppressing TTK Expression. Cancer Manag Res. 2020;12:11933-11944. Published 2020 Nov 20. doi:10.2147/CMAR.S274835(IF:2.886)
[150] Xia L, Shen D, Wang H, Ren L, Chen Y, Li G. Identification of Small-Molecule Regulators of Testicular Receptor 4 via a Drug Repurposing Screening. ACS Omega. 2020;5(47):30625-30632. Published 2020 Nov 19. doi:10.1021/acsomega.0c04623(IF:2.870)
[151] Cao Y, Zhang F, Wang H, et al. LncRNA MALAT1 mediates doxorubicin resistance of hepatocellular carcinoma by regulating miR-3129-5p/Nova1 axis. Mol Cell Biochem. 2021;476(1):279-292. doi:10.1007/s11010-020-03904-6(IF:2.795)
[152] Ding X, Sun J, Zhang X. Circ_0076305 facilitates prostate cancer development via sponging miR-411-5p and regulating PGK1. Andrologia. 2022;54(6):e14406. doi:10.1111/and.14406(IF:2.775)
[153] Yang F, Chen R. Sestrin1 exerts a cytoprotective role against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by potentiating Nrf2 activation via the modulation of Keap1. Brain Res. 2021;1750:147165. doi:10.1016/j.brainres.2020.147165(IF:2.733)
[154] Zhang Z. MiR-124-3p Suppresses Prostatic Carcinoma by Targeting PTGS2 Through the AKT/NF-κB Pathway. Mol Biotechnol. 2021;63(7):621-630. doi:10.1007/s12033-021-00326-7(IF:2.695)
[155] Jin S, He J, Li J, Guo R, Shu Y, Liu P. MiR-873 inhibition enhances gefitinib resistance in non-small cell lung cancer cells by targeting glioma-associated oncogene homolog 1. Thorac Cancer. 2018;9(10):1262-1270. doi:10.1111/1759-7714.12830(IF:2.569)
[156] Zhang J, Xu X, Wang M. Clinical significance of serum miR-101-3p expression in patients with neonatal sepsis. Per Med. 2021;18(6):541-550. doi:10.2217/pme-2020-0182(IF:2.512)
[157] Shi Z, He J, He J, Xu Y. Micro-fragmented adipose tissue regulated the biological functions of osteoarthritis synoviocytes by upregulating MiR-92a-3p expression. Tissue Cell. 2022;74:101716. doi:10.1016/j.tice.2021.101716(IF:2.466)
[158] Huang J, Qin Y, Lin C, Huang X, Zhang F. MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway. Exp Ther Med. 2021;22(1):703. doi:10.3892/etm.2021.10135(IF:2.447)
[159] Shi F, Yang Q, Shen D, Chen J. CircRNA WHSC1 promotes non-small cell lung cancer progression via sponging microRNA-296-3p and up-regulating expression of AKT serine/threonine kinase 3. J Clin Lab Anal. 2021;35(8):e23865. doi:10.1002/jcla.23865(IF:2.352)
[160] Wang K, Li M, Zhang T, Xu C, Yu F, Duan H. LINC01116 Facilitates Melanoma 1 Progression Via Sequestering miR-3612 and Up-regulating GDF11 and SDC3. Arch Med Res. 2022;53(1):44-50. doi:10.1016/j.arcmed.2021.06.008(IF:2.235)
[161] Wang L, Zhang J. Long intergenic ncRNA 00473 improves the invasion of trophoblastic cells via miR-16-5p. Pregnancy Hypertens. 2021;23:174-184. doi:10.1016/j.preghy.2020.12.003(IF:2.095)
[162] Li K, Zhou Z, Li J, Xiang R. miR-146b Functions as an Oncogene in Oral Squamous Cell Carcinoma by Targeting HBP1. Technol Cancer Res Treat. 2020;19:1533033820959404. doi:10.1177/1533033820959404(IF:2.074)
[163] Xu W, Sun D, Wang Y, et al. Inhibitory effect of microRNA-608 on lung cancer cell proliferation, migration, and invasion by targeting BRD4 through the JAK2/STAT3 pathway. Bosn J Basic Med Sci. 2020;20(3):347-356. Published 2020 Aug 3. doi:10.17305/bjbms.2019.4216(IF:2.050)
[164] Li Y, Liu L. LncRNA OIP5-AS1 Signatures as a Biomarker of Gestational Diabetes Mellitus and a Regulator on Trophoblast Cells. Gynecol Obstet Invest. 2021;86(6):509-517. doi:10.1159/000520340(IF:2.031)
[165] Li Y, Liu Y, Zhang J, Li J, Shu Y. Propofol Suppresses Glioma Tumorigenesis by Regulating circ_0047688/miR-516b-5p/IFI30 Axis [published online ahead of print, 2022 Jun 28]. Biochem Genet. 2022;10.1007/s10528-022-10243-2. doi:10.1007/s10528-022-10243-2(IF:1.890)
[166] Zheng Q, Yu JJ, Li C, Li J, Wang J, Wang S. miR-224 targets BTRC and promotes cell migration and invasion in colorectal cancer. 3 Biotech. 2020;10(11):485. doi:10.1007/s13205-020-02477-x(IF:1.798)
[167] Chen Y, Niu K, Song Q, Feng Q. Effect of G-quadruplex loop mutations on the G-quadruplex formation, protein binding and transcription of BmPOUM2 in Bombyx mori. Arch Insect Biochem Physiol. 2022;110(1):e21876. doi:10.1002/arch.21876(IF:1.698)
[168] Wang Z, Chen R, Xu Z, et al. MiR-155-5p promotes renal interstitial fibrosis in obstructive nephropathy via inhibiting SIRT1 signaling pathway. J Recept Signal Transduct Res. 2021;41(5):466-475. doi:10.1080/10799893.2020.1825491(IF:1.466)
[169] Zhou Y, Zhang F, Xu F, et al. lncRNA NEAT1 regulates CYP1A2 and influences steroid-induced necrosis. Open Life Sci. 2021;16(1):969-980. Published 2021 Sep 13. doi:10.1515/biol-2021-0097(IF:0.938)

产品描述

萤火虫萤光素酶(Firefly luciferase)是一种分子量约为61 kDa的蛋白,在ATP、镁离子和氧气存在的条件下,能够催化萤光素(luciferin)氧化成oxyluciferin,在氧化的过程中会发出波长为560 nm左右的生物萤光。海肾萤光素酶(Renilla luciferase)是一种分子量约为36 kDa的蛋白,在氧气存在的条件下,可以催化腔肠素(coelenterazine)氧化成coelenteramide,在氧化的过程中会发出波长为480nm左右的生物萤光。两种生物萤光都可通过化学发光仪进行测定。检测原理如图所示:

双萤光素酶报告基因检测试剂盒|Dual Luciferase Reporter Gene Assay Kit 
1:萤火虫和海肾萤光素酶检测原理图

通常将目的基因的5´UTR或启动子克隆至Firefly Luciferase的上游,或3´UTR克隆至Firefly Luciferase的下游,通过检测萤火虫萤光素酶的量来检测启动子或调控元件的转录调控作用。Renilla Luciferase作为内参,来消除细胞数量转染效率等的差异。Dual Luciferase Reporter Gene Assay Kit首先以萤光素为底物来检测萤火虫萤光素酶报告基因的活性,之后在淬灭该萤光反应的同时,以腔肠素为底物检测海肾萤光素酶报告基因的活性。该试剂盒具有灵敏度的特点

 

产品组分

组分编号

组分名称

产品编号/规格

11402JP60100 T

11402JP801000 T

11402-A

细胞裂解液

20 mL

10×20 mL

11402-B

萤火虫萤光素酶缓冲液

10 mL

10×10 mL

11402-C

萤火虫萤光素酶底物(50 ×

200 μL

10×200 μL

11402-D

海肾萤光素酶缓冲液

10 mL

10×10 mL

11402-E

海肾萤光素酶底物(50 ×

200 μL

10×200 μL

 

运输和保存方式

干冰运输。 -20℃保存,有效期1

萤火虫萤光素酶反应工作液和海肾萤光素酶反应工作液现配现用,且不能反复冻融,建议分装-20℃-80℃分装保存。

 

实验步骤

I.前处理

 

1.细胞

1构建相应的载体。

2转染步骤请参照相关的说明书。

3)将细胞裂解液充分混匀,按如下方式加入细胞裂解液,充分裂解细胞。

a: 对于贴壁细胞,吸尽细胞培养液,按照下表比例加入细胞裂解液,轻轻旋转培养皿或者培养板使裂解液完全覆盖细胞;

b: 对于悬浮细胞,离心弃去上清,按照下表比例加入裂解液

细胞培养板

96孔板

48孔板

24孔板

12孔板

6孔板

裂解液加入量

100 μL

150 μL

200 μL

300 μL

500 μL

4)冰上孵育5 min,充分裂解细胞。
裂解产物可室温保存6 h4℃保存16 h80℃可长期存放。(裂解产物不能多次反复冻融)

5)(选作)10000-16000 rpm离心1 min,取上清。

 

2.叶片组织(以烟草叶片为例,仅供参考)
1)构建相应的载体。
2挑取转化有重组质粒的农杆菌单菌落,接种到2 mL LB液体培养基(添加相应抗生素)中,28℃ 220 rpm培养过夜。
3农杆菌培养至OD6001.01700× g离心5 min收集菌体后,用1/2MS液体培养基清洗菌体2次;用含有150 μmol/L乙酰丁香酮的1/2MS液体培养基将农杆菌的OD600调至1.0
4将待检测的农杆菌菌液进行混合,使每种菌液的OD6000.5
5选取生长期为1个月左右完全伸展的烟草叶片,将混合好的菌液用1 mL注射器(去掉针头)从烟草叶背面进行注射。为保证实验结果的一致性,需要将对照载体和待检测目标载体的菌液注射在同一叶片的不同部位上, 以保证相同的生长背景。
6)正常温室生长条件下,24-48 h即可取样观察。
73-4直径为6-8 mm的叶盘,放入2 mLEP(提前放入3-4小钢珠)中,液氮中冷冻使用破碎仪进行研磨破碎(45 Hz30 s)。破碎完全后在EP管中加入100 μL裂解液。
8)冰上孵育5 min左右,充分裂解叶片。
910000-16000 rpm离心1 min,取上清。

 

3.原生质体(仅供参考)
1)构建相应的载体。
2)制备原生质体参考文献Yoo SD, Cho YH, Sheen J (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565–1572)。

3)WI溶液配置:0.5 M甘露醇和20mm KCl 溶于4 mm MJP (pH 5.7),可在室温下保存。
W5溶液配置:154 mM NaCl, 125 mM CaCl2 和5 mM KCl溶于2 mm MJP (pH 5.7),可在室温下保存。

4)2 mL EP管中加入相应的载体(加入量需要摸索),加入100 μL原生质体悬浮液。轻摇混匀后,加入110 μL PEG-CaCl2溶液,轻弹混匀。在室温放置10-15 min
5加入440 μL W5溶液,上下颠倒以停止转化。
6200 × g 室温离心5 min,弃去上清,加入800 μL WI溶液重悬原生质体。
7)室温避光培养16-24 h

8)将原生质体加入2 mL离心管中,离心收集原生质体,加入100 μL左右的裂解液。
9)冰上孵育5 min左右,充分裂解原生质体。
10)(选做)10000-16000 rpm离心1 min,取上清。

 

II.萤光检测

1)取20 μL裂解液,加至培养板中。按照实验需要,可设置3-5孔重复。

2)配制萤火虫萤光素酶反应工作液和海肾萤光素酶反应液,即萤火虫萤光素酶底物(50 ×)和海肾萤光素酶底物(50 ×分别用对应的缓冲液稀释至1 ×工作液。并孵育至室温。

3)加入100 μL萤火虫萤光素酶反应液,震板混匀,检测萤火虫萤光素酶的活力,检测尽量在30 min内完成。

4)加入100 μL海肾萤光素酶反应液,震板混匀,检测海肾萤光素酶的活力,检测尽量在30 min内完成。

5)分析数据。

实验设计:根据不同实验目的,在每个培养板中都应设置对照组实验组和空白对照组。为了保证实验准确性,理论上每个实验组(包括对照组)都应当减去空白对照组的萤火虫和海肾萤光素酶的发光测量值。
 

a.空白对照 

背景F:未转染细胞+萤火虫萤光素酶检测试剂。

背景R:未转染细胞+萤火虫萤光素酶检测试剂+海肾萤光素酶检测试剂。

注:空白对照组的样品量必须与实验样品量相同,包含与实验样品相同的培养基/血清组合,并加上完全相同的检测试剂。

b.实验组:转染细胞经实验化合物处理(即实验组F和实验组R)

c.对照组:转染细胞不经处理,用以标准化结果(即对照组F和对照组R)

计算结果:

实验组比值=(实验组F-背景F/(实验组R-背景R)

对照组比值=(对照组F-背景F/(对照组R-背景R)

表达倍数=实验组比值/对照组比值。

双萤光素酶报告基因检测试剂盒|Dual Luciferase Reporter Gene Assay Kit

2:细胞样品萤火虫和海肾萤光素酶检测流程图

 

注意事项

1)检测过程中需自备耗材和设备包括如下:PBS100 μL移液器或者排枪不透光白色酶标Luminometer发光计多功能酶标仪或者其他能够检测生物发光的仪器;

2)反应温度:酶促反应对温度较为敏感,加样检测前务必将所有试剂平衡至室温20-25℃再使用;

3)检测仪器:能检测化学发光的仪器都适用,但由于不同仪器的设置和灵敏度不同,测得的光信号值也会不同

4)检测设置:Luminescence350-700 nm,建议检测时间设为2-10 sec

5)检测板:为防止孔间干扰,推荐使用不透光白色酶标板黑色酶标板也可用,但因黑色会吸收光信号,可能会降低信号;

6)单管萤光测定仪测定,每个样品与测定试剂混合后到测定前的时间应保持一致;

7E组分海肾萤光素酶底物易挥发,注意密封保存

8为了您的安全和健康,请穿实验服并戴一次性手套。

9本产品仅作科研用途!

 

相关产品

产品名称

货号

规格

Firefly Glo Luciferase Reporter Gene Assay Kit辉光型萤火虫萤光素酶报告基因检测试剂盒

11404JP60/80

100/1000 T

Dual Glo Luciferase Reporter Gene Assay Kit 辉光型双萤光素酶报告基因检测试剂盒

11405JP60/80

100/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫萤光素酶报告基因检测试剂盒

11401JP60/76/80

100/500/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc萤光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (萤光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-TK Luciferase Reporter PlasmidpGMLR-TK海肾萤光素酶报告基因质粒)

11557JP03

1 μg

pGMLR-CMV Luciferase Reporter PlasmidpGMLR-CMV海肾萤光素酶报告基因质粒)

11558JP03

1 μg

Hieff Trans Liposomal Transfection Reagent 脂质体核酸转染试剂

40802JP03

1 mL

HB230504

Q:细胞裂解之后的裂解液能否在-80℃保存?

A可保存在-80℃,基本与蛋白的保存方法类似。裂解后的样本可在 -80 ℃保存半年-20 ℃保存一个月。

Q双荧光素酶报告基因检测试剂盒中的两个底物是否需要避光的?

A这两个底物操作过程中不需要严格避光。保存的时候避光保存,更重要的保存条件是低温,尤其是腔肠素,推荐80℃保存。

Q双荧光素酶报告基因载体共转染时比例该如何进行优化与调整?

A比例:根据具体实验情况进行调整。建议做预实验:如海参载体萤火虫载体比例分别用 1:101:201:501:100。萤火虫荧光素酶检测发光值大于海参荧光素酶发光值的比例比较好。

Q:海肾和萤火虫是在同一个孔里面检测吗?萤火虫的萤光不会影响海肾的萤光吗?能否分开检测呢?

A:同一个孔里检测。不会相互影响,我们的海肾荧光素酶底物中有淬灭萤火虫荧光值的物质。可以分开检测,但是在一个孔里检测会更加准确。

Q:使用的是promega的仪器进行检测,发现海肾的本底值偏高很多,是为什么呢?

A:我们的产品与promega的仪器不适配,会导致本底值偏高。使用酶标仪检测不会出现这种情况,建议使用酶标仪检测。

Q:W5和WI指的是什么呢?

A:

WI solution Prepare 4 mM MJP (pH 5.7) containing 0.5 M mannitol and 20 mM KCl. The prepared WI solution can be stored at room temperature (22-25 °C).
W5 solution Prepare 2 mM MJP (pH 5.7) containing 154 mM NaCl, 125 mM CaCl2 and 5 mM KCl. The prepared W5 solution can be stored at room temperature.

 

Q:检测萤火虫荧光素酶,酶标仪使用什么样的板子呢?

A:白色不透明的酶标板,图片见说明书

 

Q:裂解液不够用了,怎么办呢?

A:10ml PBS里加入0.3ml Triton

[1] Wang Z, Lu Z, Lin S, et al. Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity. 2022;55(6):1067-1081.e8. doi:10.1016/j.immuni.2022.04.017(IF:43.474)
[2] Chen Y, Lu Z, Qi C, et al. N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer. 2022;21(1):111. Published 2022 May 10. doi:10.1186/s12943-022-01549-1(IF:27.401)
[3] Yao J, Wu D, Zhang C, et al. Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation. Nat Immunol. 2021;22(10):1268-1279. doi:10.1038/s41590-021-01023-y(IF:25.606)
[4] Sun B, Yang X, Hou F, et al. Regulation of host and virus genes by neuronal miR-138 favours herpes simplex virus 1 latency. Nat Microbiol. 2021;6(5):682-696. doi:10.1038/s41564-020-00860-1(IF:17.745)
[5] Tian WH, Ye JY, Cui MQ, et al. A transcription factor STOP1-centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis. Mol Plant. 2021;14(9):1554-1568. doi:10.1016/j.molp.2021.06.024(IF:13.164)
[6] Qiao J, Jiang H, Lin Y, et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Mol Plant. 2021;14(10):1683-1698. doi:10.1016/j.molp.2021.06.023(IF:13.164)
[7] Wang Y, Wang Z, Shao C, et al. Melatonin may suppress lung adenocarcinoma progression via regulation of the circular noncoding RNA hsa_circ_0017109/miR-135b-3p/TOX3 axis [published online ahead of print, 2022 Jun 4]. J Pineal Res. 2022;e12813. doi:10.1111/jpi.12813(IF:13.007)
[8] Chen H, Moreno-Moral A, Pesce F, et al. WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling [published correction appears in Nat Commun. 2019 Sep 9;10(1):4085]. Nat Commun. 2019;10(1):3616. Published 2019 Aug 9. doi:10.1038/s41467-019-11551-9(IF:11.878)
[9] Xiang X, Fu Y, Zhao K, et al. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2. Theranostics. 2021;11(10):4929-4944. Published 2021 Mar 4. doi:10.7150/thno.55672(IF:11.556)
[10] Xu Y, Jiang Y, Wang Y, et al. LINC00473-modified bone marrow mesenchymal stem cells incorporated thermosensitive PLGA hydrogel transplantation for steroid-induced osteonecrosis of femoral head: A detailed mechanistic study and validity evaluation. Bioeng Transl Med. 2021;7(2):e10275. Published 2021 Dec 8. doi:10.1002/btm2.10275(IF:10.711)
[11] Huang X, He M, Huang S, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription [published correction appears in Mol Cancer. 2022 Jun 2;21(1):122]. Mol Cancer. 2019;18(1):166. Published 2019 Nov 21. doi:10.1186/s12943-019-1098-8(IF:10.679)
[12] Ma L, An R, Jiang L, et al. Effects of ZmHIPP on lead tolerance in maize seedlings: Novel ideas for soil bioremediation. J Hazard Mater. 2022;430:128457. doi:10.1016/j.jhazmat.2022.128457(IF:10.588)
[13] Xu C, Fan L, Lin Y, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes. 2021;13(1):1980347. doi:10.1080/19490976.2021.1980347(IF:10.245)
[14] Xiang Y, Bian X, Wei T, et al. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. New Phytol. 2021;232(6):2400-2417. doi:10.1111/nph.17761(IF:10.152)
[15] Gao Y, Li Z, Yang C, et al. Pseudomonas syringae activates ZAT18 to inhibit salicylic acid accumulation by repressing EDS1 transcription for bacterial infection. New Phytol. 2022;233(3):1274-1288. doi:10.1111/nph.17870(IF:10.152)
[16] Zhao H, Lu J, Yan T, et al. Opioid receptor signaling suppresses leukemia through both catalytic and non-catalytic functions of TET2. Cell Rep. 2022;38(4):110253. doi:10.1016/j.celrep.2021.110253(IF:9.423)
[17] He R, Shi J, Xu D, et al. SULF2 enhances GDF15-SMAD axis to facilitate the initiation and progression of pancreatic cancer. Cancer Lett. 2022;538:215693. doi:10.1016/j.canlet.2022.215693(IF:8.679)
[18] Wu Q, Li L, Miao C, et al. Osteopontin promotes hepatocellular carcinoma progression through inducing JAK2/STAT3/NOX1-mediated ROS production. Cell Death Dis. 2022;13(4):341. Published 2022 Apr 13. doi:10.1038/s41419-022-04806-9(IF:8.469)
[19] Wu Y, Wang L, Ansah EO, et al. The sucrose transport regulator OsDOF11 mediates cytokinin degradation during rice development. Plant Physiol. 2022;189(2):1083-1094. doi:10.1093/plphys/kiac104(IF:8.340)
[20] Ruan J, Chen H, Zhu T, et al. Brassinosteroids repress the seed maturation program during the seed-to-seedling transition. Plant Physiol. 2021;186(1):534-548. doi:10.1093/plphys/kiab089(IF:8.340)
[21] Hou Y, Lu H, Li J, et al. A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2'3'-cGAMP. Cell Chem Biol. 2022;29(1):133-144.e20. doi:10.1016/j.chembiol.2021.08.006(IF:8.116)
[22] Cao L, Zhang Y, Mi J, et al. α-Hederin inhibits the platelet activating factor-induced metastasis of HCC cells through disruption of PAF/PTAFR axis cascaded STAT3/MMP-2 expression. Pharmacol Res. 2022;178:106180. doi:10.1016/j.phrs.2022.106180(IF:7.658)
[23] Xie S, Wei H, Peng A, et al. Ikzf2 Regulates the Development of ICOS+ Th Cells to Mediate Immune Response in the Spleen of S. japonicum-Infected C57BL/6 Mice. Front Immunol. 2021;12:687919. Published 2021 Aug 12. doi:10.3389/fimmu.2021.687919(IF:7.561)
[24] Song Y, Guo Y, Li X, et al. RBM39 Alters Phosphorylation of c-Jun and Binds to Viral RNA to Promote PRRSV Proliferation. Front Immunol. 2021;12:664417. Published 2021 May 17. doi:10.3389/fimmu.2021.664417(IF:7.561)
[25] Zeng J, Li G, Xia Y, et al. miR-204/COX5A axis contributes to invasion and chemotherapy resistance in estrogen receptor-positive breast cancers. Cancer Lett. 2020;492:185-196. doi:10.1016/j.canlet.2020.07.027(IF:7.360)
[26] Li D, Zhou J, Zheng C, et al. OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. Plant Cell Environ. 2022;45(5):1584-1602. doi:10.1111/pce.14288(IF:7.228)
[27] Sun J, Shi Y, Shi H, et al. Intracellular Low Iron Exerts Anti-BK Polyomavirus Effect by Inhibiting the Protein Synthesis of Exogenous Genes. Microbiol Spectr. 2021;9(3):e0109421. doi:10.1128/Spectrum.01094-21(IF:7.171)
[28] Sun Q, Xu Y, Yuan F, et al. Rho family GTPase 1 (RND1), a novel regulator of p53, enhances ferroptosis in glioblastoma. Cell Biosci. 2022;12(1):53. Published 2022 May 3. doi:10.1186/s13578-022-00791-w(IF:7.133)
[29] Yuan F, Sun Q, Zhang S, et al. The dual role of p62 in ferroptosis of glioblastoma according to p53 status. Cell Biosci. 2022;12(1):20. Published 2022 Feb 25. doi:10.1186/s13578-022-00764-z(IF:7.133)
[30] Liu J, Gao L, Zhan N, et al. Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. J Exp Clin Cancer Res. 2020;39(1):137. Published 2020 Jul 16. doi:10.1186/s13046-020-01641-8(IF:7.068)
[31] Sun C, Li D, Gao Z, et al. OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice [published correction appears in J Integr Plant Biol. 2022 May;64(5):1131]. J Integr Plant Biol. 2022;64(1):118-134. doi:10.1111/jipb.13183(IF:7.061)
[32] Xiang Y, Sun X, Bian X, et al. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J Exp Bot. 2021;72(4):1399-1410. doi:10.1093/jxb/eraa507(IF:6.992)
[33] Zhou H, Li X, Wu RX, et al. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling. Cell Prolif. 2021;54(5):e13026. doi:10.1111/cpr.13026(IF:6.831)
[34] Tao J, Li S, Wang Q, et al. Construction of a high-density genetic map based on specific-locus amplified fragment sequencing and identification of loci controlling anthocyanin pigmentation in Yunnan red radish [published online ahead of print, 2022 Jan 19]. Hortic Res. 2022;9:uhab031. doi:10.1093/hr/uhab031(IF:6.793)
[35] Ma X, Yuan Y, Li C, et al. Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of LcACS1/4 and LcACO2/3 in litchi. Hortic Res. 2021;8(1):105. Published 2021 May 1. doi:10.1038/s41438-021-00540-z(IF:6.793)
[36] Zhang R, Chang J, Li J, et al. Disruption of the bHLH transcription factor Abnormal Tapetum 1 causes male sterility in watermelon. Hortic Res. 2021;8(1):258. Published 2021 Dec 1. doi:10.1038/s41438-021-00695-9(IF:6.793)
[37] Sun Y, Wang L, Xu X, et al. FOXO4 Inhibits the Migration and Metastasis of Colorectal Cancer by Regulating the APC2/β-Catenin Axis. Front Cell Dev Biol. 2021;9:659731. Published 2021 Sep 23. doi:10.3389/fcell.2021.659731(IF:6.684)
[38] Zhang Y, Hu R, Xi B, Nie D, Xu H, Liu A. Mechanisms of Senescence-Related NKG2D Ligands Release and Immune Escape Induced by Chemotherapy in Neuroblastoma Cells. Front Cell Dev Biol. 2022;10:829404. Published 2022 Mar 2. doi:10.3389/fcell.2022.829404(IF:6.684)
[39] Zhu L, Qi W, Yang G, et al. Toxoplasma gondii Rhoptry Protein 7 (ROP7) Interacts with NLRP3 and Promotes Inflammasome Hyperactivation in THP-1-Derived Macrophages. Cells. 2022;11(10):1630. Published 2022 May 12. doi:10.3390/cells11101630(IF:6.600)
[40] Zeng H, Li L, Gao Y, Wu G, Hou Z, Liu S. Long noncoding RNA UCA1 regulates HCV replication and antiviral response via miR-145-5p/SOCS7/IFN pathway. Int J Biol Sci. 2021;17(11):2826-2840. Published 2021 Jul 5. doi:10.7150/ijbs.59227(IF:6.582)
[41] Zhao P, Zhu Y, Sun L, et al. Circulating Exosomal miR-1-3p from Rats with Myocardial Infarction Plays a Protective Effect on Contrast-Induced Nephropathy via Targeting ATG13 and activating the AKT Signaling Pathway. Int J Biol Sci. 2021;17(4):972-985. Published 2021 Mar 2. doi:10.7150/ijbs.55887(IF:6.582)
[42] Cui W, Wang S, Han K, et al. Ferredoxin 1 is downregulated by the accumulation of abscisic acid in an ABI5-dependent manner to facilitate rice stripe virus infection in Nicotiana benthamiana and rice. Plant J. 2021;107(4):1183-1197. doi:10.1111/tpj.15377(IF:6.486)
[43] Wang Y, He S, Long Y, et al. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize. Plant J. 2022;109(4):980-991. doi:10.1111/tpj.15609(IF:6.486)
[44] Tang C, Wang X, Ji C, et al. The Role of miR-640: A Potential Suppressor in Breast Cancer via Wnt7b/β-catenin Signaling Pathway. Front Oncol. 2021;11:645682. Published 2021 Apr 12. doi:10.3389/fonc.2021.645682(IF:6.244)
[45] Meng X, Deng Y, He S, Niu L, Zhu H. m6A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigenesis by Regulating the miR-150-5p/E2F3 Axis. Front Oncol. 2021;11:629947. Published 2021 Feb 18. doi:10.3389/fonc.2021.629947(IF:6.244)
[46] Yu Q, Zhang W, Zhou X, Shen W, Xing C, Yang X. Regulation of lnc-TLCD2-1 on Radiation Sensitivity of Colorectal Cancer and Comprehensive Analysis of Its Mechanism. Front Oncol. 2021;11:714159. Published 2021 Jul 15. doi:10.3389/fonc.2021.714159(IF:6.244)
[47] Zhang XY, Chen ZC, Li N, et al. Exosomal transfer of activated neutrophil-derived lncRNA CRNDE promotes proliferation and migration of airway smooth muscle cells in asthma. Hum Mol Genet. 2022;31(4):638-650. doi:10.1093/hmg/ddab283(IF:6.150)
[48] Yang HY, Liu M, Sheng Y, et al. All-trans retinoic acid impairs glucose-stimulated insulin secretion by activating the RXR/SREBP-1c/UCP2 pathway. Acta Pharmacol Sin. 2022;43(6):1441-1452. doi:10.1038/s41401-021-00740-2(IF:6.150)
[49] Jiang T, Peng D, Shi W, et al. IL-6/STAT3 Signaling Promotes Cardiac Dysfunction by Upregulating FUNDC1-Dependent Mitochondria-Associated Endoplasmic Reticulum Membranes Formation in Sepsis Mice. Front Cardiovasc Med. 2022;8:790612. Published 2022 Jan 18. doi:10.3389/fcvm.2021.790612(IF:6.050)
[50] Ji H, Zhang K, Pan G, et al. Deoxyelephantopin Induces Apoptosis and Enhances Chemosensitivity of Colon Cancer via miR-205/Bcl2 Axis. Int J Mol Sci. 2022;23(9):5051. Published 2022 May 2. doi:10.3390/ijms23095051(IF:5.924)
[51] Li H, Luo Y, Ma B, et al. Hierarchical Action of Mulberry miR156 in the Vegetative Phase Transition. Int J Mol Sci. 2021;22(11):5550. Published 2021 May 24. doi:10.3390/ijms22115550(IF:5.924)
[52] Li H, Ma B, Luo Y, et al. The Mulberry SPL Gene Family and the Response of MnSPL7 to Silkworm Herbivory through Activating the Transcription of MnTT2L2 in the Catechin Biosynthesis Pathway. Int J Mol Sci. 2022;23(3):1141. Published 2022 Jan 20. doi:10.3390/ijms23031141(IF:5.924)
[53] Xia S, Wang Z, Chen L, et al. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal. Biochem Pharmacol. 2021;192:114730. doi:10.1016/j.bcp.2021.114730(IF:5.858)
[54] Feng Y, He PY, Kong WD, et al. Apoptosis-promoting properties of miR-3074-5p in MC3T3-E1 cells under iron overload conditions. Cell Mol Biol Lett. 2021;26(1):37. Published 2021 Aug 16. doi:10.1186/s11658-021-00281-w(IF:5.787)
[55] Li D, Wang Z, Sun S, et al. VvMYB15 and VvWRKY40 Positively Co-regulated Anthocyanin Biosynthesis in Grape Berries in Response to Root Restriction [published correction appears in Front Plant Sci. 2022 Feb 22;13:850160]. Front Plant Sci. 2021;12:789002. Published 2021 Dec 9. doi:10.3389/fpls.2021.789002(IF:5.754)
[56] Ding J, Karim H, Li Y, et al. Re-examination of the APETALA2/Ethylene-Responsive Factor Gene Family in Barley (Hordeum vulgare L.) Indicates a Role in the Regulation of Starch Synthesis. Front Plant Sci. 2021;12:791584. Published 2021 Dec 1. doi:10.3389/fpls.2021.791584(IF:5.754)
[57] Geng M, Hua Y, Liu Y, et al. Evolutionary history and functional characterization of Lj-TICAM-a and Lj-TICAM-b formed via lineage-specific tandem duplication in lamprey (Lampetra japonica). Genomics. 2021;113(4):2756-2768. doi:10.1016/j.ygeno.2021.06.022(IF:5.736)
[58] Hou F, Sun Z, Deng Y, et al. Interactome and Ubiquitinome Analyses Identify Functional Targets of Herpes Simplex Virus 1 Infected Cell Protein 0. Front Microbiol. 2022;13:856471. Published 2022 Apr 18. doi:10.3389/fmicb.2022.856471(IF:5.640)
[59] Zhou L, Ao L, Yan Y, et al. Levo-corydalmine Attenuates Vincristine-Induced Neuropathic Pain in Mice by Upregulating the Nrf2/HO-1/CO Pathway to Inhibit Connexin 43 Expression. Neurotherapeutics. 2020;17(1):340-355. doi:10.1007/s13311-019-00784-7(IF:5.552)
[60] Lei B, Liu J, Yao Z, et al. NF-κB-Induced Upregulation of miR-146a-5p Promoted Hippocampal Neuronal Oxidative Stress and Pyroptosis via TIGAR in a Model of Alzheimer's Disease. Front Cell Neurosci. 2021;15:653881. Published 2021 Apr 16. doi:10.3389/fncel.2021.653881(IF:5.505)
[61] Hsueh CY, Huang Q, Gong H, et al. A positive feed-forward loop between Fusobacteriumnucleatum and ethanol metabolism reprogramming drives laryngeal cancer progression and metastasis. iScience. 2022;25(2):103829. Published 2022 Jan 30. doi:10.1016/j.isci.2022.103829(IF:5.458)
[62] Zhang S, Xing M, Chen G, Tong L, Zhang H, Du D. Up-regulation of miR-335 and miR-674-3p in the rostral ventrolateral medulla contributes to stress-induced hypertension. J Neurochem. 2022;161(5):387-404. doi:10.1111/jnc.15589(IF:5.372)
[63] Fan Z, Yang G, Zhang W, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med. 2021;25(21):10197-10212. doi:10.1111/jcmm.16957(IF:5.310)
[64] Wang W, Li T, Chen Q, Deng B, Deng L, Zeng K. Transcription Factor CsWRKY65 Participates in the Establishment of Disease Resistance of Citrus Fruits to Penicillium digitatum. J Agric Food Chem. 2021;69(20):5671-5682. doi:10.1021/acs.jafc.1c01411(IF:5.279)
[65] Jin CL, Ye M, Song ZW, et al. Lysine Interacts with Frizzled7 to Activate β-Catenin in Satellite Cell-Participated Skeletal Muscle Growth. J Agric Food Chem. 2022;70(12):3745-3756. doi:10.1021/acs.jafc.2c01027(IF:5.279)
[66] Xia H, Shen Y, Hu R, et al. Methylation of MYBA1 is Associated with the Coloration in "Manicure Finger" Grape Skin. J Agric Food Chem. 2021;69(51):15649-15659. doi:10.1021/acs.jafc.1c04550(IF:5.279)
[67] Huang Y, Zheng W, Ji C, et al. Circular RNA circRPPH1 promotes breast cancer progression via circRPPH1-miR-512-5p-STAT1 axis. Cell Death Discov. 2021;7(1):376. Published 2021 Dec 6. doi:10.1038/s41420-021-00771-y(IF:5.241)
[68] Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. Published 2022 Mar 2. doi:10.1038/s41420-022-00892-y(IF:5.241)
[69] Chen H, Luo J, Chen S, et al. Non-drug efflux function of ABCC5 promotes enzalutamide resistance in castration-resistant prostate cancer via upregulation of P65/AR-V7. Cell Death Discov. 2022;8(1):241. Published 2022 May 3. doi:10.1038/s41420-022-00951-4(IF:5.241)
[70] Du XF, Cui HT, Pan HH, et al. Role of the miR-133a-5p/FBXO6 axis in the regulation of intervertebral disc degeneration. J Orthop Translat. 2021;29:123-133. Published 2021 Jun 19. doi:10.1016/j.jot.2021.05.004(IF:5.191)
[71] Zhou Y, Zheng R, Liu S, et al. Host E3 ligase HUWE1 attenuates the proapoptotic activity of the MERS-CoV accessory protein ORF3 by promoting its ubiquitin-dependent degradation. J Biol Chem. 2022;298(2):101584. doi:10.1016/j.jbc.2022.101584(IF:5.157)
[72] Chen S, Deng Y, Chen H, et al. Neuronal miR-138 Represses HSV-2 Lytic Infection by Regulating Viral and Host Genes with Mechanistic Differences from HSV-1. J Virol. 2022;96(9):e0034922. doi:10.1128/jvi.00349-22(IF:5.103)
[73] Wang D, Li Y, Liu Y, et al. NPM1 promotes cell proliferation by targeting PRDX6 in colorectal cancer. Int J Biochem Cell Biol. 2022;147:106233. doi:10.1016/j.biocel.2022.106233(IF:5.085)
[74] Deng Z, Zheng L, Xie X, Wei H, Peng J. GPA peptide enhances Nur77 expression in intestinal epithelial cells to exert a protective effect against DSS-induced colitis. FASEB J. 2020;34(11):15364-15378. doi:10.1096/fj.202000391RR(IF:4.966)
[75] Huang X, Sun L, Wen S, et al. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci. 2020;111(9):3338-3349. doi:10.1111/cas.14516(IF:4.966)
[76] Wang X, Yao Z, Fang L. miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res. 2021;2021:6661828. Published 2021 Mar 12. doi:10.1155/2021/6661828(IF:4.964)
[77] Yu MC, Ding GY, Ma P, et al. CircRNA UBAP2 serves as a sponge of miR-1294 to increase tumorigenesis in hepatocellular carcinoma through regulating c-Myc expression. Carcinogenesis. 2021;42(10):1293-1303. doi:10.1093/carcin/bgab068(IF:4.944)
[78] Wang Q, Ren D, Bi Y, et al. Association and functional study between ADIPOQ and metabolic syndrome in elderly Chinese Han population. Aging (Albany NY). 2020;12(24):25819-25827. doi:10.18632/aging.104203(IF:4.831)
[79] Yuan J, Li X, Zhang G, et al. USP39 mediates p21-dependent proliferation and neoplasia of colon cancer cells by regulating the p53/p21/CDC2/cyclin B1 axis. Mol Carcinog. 2021;60(4):265-278. doi:10.1002/mc.23290(IF:4.784)
[80] Tang Y, Wang L, Qu Z, et al. BSISTER transcription factors directly binds to the promoter of IAA19 and IAA29 genes to up-regulate gene expression and promote the root development. Plant Sci. 2022;321:111324. doi:10.1016/j.plantsci.2022.111324(IF:4.729)
[81] Li D, Liu B, Wang Z, et al. Sugar accumulation may be regulated by a transcriptional cascade of ABA-VvGRIP55-VvMYB15-VvSWEET15 in grape berries under root restriction. Plant Sci. 2022;322:111288. doi:10.1016/j.plantsci.2022.111288(IF:4.729)
[82] Gan Z, Yuan X, Shan N, et al. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit. Plant Sci. 2021;309:110948. doi:10.1016/j.plantsci.2021.110948(IF:4.729)
[83] Bai HL, Kang CM, Sun ZQ, et al. TTDA inhibited apoptosis by regulating the p53-Bax/Bcl2 axis in glioma. Exp Neurol. 2020;331:113380. doi:10.1016/j.expneurol.2020.113380(IF:4.691)
[84] Zhang H, Hu Y, Gu B, Cui X, Zhang J. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera. Plant Cell Rep. 2022;41(8):1673-1691. doi:10.1007/s00299-022-02883-w(IF:4.570)
[85] Sun W, Zu S, Shao G, Wang W, Gong F. Long non-coding DANCR targets miR-185-5p to upregulate LIM and SH3 protein 1 promoting prostate cancer via the FAK/PI3K/AKT/GSK3β/snail pathway. J Gene Med. 2021;23(7):e3344. doi:10.1002/jgm.3344(IF:4.565)
[86] Luo SY, Wang JQ, Liu C, et al. Hif-1α/Hsf1/Hsp70 signaling pathway regulates redox homeostasis and apoptosis in large yellow croaker ( Larimichthys crocea) under environmental hypoxia. Zool Res. 2021;42(6):746-760. doi:10.24272/j.issn.2095-8137.2021.224(IF:4.560)
[87] Liu J, Zhu M, Tang Q. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-181a retards nasopharyngeal carcinoma development by mediating KDM5C. J Cancer Res Clin Oncol. 2021;147(10):2867-2877. doi:10.1007/s00432-021-03684-6(IF:4.553)
[88] Huang Y, Wan S, Yang M. Circ_0067680 expedites the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through miR-4429/CTNNB1/Wnt/β-catenin pathway. Biol Direct. 2021;16(1):16. Published 2021 Oct 14. doi:10.1186/s13062-021-00302-w(IF:4.540)
[89] Wang B, Cai Y, Li X, Kong Y, Fu H, Zhou J. ETV4 mediated lncRNA C2CD4D-AS1 overexpression contributes to the malignant phenotype of lung adenocarcinoma cells via miR-3681-3p/NEK2 axis. Cell Cycle. 2021;20(24):2607-2618. doi:10.1080/15384101.2021.2005273(IF:4.534)
[90] Geng S, Tu S, Fu W, Wang J, Bai Z. LncRNA PITPNA-AS1 stimulates cell proliferation and suppresses cell apoptosis in glioblastoma via targeting miR-223-3p/EGFR axis and activating PI3K/AKT signaling pathway. Cell Cycle. 2021;20(19):1988-1998. doi:10.1080/15384101.2021.1958503(IF:4.534)
[91] Ma X, Li C, Yuan Y, Zhao M, Li J. Xyloglucan endotransglucosylase/hydrolase genes LcXTH4/7/19 are involved in fruitlet abscission and are activated by LcEIL2/3 in litchi. Physiol Plant. 2021;173(3):1136-1146. doi:10.1111/ppl.13509(IF:4.500)
[92] Zhang L, Ouyang P, He G, et al. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. J Cell Mol Med. 2021;25(4):2148-2162. doi:10.1111/jcmm.16192(IF:4.486)
[93] Chen N, Ma B, Guo S, Yin B, Zhang J, Deng G. microRNA-196b alleviates lipopolysaccharide-induced inflammatory injury by targeting NRAS. Mol Immunol. 2022;147:10-20. doi:10.1016/j.molimm.2022.03.122(IF:4.407)
[94] Zhang Y, Wang X, Huang X, et al. Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion. Bone. 2021;143:115619. doi:10.1016/j.bone.2020.115619(IF:4.398)
[95] Zhou YM, Yao YL, Liu W, Shen XM, Shi LJ, Wu L. MicroRNA-134 inhibits tumor stem cell migration and invasion in oral squamous cell carcinomas via downregulation of PI3K-Akt signaling pathway by inhibiting LAMC2 expression. Cancer Biomark. 2020;29(1):51-67. doi:10.3233/CBM-191362(IF:4.388)
[96] Ma Y, Luo Q, Ou Y, et al. New insights into the proteins interacting with the promoters of silkworm fibroin genes. Sci Rep. 2021;11(1):15880. Published 2021 Aug 5. doi:10.1038/s41598-021-95400-0(IF:4.380)
[97] Zhu M, Li X, Sun R, et al. The C/EBPβ-Dependent Induction of TFDP2 Facilitates Porcine Reproductive and Respiratory Syndrome Virus Proliferation. Virol Sin. 2021;36(6):1341-1351. doi:10.1007/s12250-021-00403-w(IF:4.327)
[98] Yin Q, Wang J, Fu Q, Gu S, Rui Y. CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteoporosis. J Cell Mol Med. 2018;22(12):6112-6121. doi:10.1111/jcmm.13888(IF:4.302)
[99] Gao L, Liu J, Xu P, et al. AKT Inhibitor SC66 Inhibits Proliferation and Induces Apoptosis in Human Glioblastoma Through Down-Regulating AKT/β-Catenin Pathway. Front Pharmacol. 2020;11:1102. Published 2020 Jul 31. doi:10.3389/fphar.2020.01102(IF:4.225)
[100] Shan N, Zhang Y, Xu Y, et al. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biol. 2022;22(1):108. Published 2022 Mar 9. doi:10.1186/s12870-022-03498-9(IF:4.215)
[101] Cao Y, Bi M, Yang P, et al. Construction of yeast one-hybrid library and screening of transcription factors regulating LhMYBSPLATTER expression in Asiatic hybrid lilies (Lilium spp.). BMC Plant Biol. 2021;21(1):563. Published 2021 Nov 29. doi:10.1186/s12870-021-03347-1(IF:4.215)
[102] Ma J, Zhang X, Zhang H, Chen H. lncRNA MEG3 Suppresses the Progression of Ankylosis Spondylitis by Regulating the Let-7i/SOST Axis. Front Mol Biosci. 2020;7:173. Published 2020 Jul 24. doi:10.3389/fmolb.2020.00173(IF:4.188)
[103] Anwar M, Yu W, Yao H, Zhou P, Allan AC, Zeng L. NtMYB3, an R2R3-MYB from Narcissus, Regulates Flavonoid Biosynthesis. Int J Mol Sci. 2019;20(21):5456. Published 2019 Nov 1. doi:10.3390/ijms20215456(IF:4.183)
[104] Xu W, Chen B, Ke D, Chen X. MicroRNA-138-5p targets the NFIB-Snail1 axis to inhibit colorectal cancer cell migration and chemoresistance [published correction appears in Cancer Cell Int. 2020 Nov 3;20(1):533]. Cancer Cell Int. 2020;20:475. Published 2020 Oct 1. doi:10.1186/s12935-020-01573-5(IF:4.175)
[105] Tian C, Hu S, Yu J, Li W, Li P, Huang H. CREB1 transcription-activated lncRNA PVT1 promotes cardiac fibrosis via miR-145/HCN1 axis. Int J Cardiol. 2022;353:88-95. doi:10.1016/j.ijcard.2022.01.024(IF:4.164)
[106] Zhou Y, Zhu Y, Dong X, et al. Exosomes Derived from Pancreatic Cancer Cells Induce Osteoclast Differentiation Through the miR125a-5p/TNFRSF1B Pathway. Onco Targets Ther. 2021;14:2727-2739. Published 2021 Apr 19. doi:10.2147/OTT.S282319(IF:4.147)
[107] Zhu Y, Li P, Dan X, Kang X, Ma Y, Shi Y. miR-377 Inhibits Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells by Targeting FHL2. Genes (Basel). 2022;13(6):947. Published 2022 May 26. doi:10.3390/genes13060947(IF:4.096)
[108] Bu X, Zhao Y, Chang M, Ge X. Downregulation of lncRNA SNHG14 alleviates neurons injury by modulating the miR-181c-5p/BMF axis in ischemic stroke. Brain Res Bull. 2021;174:379-388. doi:10.1016/j.brainresbull.2021.06.026(IF:4.079)
[109] Guo H, Jiang Y, Gu Z, et al. ZFP36 protects against oxygen-glucose deprivation/reoxygenation-induced mitochondrial fragmentation and neuronal apoptosis through inhibiting NOX4-DRP1 pathway. Brain Res Bull. 2022;179:57-67. doi:10.1016/j.brainresbull.2021.12.003(IF:4.079)
[110] Yang L, Liu Z, Ma J, et al. CircRPPH1 serves as a sponge for miR-296-5p to enhance progression of breast cancer by regulating FOXP4 expression. Am J Transl Res. 2021;13(7):7556-7573. Published 2021 Jul 15. (IF:4.060)
[111] Gao G, Li X, Zhang J, Yu H. YY1 as a promoter regulating the circ_0001946/miR-671-5p/EGFR axis to promote chemotherapy resistance in breast cancer cells. Am J Transl Res. 2022;14(4):2550-2566. Published 2022 Apr 15. (IF:4.060)
[112] Xiao E, Zhang D, Zhan W, et al. circNFIX facilitates hepatocellular carcinoma progression by targeting miR-3064-5p/HMGA2 to enhance glutaminolysis. Am J Transl Res. 2021;13(8):8697-8710. Published 2021 Aug 15. (IF:4.060)
[113] Wang H, Song X, Song C, Wang X, Cao H. m6A-seq analysis of microRNAs reveals that the N6-methyladenosine modification of miR-21-5p affects its target expression. Arch Biochem Biophys. 2021;711:109023. doi:10.1016/j.abb.2021.109023(IF:4.013)
[114] Huang Y, Wu P, Zheng J, Qiu L. Identification of cis-acting elements in response to fenvalerate in the CYP6B7 promoter of Helicoverpa armigera. Pestic Biochem Physiol. 2022;183:105060. doi:10.1016/j.pestbp.2022.105060(IF:3.963)
[115] Li X, Wang N, She W, et al. Identification and Functional Analysis of the CgNAC043 Gene Involved in Lignin Synthesis from Citrusgrandis "San Hong". Plants (Basel). 2022;11(3):403. Published 2022 Jan 31. doi:10.3390/plants11030403(IF:3.935)
[116] Wu Y, Zhang M, Bi X, Hao L, Liu R, Zhang H. JPR1 mediated circ_0004018 suppresses angiogenesis in hepatocellular carcinoma via recruiting FUS and stabilizing TIMP2 expression. Exp Cell Res. 2021;408(2):112804. doi:10.1016/j.yexcr.2021.112804(IF:3.905)
[117] Luo E, Wang D, Yan G, et al. The NF-κB/miR-425-5p/MCT4 axis: A novel insight into diabetes-induced endothelial dysfunction. Mol Cell Endocrinol. 2020;500:110641. doi:10.1016/j.mce.2019.110641(IF:3.693)
[118] Zhang C, Wang Q, Liu AQ, et al. MicroRNA miR-155 inhibits cyprinid herpesvirus 3 replication via regulating AMPK-MAVS-IFN axis. Dev Comp Immunol. 2022;129:104335. doi:10.1016/j.dci.2021.104335(IF:3.636)
[119] Zhang G, Li G, Xiang Y, Zhang A. The transcription factor ZmMYB-CC10 improves drought tolerance by activating ZmAPX4 expression in maize. Biochem Biophys Res Commun. 2022;604:1-7. doi:10.1016/j.bbrc.2022.02.051(IF:3.575)
[120] Han T, Yan J, Xiang Y, Zhang A. Phosphorylation of ZmNAC84 at Ser-113 enhances the drought tolerance by directly modulating ZmSOD2 expression in maize. Biochem Biophys Res Commun. 2021;567:86-91. doi:10.1016/j.bbrc.2021.06.026(IF:3.575)
[121] Jiang H, Guo W, Yuan S, Song L. PLOD1 Is a Prognostic Biomarker and Mediator of Proliferation and Invasion in Osteosarcoma. Biomed Res Int. 2020;2020:3418398. Published 2020 Oct 19. doi:10.1155/2020/3418398(IF:3.411)
[122] Li Z, Chen Z, Feng Y, Hu G, Jiang Y. CircMMP11 acts as a ce-circRNA in breast cancer progression by regulating miR-1204. Am J Transl Res. 2020;12(6):2585-2599. Published 2020 Jun 15. (IF:3.375)
[123] Ma H, Liu T, Xu Y, Wang X, Wang J, Liu X. MiR-519d and miR-328-3p Combinatorially Suppress Breast Cancer Progression. Onco Targets Ther. 2020;13:12987-12997. Published 2020 Dec 18. doi:10.2147/OTT.S281962(IF:3.337)
[124] Chu P, He L, Zhu D, et al. Identification, expression and functional characterisation of CYP1A in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019;95:35-43. doi:10.1016/j.fsi.2019.10.022(IF:3.298)
[125] Yin D, Shao Y, Yang K, et al. Fowl adenovirus serotype 4 uses gga-miR-181a-5p expression to facilitate viral replication via targeting of STING. Vet Microbiol. 2021;263:109276. doi:10.1016/j.vetmic.2021.109276(IF:3.293)
[126] Abudurexiti M, Zhu W, Wang Y, et al. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate. 2020;80(12):950-961. doi:10.1002/pros.24027(IF:3.279)
[127] Meng J, Song X, Yan G, Wang H, Li H, Lou D. Dendrobine suppresses endoplasmic reticulum stress-induced apoptosis through upregulating microRNA miR-381-3p to decrease caspase-4. Bioengineered. 2021;12(1):4452-4463. doi:10.1080/21655979.2021.1956672(IF:3.269)
[128] Zhou Y, Pan A, Zhang Y, Li X. Hsa_circ_0039569 facilitates the progression of endometrial carcinoma by targeting the miR-197/high mobility group protein A1 axis. Bioengineered. 2022;13(2):4212-4225. doi:10.1080/21655979.2022.2027060(IF:3.269)
[129] Zhang Y, Yu Y, Cao X, Chen P. Role of lncRNA FAM83H antisense RNA1 (FAM83H-AS1) in the progression of non-small cell lung cancer by regulating the miR-545-3p/heparan sulfate 6-O-sulfotransferase (HS6ST2) axis. Bioengineered. 2022;13(3):6476-6489. doi:10.1080/21655979.2022.2031668(IF:3.269)
[130] Wu W, Wang L, Li S. Hox transcript antisense RNA knockdown inhibits osteosarcoma progression by regulating the phosphoinositide 3-kinase/AKT pathway through the microRNA miR-6888-3p/spleen tyrosine kinase axis. Bioengineered. 2022;13(4):9397-9410. doi:10.1080/21655979.2022.2059614(IF:3.269)
[131] Ge Z, Liu H, Ji T, et al. Long non-coding RNA 00960 promoted the aggressiveness of lung adenocarcinoma via the miR-124a/SphK1 axis. Bioengineered. 2022;13(1):1276-1287. doi:10.1080/21655979.2021.1996507(IF:3.269)
[132] Hao W, Lin F, Shi H, Guan Z, Jiang Y. Long non-coding RNA OIP5-AS1 regulates smoke-related chronic obstructive pulmonary disease via targeting micro RNA -410-3p/IL-13. Bioengineered. 2021;12(2):11664-11676. doi:10.1080/21655979.2021.2000199(IF:3.269)
[133] Shuang Y, Liu J, Niu J, Guo W, Li C. A novel circular RNA circPPFIA1 promotes laryngeal squamous cell carcinoma progression through sponging miR-340-3p and regulating ELK1 expression. Bioengineered. 2021;12(1):5220-5230. doi:10.1080/21655979.2021.1959866(IF:3.269)
[134] Zhou H, Jia X, Yang F, Shi P. miR-148a-3p suppresses the progression of acute myeloid leukemia via targeting cyclin-dependent kinase 6 (CDK6). Bioengineered. 2021;12(1):4508-4519. doi:10.1080/21655979.2021.1956400(IF:3.269)
[135] Mao K, Jin R, Ren Z, et al. miRNAs targeting CYP6ER1 and CarE1 are involved in nitenpyram resistance in Nilaparvata lugens. Insect Sci. 2022;29(1):177-187. doi:10.1111/1744-7917.12910(IF:3.262)
[136] Zhang W, Qin P, Gong X, et al. Identification of circRNAs in the Liver of Whitespotted Bamboo Shark (Chiloscyllium plagiosum). Front Genet. 2020;11:596308. Published 2020 Dec 11. doi:10.3389/fgene.2020.596308(IF:3.260)
[137] Xie D, Li S, Wu T, Wang X, Fang L. MiR-181c suppresses triple-negative breast cancer tumorigenesis by targeting MAP4K4. Pathol Res Pract. 2022;230:153763. doi:10.1016/j.prp.2022.153763(IF:3.250)
[138] Jia A, Yang ZW, Shi JY, Liu JM, Zhang K, Cui YF. MiR-325-3p Alleviates Acute Pancreatitis via Targeting RIPK3 [published online ahead of print, 2022 Jan 30]. Dig Dis Sci. 2022;10.1007/s10620-021-07322-6. doi:10.1007/s10620-021-07322-6(IF:3.199)
[139] Li M, Noshay JM, Dong X, Springer NM, Li Q. A capture-based assay for detection and characterization of transposon polymorphisms in maize [published online ahead of print, 2021 Apr 26]. G3 (Bethesda). 2021;11(7):jkab138. doi:10.1093/g3journal/jkab138(IF:3.154)
[140] Wu W, Duan C, Lv H, et al. MiR-let-7d-3p inhibits granulosa cell proliferation by targeting TLR4 in polycystic ovary syndrome. Reprod Toxicol. 2021;106:61-68. doi:10.1016/j.reprotox.2021.10.003(IF:3.143)
[141] Yu L, Ren Y. Long Noncoding RNA Small Nucleolar RNA Host Gene 3 Mediates Prostate Cancer Migration, Invasion, and Epithelial-Mesenchymal Transition by Sponging miR-487a-3p to Regulate TRIM25 [published online ahead of print, 2021 Jan 7]. Cancer Biother Radiopharm. 2021;10.1089/cbr.2020.3988. doi:10.1089/cbr.2020.3988(IF:3.099)
[142] Ye M, Ma J, Liu B, Liu X, Ma D, Dong K. Linc01105 acts as an oncogene in the development of neuroblastoma [published correction appears in Oncol Rep. 2021 Sep;46(3):]. Oncol Rep. 2019;42(4):1527-1538. doi:10.3892/or.2019.7257(IF:3.041)
[143] Huo W, Wang Y, Chen T, et al. Triclosan activates c-Jun/miR-218-1-3p/SLC35C1 signaling to regulate cell viability, migration, invasion and inflammatory response of trophoblast cells in vitro. BMC Pregnancy Childbirth. 2022;22(1):470. Published 2022 Jun 6. doi:10.1186/s12884-022-04791-z(IF:3.007)
[144] Dong L, Wang M, Gao X, et al. miR-9-5p promotes myogenic differentiation via the Dlx3/Myf5 axis. PeerJ. 2022;10:e13360. Published 2022 May 3. doi:10.7717/peerj.13360(IF:2.984)
[145] Chen J, Shi P, Zhang J, et al. CircRNA_0044556 diminishes the sensitivity of triple‑negative breast cancer cells to adriamycin by sponging miR‑145 and regulating NRAS. Mol Med Rep. 2022;25(2):51. doi:10.3892/mmr.2021.12567(IF:2.952)
[146] Ding X, Deng G, Liu J, et al. GOLM1 silencing inhibits the proliferation and motility of human glioblastoma cells via the Wnt/β-catenin signaling pathway. Brain Res. 2019;1717:117-126. doi:10.1016/j.brainres.2019.03.035(IF:2.929)
[147] Yang F, Chen R. Loss of PHLDA1 has a protective role in OGD/R-injured neurons via regulation of the GSK-3β/Nrf2 pathway. Hum Exp Toxicol. 2021;40(11):1909-1920. doi:10.1177/09603271211014596(IF:2.903)
[148] Wang L, Zhang L, Wang L. SNHG7 Contributes to the Progression of Non-Small-Cell Lung Cancer via the SNHG7/miR-181a-5p/E2F7 Axis. Cancer Manag Res. 2020;12:3211-3222. Published 2020 May 7. doi:10.2147/CMAR.S240964(IF:2.886)
[149] Tian Y, Guan Y, Su Y, Luo W, Yang G, Zhang Y. MiR-582-5p Inhibits Bladder Cancer-Genesis by Suppressing TTK Expression. Cancer Manag Res. 2020;12:11933-11944. Published 2020 Nov 20. doi:10.2147/CMAR.S274835(IF:2.886)
[150] Xia L, Shen D, Wang H, Ren L, Chen Y, Li G. Identification of Small-Molecule Regulators of Testicular Receptor 4 via a Drug Repurposing Screening. ACS Omega. 2020;5(47):30625-30632. Published 2020 Nov 19. doi:10.1021/acsomega.0c04623(IF:2.870)
[151] Cao Y, Zhang F, Wang H, et al. LncRNA MALAT1 mediates doxorubicin resistance of hepatocellular carcinoma by regulating miR-3129-5p/Nova1 axis. Mol Cell Biochem. 2021;476(1):279-292. doi:10.1007/s11010-020-03904-6(IF:2.795)
[152] Ding X, Sun J, Zhang X. Circ_0076305 facilitates prostate cancer development via sponging miR-411-5p and regulating PGK1. Andrologia. 2022;54(6):e14406. doi:10.1111/and.14406(IF:2.775)
[153] Yang F, Chen R. Sestrin1 exerts a cytoprotective role against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by potentiating Nrf2 activation via the modulation of Keap1. Brain Res. 2021;1750:147165. doi:10.1016/j.brainres.2020.147165(IF:2.733)
[154] Zhang Z. MiR-124-3p Suppresses Prostatic Carcinoma by Targeting PTGS2 Through the AKT/NF-κB Pathway. Mol Biotechnol. 2021;63(7):621-630. doi:10.1007/s12033-021-00326-7(IF:2.695)
[155] Jin S, He J, Li J, Guo R, Shu Y, Liu P. MiR-873 inhibition enhances gefitinib resistance in non-small cell lung cancer cells by targeting glioma-associated oncogene homolog 1. Thorac Cancer. 2018;9(10):1262-1270. doi:10.1111/1759-7714.12830(IF:2.569)
[156] Zhang J, Xu X, Wang M. Clinical significance of serum miR-101-3p expression in patients with neonatal sepsis. Per Med. 2021;18(6):541-550. doi:10.2217/pme-2020-0182(IF:2.512)
[157] Shi Z, He J, He J, Xu Y. Micro-fragmented adipose tissue regulated the biological functions of osteoarthritis synoviocytes by upregulating MiR-92a-3p expression. Tissue Cell. 2022;74:101716. doi:10.1016/j.tice.2021.101716(IF:2.466)
[158] Huang J, Qin Y, Lin C, Huang X, Zhang F. MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway. Exp Ther Med. 2021;22(1):703. doi:10.3892/etm.2021.10135(IF:2.447)
[159] Shi F, Yang Q, Shen D, Chen J. CircRNA WHSC1 promotes non-small cell lung cancer progression via sponging microRNA-296-3p and up-regulating expression of AKT serine/threonine kinase 3. J Clin Lab Anal. 2021;35(8):e23865. doi:10.1002/jcla.23865(IF:2.352)
[160] Wang K, Li M, Zhang T, Xu C, Yu F, Duan H. LINC01116 Facilitates Melanoma 1 Progression Via Sequestering miR-3612 and Up-regulating GDF11 and SDC3. Arch Med Res. 2022;53(1):44-50. doi:10.1016/j.arcmed.2021.06.008(IF:2.235)
[161] Wang L, Zhang J. Long intergenic ncRNA 00473 improves the invasion of trophoblastic cells via miR-16-5p. Pregnancy Hypertens. 2021;23:174-184. doi:10.1016/j.preghy.2020.12.003(IF:2.095)
[162] Li K, Zhou Z, Li J, Xiang R. miR-146b Functions as an Oncogene in Oral Squamous Cell Carcinoma by Targeting HBP1. Technol Cancer Res Treat. 2020;19:1533033820959404. doi:10.1177/1533033820959404(IF:2.074)
[163] Xu W, Sun D, Wang Y, et al. Inhibitory effect of microRNA-608 on lung cancer cell proliferation, migration, and invasion by targeting BRD4 through the JAK2/STAT3 pathway. Bosn J Basic Med Sci. 2020;20(3):347-356. Published 2020 Aug 3. doi:10.17305/bjbms.2019.4216(IF:2.050)
[164] Li Y, Liu L. LncRNA OIP5-AS1 Signatures as a Biomarker of Gestational Diabetes Mellitus and a Regulator on Trophoblast Cells. Gynecol Obstet Invest. 2021;86(6):509-517. doi:10.1159/000520340(IF:2.031)
[165] Li Y, Liu Y, Zhang J, Li J, Shu Y. Propofol Suppresses Glioma Tumorigenesis by Regulating circ_0047688/miR-516b-5p/IFI30 Axis [published online ahead of print, 2022 Jun 28]. Biochem Genet. 2022;10.1007/s10528-022-10243-2. doi:10.1007/s10528-022-10243-2(IF:1.890)
[166] Zheng Q, Yu JJ, Li C, Li J, Wang J, Wang S. miR-224 targets BTRC and promotes cell migration and invasion in colorectal cancer. 3 Biotech. 2020;10(11):485. doi:10.1007/s13205-020-02477-x(IF:1.798)
[167] Chen Y, Niu K, Song Q, Feng Q. Effect of G-quadruplex loop mutations on the G-quadruplex formation, protein binding and transcription of BmPOUM2 in Bombyx mori. Arch Insect Biochem Physiol. 2022;110(1):e21876. doi:10.1002/arch.21876(IF:1.698)
[168] Wang Z, Chen R, Xu Z, et al. MiR-155-5p promotes renal interstitial fibrosis in obstructive nephropathy via inhibiting SIRT1 signaling pathway. J Recept Signal Transduct Res. 2021;41(5):466-475. doi:10.1080/10799893.2020.1825491(IF:1.466)
[169] Zhou Y, Zhang F, Xu F, et al. lncRNA NEAT1 regulates CYP1A2 and influences steroid-induced necrosis. Open Life Sci. 2021;16(1):969-980. Published 2021 Sep 13. doi:10.1515/biol-2021-0097(IF:0.938)

辉光型萤火虫荧光素酶报告基因检测试剂盒|Firefly Glo Luciferase Reporter Gene Assay Kit

辉光型萤火虫荧光素酶报告基因检测试剂盒|Firefly Glo Luciferase Reporter Gene Assay Kit

产品说明书

FAQ

COA

已发表文献

萤火虫萤光素酶(Firefly luciferase)是一种分子量约为61kDa的蛋白,在ATP、镁离子和氧气存在的条件下,能够催化萤光素(luciferin)氧化成oxyluciferin,在luciferin氧化的过程中会发出波长为560 nm左右的生物萤光,该萤光可通过化学发光仪进行测定。检测原理如图所示:

辉光型萤火虫荧光素酶报告基因检测试剂盒|Firefly Glo Luciferase Reporter Gene Assay Kit 

1:萤火虫萤光素酶检测原理图

Firefly Glo Luciferase Reporter Gene Assay kit是一种辉光型萤火虫萤光素酶报告基因检测试剂盒,具有高灵敏度和发光信号稳定的特点,可以满足高通量检测萤光素酶在哺乳动物细胞中的表达。

相对于闪光型Firefly Luciferase Reporter Gene Aassy Kit(Cat#.11401),本品具有以下优点:1)发光信号更稳定性,为实验设计提供了更大的灵活性。2)采用加样-混匀-检测的操作方法,无需依赖自动进样器,并且无需弃培养液、离心等步骤,大大的简化了实验流程。3)无明显刺激性气味。

本试剂盒可用于多种常用细胞培养液:RPMI 1640、DMEM 、MEM-α、F12、DMEM/F12等,其半衰期均为2h左右(22℃),满足绝大多数高通量实验需求。

 

产品组分

组分编号

组分名称

产品编号/规格

11404JP60

(100 T)

11404JP80

(1000 T)

11404-A

辉光型萤火虫萤光素酶缓冲液

10 ml

100 ml

11404-B

辉光型萤火虫萤光素酶底物

1 vial

1 vial

 

运输与保存方式

干冰运输。未拆封试剂盒-20℃保存,有效期1年。

溶解分装后的辉光型萤火虫萤光素酶底物于-70℃避光保存1年,或-20℃短期保存不超过1个月。

 

使用说明

1.需自备的材料

/多道移液器、不透光细胞培养白板、化学发光仪或带化学发光检测模块的酶标仪。

2.检测试剂准备

首次使用时将辉光型萤火虫萤光素酶缓冲液一次性全部倒入辉光型萤火虫萤光素酶底物瓶中,充分混匀后按使用需求分装,建议-70℃长期保存或-20℃保存不超过一个月。分装冻存后的检测试剂,后续每次实验前需平衡至室温。

辉光型萤火虫萤光素酶缓冲液可以室温或水浴融化,但温度不能超过25℃。

3.操作步骤

1)从细胞培养箱中取出含哺乳动物细胞的培养板,放置5-15 min,平衡至室温。

2)加检测试剂:加入与待测细胞培养液等体积并平衡至室温的检测试剂(例如,96孔板通常加入100 μl培养液,相应加入100 μl检测试剂;384孔板通常加入30 μl培养液,相应加入30 μl检测试剂)。

3)振荡混匀:为了使得细胞裂解充分,建议在水平摇床上室温混匀5-10 min(注:不要用移液器吹吸混匀,产生的气泡会影响发光检测读数。混匀时间可根据细胞量进行适当调整,以确保细胞充分裂解,得到稳定的发光检测结果)。

4)检测:在化学发光检测仪或带化学发光模块的多功能酶标仪上检测发光信号,加入检测试剂后2 h内完成检测。

 

注意事项

1)反应温度:酶促反应对温度较为敏感,加样检测前务必将检测试剂以及细胞培养液平衡至室温20-25℃)

2)检测仪器:能检测化学发光的仪器都适用,但由于不同仪器的设置和灵敏度不同,测得的光信号值也会不同。

3)检测板:为防止孔间干扰,推荐使用不透光细胞培养白板。

4)检测设置:Luminescence,350-700 nm,建议读板时间设为0.5-1 sec。

5)发光信号会受到检测环境如培养基组分、温度等影响,应确保同组内不同样本检测条件一致。

6)多个细胞培养板检测时,请尽量确保每板加入检测溶液后孵育时间一致,以获得最佳的检测结果。

7)为了您的安全和健康,请穿实验服并戴一次性手套。

 

相关产品

产品名称

货号

规格

Luciferase Reporter Gene Assay Kit 萤火虫萤光素酶报告基因检测试剂盒

11401JP60/76/80

100/500/1000T

Dual Luciferase Reporter Gene Assay Kit 双萤光素酶报告基因检测试剂盒HOT

11402JP60/80

100/1000T

Dual Glo Luciferase Reporter Gene Assay Kit 辉光型双萤光素酶报告基因检测试剂盒HOT

11405JP60/80

100/1000T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc萤光素酶报告基因质粒阳性对照

11556JP03

1μg

Luciferase Reporter Plasmid negative control (萤光素酶报告基因质粒阴性对照)

11555JP03

1μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾萤光素酶报告基因质粒)

11558JP03

1μg

Hieff Clone® Plus One Step Cloning Kit 一步法快速克隆试剂盒

10911JP20

20T

2×Hieff Canace® Gold PCR Master Mix高保真酶预混液

10149JP08

5ml

DH5α Chemically Competent Cell DH5α化学感受态细胞

11802JP80

10×100μl

Fetal Bovine Serum Origin South America Gold胎牛血清(南美特级)

40130JP76

500ml

 

HB220325

 

Q萤光素酶检测能用荧光显微镜吗?

A不能。 需要带生物化学发光模块的仪器, 全波长 350-700 nm 检测。 GloMaxTM20/20单管检测Biotex HTX  多功能酶标仪配备自动进样器

Q细胞裂解之后的裂解液能否在-80℃保存?

A可保存在-80℃,基本与蛋白的保存方法类似。裂解后的样本可在 -80 ℃保存半年, -20 ℃保存一个月。

Q荧光信号值太高该如何进行调整?

A将裂解的样品进行稀释,或在转染实验后,减少细胞的孵育时间。

Q应该选择单报告基因检测还是双报告基因检测?

辉光型萤火虫荧光素酶报告基因检测试剂盒|Firefly Glo Luciferase Reporter Gene Assay KitA:

[1] Zhou Z, Zheng X, Mei X, et al. Hsa_circ_0080229 upregulates the expression of murine double minute-2 (MDM2) and promotes glioma tumorigenesis and invasion via the miR-1827 sponging mechanism. Ann Transl Med. 2021;9(9):762. doi:10.21037/atm-20-7123(IF:3.932)

萤火虫萤光素酶(Firefly luciferase)是一种分子量约为61kDa的蛋白,在ATP、镁离子和氧气存在的条件下,能够催化萤光素(luciferin)氧化成oxyluciferin,在luciferin氧化的过程中会发出波长为560 nm左右的生物萤光,该萤光可通过化学发光仪进行测定。检测原理如图所示:

辉光型萤火虫荧光素酶报告基因检测试剂盒|Firefly Glo Luciferase Reporter Gene Assay Kit 

1:萤火虫萤光素酶检测原理图

Firefly Glo Luciferase Reporter Gene Assay kit是一种辉光型萤火虫萤光素酶报告基因检测试剂盒,具有高灵敏度和发光信号稳定的特点,可以满足高通量检测萤光素酶在哺乳动物细胞中的表达。

相对于闪光型Firefly Luciferase Reporter Gene Aassy Kit(Cat#.11401),本品具有以下优点:1)发光信号更稳定性,为实验设计提供了更大的灵活性。2)采用加样-混匀-检测的操作方法,无需依赖自动进样器,并且无需弃培养液、离心等步骤,大大的简化了实验流程。3)无明显刺激性气味。

本试剂盒可用于多种常用细胞培养液:RPMI 1640、DMEM 、MEM-α、F12、DMEM/F12等,其半衰期均为2h左右(22℃),满足绝大多数高通量实验需求。

 

产品组分

组分编号

组分名称

产品编号/规格

11404JP60

(100 T)

11404JP80

(1000 T)

11404-A

辉光型萤火虫萤光素酶缓冲液

10 ml

100 ml

11404-B

辉光型萤火虫萤光素酶底物

1 vial

1 vial

 

运输与保存方式

干冰运输。未拆封试剂盒-20℃保存,有效期1年。

溶解分装后的辉光型萤火虫萤光素酶底物于-70℃避光保存1年,或-20℃短期保存不超过1个月。

 

使用说明

1.需自备的材料

/多道移液器、不透光细胞培养白板、化学发光仪或带化学发光检测模块的酶标仪。

2.检测试剂准备

首次使用时将辉光型萤火虫萤光素酶缓冲液一次性全部倒入辉光型萤火虫萤光素酶底物瓶中,充分混匀后按使用需求分装,建议-70℃长期保存或-20℃保存不超过一个月。分装冻存后的检测试剂,后续每次实验前需平衡至室温。

辉光型萤火虫萤光素酶缓冲液可以室温或水浴融化,但温度不能超过25℃。

3.操作步骤

1)从细胞培养箱中取出含哺乳动物细胞的培养板,放置5-15 min,平衡至室温。

2)加检测试剂:加入与待测细胞培养液等体积并平衡至室温的检测试剂(例如,96孔板通常加入100 μl培养液,相应加入100 μl检测试剂;384孔板通常加入30 μl培养液,相应加入30 μl检测试剂)。

3)振荡混匀:为了使得细胞裂解充分,建议在水平摇床上室温混匀5-10 min(注:不要用移液器吹吸混匀,产生的气泡会影响发光检测读数。混匀时间可根据细胞量进行适当调整,以确保细胞充分裂解,得到稳定的发光检测结果)。

4)检测:在化学发光检测仪或带化学发光模块的多功能酶标仪上检测发光信号,加入检测试剂后2 h内完成检测。

 

注意事项

1)反应温度:酶促反应对温度较为敏感,加样检测前务必将检测试剂以及细胞培养液平衡至室温20-25℃)

2)检测仪器:能检测化学发光的仪器都适用,但由于不同仪器的设置和灵敏度不同,测得的光信号值也会不同。

3)检测板:为防止孔间干扰,推荐使用不透光细胞培养白板。

4)检测设置:Luminescence,350-700 nm,建议读板时间设为0.5-1 sec。

5)发光信号会受到检测环境如培养基组分、温度等影响,应确保同组内不同样本检测条件一致。

6)多个细胞培养板检测时,请尽量确保每板加入检测溶液后孵育时间一致,以获得最佳的检测结果。

7)为了您的安全和健康,请穿实验服并戴一次性手套。

 

相关产品

产品名称

货号

规格

Luciferase Reporter Gene Assay Kit 萤火虫萤光素酶报告基因检测试剂盒

11401JP60/76/80

100/500/1000T

Dual Luciferase Reporter Gene Assay Kit 双萤光素酶报告基因检测试剂盒HOT

11402JP60/80

100/1000T

Dual Glo Luciferase Reporter Gene Assay Kit 辉光型双萤光素酶报告基因检测试剂盒HOT

11405JP60/80

100/1000T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc萤光素酶报告基因质粒阳性对照

11556JP03

1μg

Luciferase Reporter Plasmid negative control (萤光素酶报告基因质粒阴性对照)

11555JP03

1μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾萤光素酶报告基因质粒)

11558JP03

1μg

Hieff Clone® Plus One Step Cloning Kit 一步法快速克隆试剂盒

10911JP20

20T

2×Hieff Canace® Gold PCR Master Mix高保真酶预混液

10149JP08

5ml

DH5α Chemically Competent Cell DH5α化学感受态细胞

11802JP80

10×100μl

Fetal Bovine Serum Origin South America Gold胎牛血清(南美特级)

40130JP76

500ml

 

HB220325

 

Q萤光素酶检测能用荧光显微镜吗?

A不能。 需要带生物化学发光模块的仪器, 全波长 350-700 nm 检测。 GloMaxTM20/20单管检测Biotex HTX  多功能酶标仪配备自动进样器

Q细胞裂解之后的裂解液能否在-80℃保存?

A可保存在-80℃,基本与蛋白的保存方法类似。裂解后的样本可在 -80 ℃保存半年, -20 ℃保存一个月。

Q荧光信号值太高该如何进行调整?

A将裂解的样品进行稀释,或在转染实验后,减少细胞的孵育时间。

Q应该选择单报告基因检测还是双报告基因检测?

辉光型萤火虫荧光素酶报告基因检测试剂盒|Firefly Glo Luciferase Reporter Gene Assay KitA:

[1] Zhou Z, Zheng X, Mei X, et al. Hsa_circ_0080229 upregulates the expression of murine double minute-2 (MDM2) and promotes glioma tumorigenesis and invasion via the miR-1827 sponging mechanism. Ann Transl Med. 2021;9(9):762. doi:10.21037/atm-20-7123(IF:3.932)

高斯萤光素酶报告基因细胞裂解液(RG135M)

高斯萤光素酶报告基因细胞裂解液

产品编号: RG135M

产品包装:100ml
选择包装

10ml 100ml

说明书下载

268.00 10

价格: ¥ 268.00

产品简介
使用说明
产品文件
相关产品
相关论文
产品问答
产品编号 产品名称 产品包装 产品价格
RG135S 高斯萤光素酶报告基因细胞裂解液 10ml 48.00元
RG135M 高斯萤光素酶报告基因细胞裂解液 100ml 268.00元

碧云天生产的高斯萤光素酶报告基因细胞裂解液(Gaussia Luciferase Reporter Gene Assay Cell Lysis Buffer),也称高斯萤光素酶检测细胞裂解液(Gaussia Luciferase Assay Cell Lysis Buffer)。本产品裂解后的细胞样品,主要用于高斯萤光素酶报告基因检测试剂盒(RG021)和Gaussia-Lumi™高斯萤光素酶报告基因检测试剂盒(RG072)的检测。本产品制备的样品不适合用于萤火虫萤光素酶报告基因或海肾萤光素酶报告基因的检测。

使用高斯萤光素酶报告基因检测试剂盒(RG021)时,如果需要更多的高斯萤光素酶报告基因细胞裂解液,可以使用本产品。使用Gaussia-Lumi™高斯萤光素酶报告基因检测试剂盒(RG072)时,如果希望用于检测细胞裂解样品,也可以使用本产品。

包装清单:
产品编号 产品名称 包装
RG135S 高斯萤光素酶报告基因细胞裂解液 10ml
RG135M 高斯萤光素酶报告基因细胞裂解液 100ml
说明书 1份
保存条件:

-20℃保存,一年有效。

注意事项:

本产品裂解后的样品不适合直接用于萤火虫萤光素酶报告基因或海肾萤光素酶报告基因的检测。

本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。

为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:
1. 细胞的准备:
接种细胞,同时设置不含细胞的培养液孔作为阴性对照,按照细胞培养的常规方法培养细胞。如有需要,可用质粒转染细胞或用病毒感染细胞,或加入药物处理细胞。根据具体情况,继续培养16-72小时。
2. 裂解液的准备:
融解高斯萤光素酶报告基因细胞裂解液。
3. 细胞裂解液的制备:
去除细胞培养液,用PBS洗涤1次,每孔加入高斯萤光素酶报告基因细胞裂解液(96孔板每孔加入100μl,48孔、24孔、12孔或6孔板,每孔酌情加入约100-500μl裂解液),在摇床上以中等速度摇动裂解15分钟。在光学显微镜下检查细胞是否完全溶解,如果溶解不完全,继续摇动裂解15分钟。后续就可以使用高斯萤光素酶报告基因检测试剂盒(RG021)或Gaussia-Lumi™高斯萤光素酶报告基因检测试剂盒(RG072)进行报告基因的检测了。如果不能立即检测,可以将裂解液样品存放于-20℃,至少可保存一个月。

相关产品:

产品编号 产品名称 包装
RG021 高斯萤光素酶报告基因检测试剂盒 100/1000次
RG072 Gaussia-Lumi™高斯萤光素酶报告基因检测试剂盒 100/1000次
RG135 高斯萤光素酶报告基因细胞裂解液 10/100ml
D2098 pGLuc (报告基因质粒) 1/100µg
D2100 pGLuc-Dura (报告基因质粒) 1/100µg
D2103 pGLuc-TA (报告基因质粒) 1/100µg
D2104 pGLuc-Dura-TA (报告基因质粒) 1/100µg
D2107 pGLuc-Dura-miR (报告基因质粒) 1/100µg
D2114 pARE-GLuc-Dura (报告基因质粒) 1/100µg
D2181 pISRE-TA-GLuc-Dura (报告基因质粒) 1/100µg
D2209 pNFκB-TA-GLuc-Dura (报告基因质粒) 1/100µg
D2225 pp53-TA-GLuc-Dura (报告基因质粒) 1/100µg
D2261 pSTAT3-TA-GLuc-Dura (报告基因质粒) 1/100µg
D2204 pNFκB-GLuc-Dura (报告基因质粒) 1/100µg
D2764 pGLuc-Dura-SV40-N (报告基因质粒) 1/100µg
D2770 pGLuc-Dura-SV40-C (报告基因质粒) 1/100µg
FCP966 BeyoGold™全黑96孔细胞培养板(平底带盖, 独立包装) 80个/盒,320个/箱
FCP968 BeyoGold™全白96孔细胞培养板(平底带盖, 独立包装) 80个/盒,320个/箱
FCP963 BeyoGold™白色透明底96孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP965 BeyoGold™黑色透明底96孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP981 BeyoGold™ 384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP983 BeyoGold™全白384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP985 BeyoGold™全黑384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP986 BeyoGold™白色透明底384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱
FCP987 BeyoGold™黑色透明底384孔细胞培养板(平底带盖, 独立包装) 8个/盒,48个/箱

高斯萤光素酶报告基因细胞裂解液(RG135M)
高斯萤光素酶报告基因细胞裂解液(RG135M)

物质安全数据单

下载

高斯萤光素酶报告基因细胞裂解液(RG135M)
质检证书
输入批号搜寻COA

搜索

相关产品请点击如下按钮:
报告基因相关

使用本产品的文献:

辉光型双荧光素酶报告基因检测试剂盒|Dual Glo Luciferase Reporter Gene Assay Kit

辉光型双荧光素酶报告基因检测试剂盒|Dual Glo Luciferase Reporter Gene Assay Kit

产品说明书

FAQ

COA

已发表文献

萤火虫萤光素酶(Firefly luciferase)是一种分子量约为61 kDa的蛋白,在ATP、镁离子和氧气存在的条件下,能够催化萤光素(luciferin)氧化成oxyluciferin,在氧化的过程中会发出波长为560 nm左右的生物萤光。海肾萤光素酶(Renilla luciferase)是一种分子量约为36 kDa的蛋白,在氧气存在的条件下,可以催化腔肠素coelenterazine)氧化成coelenteramide,在氧化的过程中会发出波长为480nm左右的生物萤光。两种生物萤光都可通过化学发光仪进行测定。检测原理如图所示:

辉光型双荧光素酶报告基因检测试剂盒|Dual Glo Luciferase Reporter Gene Assay Kit 

1:萤火虫和海肾萤光素酶检测原理图

Dual Glo Luciferase Reporter Gene Assay Kit是一种辉光型双萤光素酶报告基因检测试剂盒,具有高灵敏度和发光信号稳定的特点。本试剂盒中含有高纯度的萤火虫萤光素和腔肠素,在同一个样品中先以萤火虫萤光素为底物检测萤火虫萤光素酶,后淬灭萤火虫萤光素酶的萤光信号,并同时以腔肠素为底物检测海肾萤光素酶,实现双萤光素酶报告基因检测。海肾萤光素酶作为内参,消除了因孔间细胞数量、转染效率不同等造成的影响,使得检测结果的准确性更高。

相对于闪光型Dual Luciferase Reporter Gene Assay Kit(Cat NO.11402),本品具有以下优点:1)发光信号更稳定性,为实验设计提供了更大的灵活性。2)更符合高通量检测,无需依赖自动进样器,并且无需弃培养液、离心等步骤,大大的简化了实验流程。3)无明显刺激性气味。本试剂盒可用于多种常用细胞培养液:RPMI 1640、DMEM 、MEM-α、F12、DMEM/F12等,其半衰期均为2h左右(22℃),满足绝大多数高通量实验需求。

 

产品组分

组分编号

组分名称

产品编号/规格

11405JP60(100 T)

11405JP80(1000 T)

11405-A

D-辉光型萤火虫萤光素酶缓冲液

10 mL

100 mL

11405-B

D-辉光型萤火虫萤光素酶底物

1 vial

1 viaL

11405-C

D-辉光型海肾萤光素酶缓冲液

10 mL

100 mL

11405-D

D-辉光型海肾萤光素酶底物(100×)

100 μL

1 mL

 

运输与保存方式

干冰运输。未拆封试剂盒-20℃保存,有效期1年。

溶解分装后的D-辉光型萤火虫和海肾萤光素酶底物于-70℃避光保存1年,或-20℃短期保存不超过1个月。

 

使用说明

1.需自备的材料

/多道移液器;不透光细胞培养白板;化学发光仪或带化学发光检测模块的酶标仪。

2.检测试剂准备

1)萤火虫萤光素酶检测试剂:首次使用时将D-辉光型萤火虫萤光素酶缓冲液一次性全部倒入D-辉光型萤火虫萤光素酶底物瓶中,充分混匀直至底物完全溶解。按使用需求分装,建议-70℃长期保存或-20℃保存不超过一个月。

2)海肾萤光素酶检测试剂:根据实际使用量,以100:1的比例将适量的D-辉光型海肾萤光素酶缓冲液与D-辉光型海肾萤光素酶底物(100×) 混匀,室温避光备用(例如:如果需要100 mL缓冲液,则需要加入1 mL的底物),建议现配现用。

注:1)两种缓冲液都可以4℃,室温或水浴融化,但温度不能超过25℃。

2)D-辉光型海肾萤光素酶底物(100×),每次开盖前需进行短暂低速离心。

3.操作步骤

1)从细胞培养箱中取出含哺乳动物细胞的培养板,放置5-15 min,平衡至室温。

2)萤火虫萤光素酶活性检测:

①加入与待测细胞培养液等体积并平衡至室温的萤火虫萤光素酶检测试剂(例如,96孔板建议加入80 μl培养液,相应加入80 μl检测试剂;384孔板通常加入20 μl培养液,相应加入20 μl检测试剂)。

②在水平摇床上室温混匀至少10 min。(注:不要用移液器吹吸混匀,产生的气泡会影响发光检测读数。)

③在化学发光检测仪或带化学发光模块的多功能酶标仪上检测萤火虫萤光素酶发光信号,加入检测试剂后2 h内完成检测。

3)海肾萤光素酶活性检测:

①加入平衡至室温的海肾萤光素酶检测试剂,加样体积与初始细胞培养液体积相同并充分混匀。(例如,96孔板建议加入80 μl培养液,相应加入80 μl检测试剂;384孔板通常加入20 μl培养液,相应加入20 μl检测试剂)。

在水平摇床上室温混匀至少10 min。

③在化学发光检测仪或带化学发光模块的多功能酶标仪上检测海肾萤光素酶发光信号,加入检测试剂后2 h内完成检测。海肾萤光素酶在微孔板上的检测顺序应与萤火虫萤光素酶的检测顺序相同。

4)数据分析:

①实验设计:根据不同实验目的,在每个培养板中都应设置空白对照组,实验组和对照组。

a.空白对照组

背景F:未转染细胞+萤火虫萤光素酶检测试剂。

背景R:未转染细胞+萤火虫萤光素酶检测试剂+海肾萤光素酶检测试剂。

注:用于空白对照组样品量必须与实验样品量相同,并且包含与实验样品相同的培养基/血清组合。

b.实验组:转染细胞经实验化合物处理(即实验组F和实验组R)。

c.对照组:转染细胞不经处理,用以标准化结果(即对照组F和对照组R)。

②计算结果:实验组比值=(实验组F-背景F)/(实验组R-背景R),对照组比值=(对照组F-背景F)/(对照组R-背景R)。

表达倍数=实验组比值/对照组比值。

 

注意事项

1)反应温度:酶促反应对温度较为敏感,加样检测前务必将检测试剂以及细胞培养液平衡至室温(20-25℃)。

2)检测仪器:能检测化学发光的仪器都适用,但由于不同仪器的设置和灵敏度不同,测得的光信号值也会不同。

3)检测板:为防止孔间干扰,推荐使用不透光细胞培养白板。

4)检测设置:Luminescence,350-700 nm,建议读板时间设为0.5-1 sec。

5)发光信号会受到检测环境如培养基组分、温度等影响,应确保同组内不同样本检测条件一致。

6)为了您的安全和健康,请穿实验服并戴一次性手套。

 

相关产品

产品名称

货号

规格

Luciferase Reporter Gene Assay Kit 萤火虫萤光素酶报告基因检测试剂盒

11401JP60/76/80

100/500/1000T

Dual Luciferase Reporter Gene Assay Kit 双萤光素酶报告基因检测试剂盒HOT

11402JP60/80

100/1000T

Firefly Glo Luciferase Reporter Gene Assay kit 辉光型萤火虫萤光素酶报告基因检测试剂盒HOT

11404JP60/80

100/1000T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc萤光素酶报告基因质粒阳性对照

11556JP03

1μg

Luciferase Reporter Plasmid negative control (萤光素酶报告基因质粒阴性对照)

11555JP03

1μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾萤光素酶报告基因质粒)

11558JP03

1μg

Hieff Clone® Plus One Step Cloning Kit 一步法快速克隆试剂盒

10911JP20

20T

2×Hieff Canace® Gold PCR Master Mix高保真酶预混液

10149JP08

5ml

DH5α Chemically Competent Cell DH5α化学感受态细胞

11802JP80

10×100μl

Fetal Bovine Serum Origin South America Gold胎牛血清(南美特级)

40130JP76

500ml

Hieff TransTM Liposomal Transfection Reagent脂质体核酸转染试剂

40802JP03

1ml

 

HB220325

Q:双荧光素酶报告基因检测试剂盒中的两个底物是否需要避光的?

A:这两个底物操作过程中不需要严格避光。保存的时候避光保存,更重要的保存条件是低温, 尤其是腔肠素,推荐-80℃保存。

Q:双荧光素酶报告基因载体共转染时比例该如何进行优化与调整?

A:比例:根据具体实验情况进行调整。建议做预实验:如萤火虫载体与海参载体比例分别用 1:10、1:20、1:50、1:100。萤火虫荧光素酶检测发光值大于海参荧光素酶发光值的比例比较好

Q:萤火虫萤光素酶和海肾萤光素酶的作用及区别?

A:萤火虫萤光素酶Firefly luciferase:主报告基因。海肾萤光素酶  Renilla luciferase  内参报告基因。

 

辉光型双荧光素酶报告基因检测试剂盒|Dual Glo Luciferase Reporter Gene Assay Kit

[1] Yang D, Liu A, Zhang Y, et al. Essential Role of CRIM1 on Endometrial Receptivity in Goat. Int J Mol Sci. 2021;22(10):5323. Published 2021 May 18. doi:10.3390/ijms22105323(IF:5.924)
[2] Shen L, Ji C, Lin J, Yang H. Regulation of circADAMTS6-miR-324-5p-PIK3R3 ceRNA pathway may be a novel mechanism of IL-1β-induced osteoarthritic chondrocytes. J Bone Miner Metab. 2022;40(3):389-401. doi:10.1007/s00774-021-01308-0(IF:2.626)
[3] Chen B, Wang Y, Pei X, Wang S, Zhang H, Peng Y. Cellular Caspase-3 Contributes to EV-A71 2Apro-Mediated Down-Regulation of IFNAR1 at the Translation Level. Virol Sin. 2020;35(1):64-72. doi:10.1007/s12250-019-00151-y(IF:2.467)
[4] Yang J, Liu B, Xu Z, Feng M. Silencing of Circ_0135889 Restrains Proliferation and Tumorigenicity of Human Neuroblastoma Cells [published online ahead of print, 2022 Jun 27]. J Surg Res. 2022;279:135-147. doi:10.1016/j.jss.2022.05.025(IF:2.192)

萤火虫萤光素酶(Firefly luciferase)是一种分子量约为61 kDa的蛋白,在ATP、镁离子和氧气存在的条件下,能够催化萤光素(luciferin)氧化成oxyluciferin,在氧化的过程中会发出波长为560 nm左右的生物萤光。海肾萤光素酶(Renilla luciferase)是一种分子量约为36 kDa的蛋白,在氧气存在的条件下,可以催化腔肠素coelenterazine)氧化成coelenteramide,在氧化的过程中会发出波长为480nm左右的生物萤光。两种生物萤光都可通过化学发光仪进行测定。检测原理如图所示:

辉光型双荧光素酶报告基因检测试剂盒|Dual Glo Luciferase Reporter Gene Assay Kit 

1:萤火虫和海肾萤光素酶检测原理图

Dual Glo Luciferase Reporter Gene Assay Kit是一种辉光型双萤光素酶报告基因检测试剂盒,具有高灵敏度和发光信号稳定的特点。本试剂盒中含有高纯度的萤火虫萤光素和腔肠素,在同一个样品中先以萤火虫萤光素为底物检测萤火虫萤光素酶,后淬灭萤火虫萤光素酶的萤光信号,并同时以腔肠素为底物检测海肾萤光素酶,实现双萤光素酶报告基因检测。海肾萤光素酶作为内参,消除了因孔间细胞数量、转染效率不同等造成的影响,使得检测结果的准确性更高。

相对于闪光型Dual Luciferase Reporter Gene Assay Kit(Cat NO.11402),本品具有以下优点:1)发光信号更稳定性,为实验设计提供了更大的灵活性。2)更符合高通量检测,无需依赖自动进样器,并且无需弃培养液、离心等步骤,大大的简化了实验流程。3)无明显刺激性气味。本试剂盒可用于多种常用细胞培养液:RPMI 1640、DMEM 、MEM-α、F12、DMEM/F12等,其半衰期均为2h左右(22℃),满足绝大多数高通量实验需求。

 

产品组分

组分编号

组分名称

产品编号/规格

11405JP60(100 T)

11405JP80(1000 T)

11405-A

D-辉光型萤火虫萤光素酶缓冲液

10 mL

100 mL

11405-B

D-辉光型萤火虫萤光素酶底物

1 vial

1 viaL

11405-C

D-辉光型海肾萤光素酶缓冲液

10 mL

100 mL

11405-D

D-辉光型海肾萤光素酶底物(100×)

100 μL

1 mL

 

运输与保存方式

干冰运输。未拆封试剂盒-20℃保存,有效期1年。

溶解分装后的D-辉光型萤火虫和海肾萤光素酶底物于-70℃避光保存1年,或-20℃短期保存不超过1个月。

 

使用说明

1.需自备的材料

/多道移液器;不透光细胞培养白板;化学发光仪或带化学发光检测模块的酶标仪。

2.检测试剂准备

1)萤火虫萤光素酶检测试剂:首次使用时将D-辉光型萤火虫萤光素酶缓冲液一次性全部倒入D-辉光型萤火虫萤光素酶底物瓶中,充分混匀直至底物完全溶解。按使用需求分装,建议-70℃长期保存或-20℃保存不超过一个月。

2)海肾萤光素酶检测试剂:根据实际使用量,以100:1的比例将适量的D-辉光型海肾萤光素酶缓冲液与D-辉光型海肾萤光素酶底物(100×) 混匀,室温避光备用(例如:如果需要100 mL缓冲液,则需要加入1 mL的底物),建议现配现用。

注:1)两种缓冲液都可以4℃,室温或水浴融化,但温度不能超过25℃。

2)D-辉光型海肾萤光素酶底物(100×),每次开盖前需进行短暂低速离心。

3.操作步骤

1)从细胞培养箱中取出含哺乳动物细胞的培养板,放置5-15 min,平衡至室温。

2)萤火虫萤光素酶活性检测:

①加入与待测细胞培养液等体积并平衡至室温的萤火虫萤光素酶检测试剂(例如,96孔板建议加入80 μl培养液,相应加入80 μl检测试剂;384孔板通常加入20 μl培养液,相应加入20 μl检测试剂)。

②在水平摇床上室温混匀至少10 min。(注:不要用移液器吹吸混匀,产生的气泡会影响发光检测读数。)

③在化学发光检测仪或带化学发光模块的多功能酶标仪上检测萤火虫萤光素酶发光信号,加入检测试剂后2 h内完成检测。

3)海肾萤光素酶活性检测:

①加入平衡至室温的海肾萤光素酶检测试剂,加样体积与初始细胞培养液体积相同并充分混匀。(例如,96孔板建议加入80 μl培养液,相应加入80 μl检测试剂;384孔板通常加入20 μl培养液,相应加入20 μl检测试剂)。

在水平摇床上室温混匀至少10 min。

③在化学发光检测仪或带化学发光模块的多功能酶标仪上检测海肾萤光素酶发光信号,加入检测试剂后2 h内完成检测。海肾萤光素酶在微孔板上的检测顺序应与萤火虫萤光素酶的检测顺序相同。

4)数据分析:

①实验设计:根据不同实验目的,在每个培养板中都应设置空白对照组,实验组和对照组。

a.空白对照组

背景F:未转染细胞+萤火虫萤光素酶检测试剂。

背景R:未转染细胞+萤火虫萤光素酶检测试剂+海肾萤光素酶检测试剂。

注:用于空白对照组样品量必须与实验样品量相同,并且包含与实验样品相同的培养基/血清组合。

b.实验组:转染细胞经实验化合物处理(即实验组F和实验组R)。

c.对照组:转染细胞不经处理,用以标准化结果(即对照组F和对照组R)。

②计算结果:实验组比值=(实验组F-背景F)/(实验组R-背景R),对照组比值=(对照组F-背景F)/(对照组R-背景R)。

表达倍数=实验组比值/对照组比值。

 

注意事项

1)反应温度:酶促反应对温度较为敏感,加样检测前务必将检测试剂以及细胞培养液平衡至室温(20-25℃)。

2)检测仪器:能检测化学发光的仪器都适用,但由于不同仪器的设置和灵敏度不同,测得的光信号值也会不同。

3)检测板:为防止孔间干扰,推荐使用不透光细胞培养白板。

4)检测设置:Luminescence,350-700 nm,建议读板时间设为0.5-1 sec。

5)发光信号会受到检测环境如培养基组分、温度等影响,应确保同组内不同样本检测条件一致。

6)为了您的安全和健康,请穿实验服并戴一次性手套。

 

相关产品

产品名称

货号

规格

Luciferase Reporter Gene Assay Kit 萤火虫萤光素酶报告基因检测试剂盒

11401JP60/76/80

100/500/1000T

Dual Luciferase Reporter Gene Assay Kit 双萤光素酶报告基因检测试剂盒HOT

11402JP60/80

100/1000T

Firefly Glo Luciferase Reporter Gene Assay kit 辉光型萤火虫萤光素酶报告基因检测试剂盒HOT

11404JP60/80

100/1000T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc萤光素酶报告基因质粒阳性对照

11556JP03

1μg

Luciferase Reporter Plasmid negative control (萤光素酶报告基因质粒阴性对照)

11555JP03

1μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾萤光素酶报告基因质粒)

11558JP03

1μg

Hieff Clone® Plus One Step Cloning Kit 一步法快速克隆试剂盒

10911JP20

20T

2×Hieff Canace® Gold PCR Master Mix高保真酶预混液

10149JP08

5ml

DH5α Chemically Competent Cell DH5α化学感受态细胞

11802JP80

10×100μl

Fetal Bovine Serum Origin South America Gold胎牛血清(南美特级)

40130JP76

500ml

Hieff TransTM Liposomal Transfection Reagent脂质体核酸转染试剂

40802JP03

1ml

 

HB220325

Q:双荧光素酶报告基因检测试剂盒中的两个底物是否需要避光的?

A:这两个底物操作过程中不需要严格避光。保存的时候避光保存,更重要的保存条件是低温, 尤其是腔肠素,推荐-80℃保存。

Q:双荧光素酶报告基因载体共转染时比例该如何进行优化与调整?

A:比例:根据具体实验情况进行调整。建议做预实验:如萤火虫载体与海参载体比例分别用 1:10、1:20、1:50、1:100。萤火虫荧光素酶检测发光值大于海参荧光素酶发光值的比例比较好

Q:萤火虫萤光素酶和海肾萤光素酶的作用及区别?

A:萤火虫萤光素酶Firefly luciferase:主报告基因。海肾萤光素酶  Renilla luciferase  内参报告基因。

 

辉光型双荧光素酶报告基因检测试剂盒|Dual Glo Luciferase Reporter Gene Assay Kit

[1] Yang D, Liu A, Zhang Y, et al. Essential Role of CRIM1 on Endometrial Receptivity in Goat. Int J Mol Sci. 2021;22(10):5323. Published 2021 May 18. doi:10.3390/ijms22105323(IF:5.924)
[2] Shen L, Ji C, Lin J, Yang H. Regulation of circADAMTS6-miR-324-5p-PIK3R3 ceRNA pathway may be a novel mechanism of IL-1β-induced osteoarthritic chondrocytes. J Bone Miner Metab. 2022;40(3):389-401. doi:10.1007/s00774-021-01308-0(IF:2.626)
[3] Chen B, Wang Y, Pei X, Wang S, Zhang H, Peng Y. Cellular Caspase-3 Contributes to EV-A71 2Apro-Mediated Down-Regulation of IFNAR1 at the Translation Level. Virol Sin. 2020;35(1):64-72. doi:10.1007/s12250-019-00151-y(IF:2.467)
[4] Yang J, Liu B, Xu Z, Feng M. Silencing of Circ_0135889 Restrains Proliferation and Tumorigenicity of Human Neuroblastoma Cells [published online ahead of print, 2022 Jun 27]. J Surg Res. 2022;279:135-147. doi:10.1016/j.jss.2022.05.025(IF:2.192)

MEF3-GFP报告基因质粒(MEF3 GFP Reporter Plasmid)

MEF3-GFP报告基因质粒(MEF3 GFP Reporter Plasmid)

产品说明书

FAQ

COA

已发表文献

 

 MEF3-GFP报告基因是金畔生物自主研发的用于检测MEF3(myocyte enhancer factor 3)转录活性水平为目的的报告基因。MEF3-GFP报告基因主要应用于Myocyte Enhancer Factor 3信号通路、药物研究、相关基因的调控和功能的研究。

pGMMEF3-GFP是金畔生物改造后的哺乳动物真核表达载体,在其多克隆位点插入了多个MEF3结合位点,可以高效地检测MEF3的激活水平。由于载体采用了GFP作为报告基因,更便于后续的检测。同时,对载体中预测出的其它转录因子以外的结合位点进行了适当的突变,增加了质粒的转录因子结合特异性。另外,由于质粒体积减小,使得MEF3-GFP报告基因更易于转染。

质粒图谱

MEF3-GFP报告基因质粒(MEF3 GFP Reporter Plasmid) 

 

质粒元件信息

MEF3 response element (MEF3)

32-88

Minimal TA promoter (pTA)

117-139

GFP reporter gene

181-900

SV40 late poly(A) signal

935-1156

SV40 early promoter

1204-1621

Synthetic neomycin phosphotransferase(Neor) coding region

1647-2440

Synthetic poly(A) signal

2466-2513

Synthetic Beta-lactamase(Ampr) coding region

3629-4488

Synthetic poly(A) signal/transcriptional pause site

4594-4747

运输与保存方法

冰袋运输。-20℃保存。有效期1年。

使用说明

pGMMEF3-GFP可以采用常规转染方法转染哺乳动物细胞。

注意事项

1)本质粒未经金畔生物允许不得用于任何商业用途,也不得移交给订货人实验室以外的任何人或单位。

2)为了您的健康,实验操作时请穿实验服和带一次性手套。

3)本产品仅作科研用途!

4)不提供该质粒序列信息。

参考文献
[1] Xue L, et al. Organization and functional analysis of the 5' flanking regions of myostatin-1 and 2 genes from Larimichthys crocea. DNA Cell Biol. 31(5):845-55(2012).[2] Ling F, et al. Identification of novel transcripts from the porcine MYL1 gene and initial characterization of its promoters. Mol Cell Biochem. 343(1-2):239-47(2010).
[3] Parmacek MS et al. A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle. Mol Cell Biol. 14(3):1870-85(1994).

相关产品

产品名称

货号

规格

Dual Luciferase Reporter Gene Assay Kit 双荧光素酶报告基因检测试剂盒HOT

11402JP60/80

100 T/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100 T/500 T/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1 μg

HB210825

 

 

MEF3-GFP报告基因质粒(MEF3 GFP Reporter Plasmid)

暂无内容

MEF3-GFP报告基因质粒(MEF3 GFP Reporter Plasmid)

暂无内容

 

 MEF3-GFP报告基因是金畔生物自主研发的用于检测MEF3(myocyte enhancer factor 3)转录活性水平为目的的报告基因。MEF3-GFP报告基因主要应用于Myocyte Enhancer Factor 3信号通路、药物研究、相关基因的调控和功能的研究。

pGMMEF3-GFP是金畔生物改造后的哺乳动物真核表达载体,在其多克隆位点插入了多个MEF3结合位点,可以高效地检测MEF3的激活水平。由于载体采用了GFP作为报告基因,更便于后续的检测。同时,对载体中预测出的其它转录因子以外的结合位点进行了适当的突变,增加了质粒的转录因子结合特异性。另外,由于质粒体积减小,使得MEF3-GFP报告基因更易于转染。

质粒图谱

MEF3-GFP报告基因质粒(MEF3 GFP Reporter Plasmid) 

 

质粒元件信息

MEF3 response element (MEF3)

32-88

Minimal TA promoter (pTA)

117-139

GFP reporter gene

181-900

SV40 late poly(A) signal

935-1156

SV40 early promoter

1204-1621

Synthetic neomycin phosphotransferase(Neor) coding region

1647-2440

Synthetic poly(A) signal

2466-2513

Synthetic Beta-lactamase(Ampr) coding region

3629-4488

Synthetic poly(A) signal/transcriptional pause site

4594-4747

运输与保存方法

冰袋运输。-20℃保存。有效期1年。

使用说明

pGMMEF3-GFP可以采用常规转染方法转染哺乳动物细胞。

注意事项

1)本质粒未经金畔生物允许不得用于任何商业用途,也不得移交给订货人实验室以外的任何人或单位。

2)为了您的健康,实验操作时请穿实验服和带一次性手套。

3)本产品仅作科研用途!

4)不提供该质粒序列信息。

参考文献
[1] Xue L, et al. Organization and functional analysis of the 5' flanking regions of myostatin-1 and 2 genes from Larimichthys crocea. DNA Cell Biol. 31(5):845-55(2012).[2] Ling F, et al. Identification of novel transcripts from the porcine MYL1 gene and initial characterization of its promoters. Mol Cell Biochem. 343(1-2):239-47(2010).
[3] Parmacek MS et al. A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle. Mol Cell Biol. 14(3):1870-85(1994).

相关产品

产品名称

货号

规格

Dual Luciferase Reporter Gene Assay Kit 双荧光素酶报告基因检测试剂盒HOT

11402JP60/80

100 T/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100 T/500 T/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1 μg

HB210825

 

 

MEF3-GFP报告基因质粒(MEF3 GFP Reporter Plasmid)

暂无内容

MEF3-GFP报告基因质粒(MEF3 GFP Reporter Plasmid)

暂无内容

MR-GFP报告基因质粒(MR(Mineralocorticoid Receptor) GFP Reporter Plasmid)

MR-GFP报告基因质粒(MR(Mineralocorticoid Receptor) GFP Reporter Plasmid)

产品说明书

FAQ

COA

已发表文献

 

MR-GFP报告基因是翌圣生物自主研发的用于检测MR转录活性水平为目的的报告基因。MR (mineralocorticoid receptor)是核受体家族的一员,通过激素信号的传递和激活醛固醇靶基因的表达,调节多种生理病理反应。

MR-GFP报告基因主要应用于Mineralocorticoid Receptor信号通路、药物研究、相关基因的调控和功能的研究。

pGMMR-GFP是金畔生物改造后的哺乳动物真核表达载体,在其多克隆位点插入了多个MR结合位点,可以高效地检测MR的激活水平。由于载体采用了GFP作为报告基因,更便于后续的检测。同时,对载体中预测出的其它转录因子以外的结合位点进行了适当的突变,增加了质粒的转录因子结合特异性。另外,由于质粒体积减小,使得MR-GFP报告基因更易于转染。

质粒图谱

MR-GFP报告基因质粒(MR(Mineralocorticoid Receptor) GFP Reporter Plasmid)

 

质粒元件信息

MR response element (MR)

32-91

Minimal TA promoter (pTA)

120-142

GFP reporter gene

184-903

SV40 late poly(A) signal

938-1159

SV40 early promoter

1207-1624

Synthetic neomycin phosphotransferase(Neor) coding region

1650-2443

Synthetic poly(A) signal

2469-2516

Synthetic Beta-lactamase(Ampr) coding region

3632-4491

Synthetic poly(A) signal/transcriptional pause site

4597-4750

运输与保存方法

冰袋运输。-20℃保存。有效期1年。

使用说明

pGMMR-GFP可以采用常规转染方法转染哺乳动物细胞。

注意事项

1)本质粒未经金畔生物允许不得用于任何商业用途,也不得移交给订货人实验室以外的任何人或单位。

2)为了您的健康,实验操作时请穿实验服和带一次性手套。

3)本产品仅作科研用途!

4)不提供该质粒序列信息。

参考文献
[1] Lee HA, et al. Histone deacetylase inhibition attenuates transcriptional activity of mineralocorticoid receptor through its acetylation and prevents development of hypertension. Circ Res. 112(7):1004-12(2013).
[2] Kosaka H, et al. The L-, N-, and T-type triple calcium channel blocker benidipine acts as an antagonist of mineralocorticoid receptor, a member of nuclear receptor family. Eur J Pharmacol. 635(1-3):49-55(2010).

相关产品

产品名称

货号

规格

Dual Luciferase Reporter Gene Assay Kit 双荧光素酶报告基因检测试剂盒HOT

11402JP60/80

100 T/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100 T/500 T/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1 μg

HB210825

 

MR-GFP报告基因质粒(MR(Mineralocorticoid Receptor) GFP Reporter Plasmid)

暂无内容

MR-GFP报告基因质粒(MR(Mineralocorticoid Receptor) GFP Reporter Plasmid)

暂无内容

 

MR-GFP报告基因是翌圣生物自主研发的用于检测MR转录活性水平为目的的报告基因。MR (mineralocorticoid receptor)是核受体家族的一员,通过激素信号的传递和激活醛固醇靶基因的表达,调节多种生理病理反应。

MR-GFP报告基因主要应用于Mineralocorticoid Receptor信号通路、药物研究、相关基因的调控和功能的研究。

pGMMR-GFP是金畔生物改造后的哺乳动物真核表达载体,在其多克隆位点插入了多个MR结合位点,可以高效地检测MR的激活水平。由于载体采用了GFP作为报告基因,更便于后续的检测。同时,对载体中预测出的其它转录因子以外的结合位点进行了适当的突变,增加了质粒的转录因子结合特异性。另外,由于质粒体积减小,使得MR-GFP报告基因更易于转染。

质粒图谱

MR-GFP报告基因质粒(MR(Mineralocorticoid Receptor) GFP Reporter Plasmid)

 

质粒元件信息

MR response element (MR)

32-91

Minimal TA promoter (pTA)

120-142

GFP reporter gene

184-903

SV40 late poly(A) signal

938-1159

SV40 early promoter

1207-1624

Synthetic neomycin phosphotransferase(Neor) coding region

1650-2443

Synthetic poly(A) signal

2469-2516

Synthetic Beta-lactamase(Ampr) coding region

3632-4491

Synthetic poly(A) signal/transcriptional pause site

4597-4750

运输与保存方法

冰袋运输。-20℃保存。有效期1年。

使用说明

pGMMR-GFP可以采用常规转染方法转染哺乳动物细胞。

注意事项

1)本质粒未经金畔生物允许不得用于任何商业用途,也不得移交给订货人实验室以外的任何人或单位。

2)为了您的健康,实验操作时请穿实验服和带一次性手套。

3)本产品仅作科研用途!

4)不提供该质粒序列信息。

参考文献
[1] Lee HA, et al. Histone deacetylase inhibition attenuates transcriptional activity of mineralocorticoid receptor through its acetylation and prevents development of hypertension. Circ Res. 112(7):1004-12(2013).
[2] Kosaka H, et al. The L-, N-, and T-type triple calcium channel blocker benidipine acts as an antagonist of mineralocorticoid receptor, a member of nuclear receptor family. Eur J Pharmacol. 635(1-3):49-55(2010).

相关产品

产品名称

货号

规格

Dual Luciferase Reporter Gene Assay Kit 双荧光素酶报告基因检测试剂盒HOT

11402JP60/80

100 T/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100 T/500 T/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1 μg

HB210825

 

MR-GFP报告基因质粒(MR(Mineralocorticoid Receptor) GFP Reporter Plasmid)

暂无内容

MR-GFP报告基因质粒(MR(Mineralocorticoid Receptor) GFP Reporter Plasmid)

暂无内容

NRSF-GFP报告基因质粒(NRSF(Neuron-Restrictive Silencer Factor) GFP Reporter Plasmid)

NRSF-GFP报告基因质粒(NRSF(Neuron-Restrictive Silencer Factor) GFP Reporter Plasmid)

产品说明书

FAQ

COA

已发表文献

 

NRSF-GFP报告基因是翌圣生物自主研发的用于检测NRSF转录活性水平为目的的报告基因。NRSF (Neuron-Restrictive Silencer Factor) 又被称作RJPT (RE1-Silencing Transcription factor) 主要是在非神经元细胞中阻遏某些神经性基因的表达。随着研究的深入,发现NRSF-RJPT在神经发育过程中有着复杂的调控功能。

NRSF-GFP报告基因主要应用于Neuron Silencing Factor信号通路、药物研究、相关基因的调控和功能的研究。

pGMNRSF-GFP是金畔生物改造后的哺乳动物真核表达载体,在其多克隆位点插入了多个NRSF结合位点,可以高效地检测NRSF的激活水平。由于载体采用了GFP作为报告基因,更便于后续的检测。同时,对载体中预测出的其它转录因子以外的结合位点进行了适当的突变,增加了质粒的转录因子结合特异性。另外,由于质粒体积减小,使得NRSF-GFP报告基因更易于转染。

质粒图谱

NRSF-GFP报告基因质粒(NRSF(Neuron-Restrictive Silencer Factor) GFP Reporter Plasmid) 

质粒元件信息

NRSF response element (NRSF)

32-94

Minimal TA promoter (pTA)

123-145

GFP reporter gene

187-906

SV40 late poly(A) signal

941-1162

SV40 early promoter

1210-1627

Synthetic neomycin phosphotransferase(Neor) coding region

1653-2446

Synthetic poly(A) signal

2472-2519

Synthetic Beta-lactamase(Ampr) coding region

3635-4494

Synthetic poly(A) signal/transcriptional pause site

4600-4753

运输与保存方法

冰袋运输。-20℃保存。有效期1年。

使用说明

pGMNRSF-GFP可以采用常规转染方法转染哺乳动物细胞。

注意事项

1)本质粒未经金畔生物允许不得用于任何商业用途,也不得移交给订货人实验室以外的任何人或单位。

2)为了您的健康,实验操作时请穿实验服和带一次性手套。

3)本产品仅作科研用途!

4)不提供该质粒序列信息。

参考文献
[1] Gentile MT, et al. Tryptophan hydroxylase 2 (TPH2) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity.J Neurochem.123(6):963-70(2012).
[2] Xie X, et al. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature. 434(7031):338-45(2005).

相关产品

产品名称

货号

规格

Dual Luciferase Reporter Gene Assay Kit 双荧光素酶报告基因检测试剂盒HOT

11402JP60/80

100 T/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100 T/500 T/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1 μg

HB210825

NRSF-GFP报告基因质粒(NRSF(Neuron-Restrictive Silencer Factor) GFP Reporter Plasmid)

暂无内容

NRSF-GFP报告基因质粒(NRSF(Neuron-Restrictive Silencer Factor) GFP Reporter Plasmid)

暂无内容

 

NRSF-GFP报告基因是翌圣生物自主研发的用于检测NRSF转录活性水平为目的的报告基因。NRSF (Neuron-Restrictive Silencer Factor) 又被称作RJPT (RE1-Silencing Transcription factor) 主要是在非神经元细胞中阻遏某些神经性基因的表达。随着研究的深入,发现NRSF-RJPT在神经发育过程中有着复杂的调控功能。

NRSF-GFP报告基因主要应用于Neuron Silencing Factor信号通路、药物研究、相关基因的调控和功能的研究。

pGMNRSF-GFP是金畔生物改造后的哺乳动物真核表达载体,在其多克隆位点插入了多个NRSF结合位点,可以高效地检测NRSF的激活水平。由于载体采用了GFP作为报告基因,更便于后续的检测。同时,对载体中预测出的其它转录因子以外的结合位点进行了适当的突变,增加了质粒的转录因子结合特异性。另外,由于质粒体积减小,使得NRSF-GFP报告基因更易于转染。

质粒图谱

NRSF-GFP报告基因质粒(NRSF(Neuron-Restrictive Silencer Factor) GFP Reporter Plasmid) 

质粒元件信息

NRSF response element (NRSF)

32-94

Minimal TA promoter (pTA)

123-145

GFP reporter gene

187-906

SV40 late poly(A) signal

941-1162

SV40 early promoter

1210-1627

Synthetic neomycin phosphotransferase(Neor) coding region

1653-2446

Synthetic poly(A) signal

2472-2519

Synthetic Beta-lactamase(Ampr) coding region

3635-4494

Synthetic poly(A) signal/transcriptional pause site

4600-4753

运输与保存方法

冰袋运输。-20℃保存。有效期1年。

使用说明

pGMNRSF-GFP可以采用常规转染方法转染哺乳动物细胞。

注意事项

1)本质粒未经金畔生物允许不得用于任何商业用途,也不得移交给订货人实验室以外的任何人或单位。

2)为了您的健康,实验操作时请穿实验服和带一次性手套。

3)本产品仅作科研用途!

4)不提供该质粒序列信息。

参考文献
[1] Gentile MT, et al. Tryptophan hydroxylase 2 (TPH2) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity.J Neurochem.123(6):963-70(2012).
[2] Xie X, et al. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature. 434(7031):338-45(2005).

相关产品

产品名称

货号

规格

Dual Luciferase Reporter Gene Assay Kit 双荧光素酶报告基因检测试剂盒HOT

11402JP60/80

100 T/1000 T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100 T/500 T/1000 T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1 μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1 μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1 μg

HB210825

NRSF-GFP报告基因质粒(NRSF(Neuron-Restrictive Silencer Factor) GFP Reporter Plasmid)

暂无内容

NRSF-GFP报告基因质粒(NRSF(Neuron-Restrictive Silencer Factor) GFP Reporter Plasmid)

暂无内容

PPAR-GFP报告基因质粒(PPAR GFP Reporter Plasmid)

PPAR-GFP报告基因质粒(PPAR GFP Reporter Plasmid)

产品说明书

FAQ

COA

已发表文献

 

PPAR-GFP报告基因是金畔生物自主研发的用于检测PPAR转录活性水平为目的的报告基因。PPAR (Peroxisome proliferator-activated receptor,PPAR) 是控制环境与饮食刺激的关键调节物。其中α受体主要参与肝细胞的氧化过程。β受体则参与了脂肪细胞的分解过程,γ受体与脂肪细胞的生成过程有关。

PPAR-GFP报告基因主要应用于Peroxisome Proliferator-Activated Receptor信号通路、药物研究、相关基因的调控和功能的研究。

pGMPPAR-GFP是金畔生物改造后的哺乳动物真核表达载体,在其多克隆位点插入了多个PPAR结合位点,可以高效地检测PPAR的激活水平。由于载体采用了GFP作为报告基因,更便于后续的检测。同时,对载体中预测出的其它转录因子以外的结合位点进行了适当的突变,增加了质粒的转录因子结合特异性。另外,由于质粒体积减小,使得PPAR-GFP报告基因更易于转染。

质粒图谱

PPAR-GFP报告基因质粒(PPAR GFP Reporter Plasmid)

 

质粒元件信息

PPAR response element (PPAR)

32-103

Minimal TA promoter (pTA)

132-154

GFP reporter gene

196-915

SV40 late poly(A) signal

950-1171

SV40 early promoter

1219-1636

Synthetic neomycin phosphotransferase(Neor) coding region

1662-2455

Synthetic poly(A) signal

2481-2528

Synthetic Beta-lactamase(Ampr) coding region

3644-4503

Synthetic poly(A) signal/transcriptional pause site

4609-4762

运输与保存方法

冰袋运输。-20℃保存。有效期1年。

使用说明

pGMPPAR-GFP可以采用常规转染方法转染哺乳动物细胞。

注意事项

1)本质粒未经金畔生物允许不得用于任何商业用途,也不得移交给订货人实验室以外的任何人或单位。

2)为了您的健康,实验操作时请穿实验服和带一次性手套。

3)本产品仅作科研用途!

4)不提供该质粒序列信息。

参考文献
[1] Ciana P,et al. A novel peroxisome proliferator-activated receptor responsive element-luciferase reporter mouse reveals gender specificity of peroxisome proliferator-activated receptor activity in liver. Mol Endocrinol. 21(2):388-400(2007).

相关产品

产品名称

货号

规格

Dual Luciferase Reporter Gene Assay Kit 双荧光素酶报告基因检测试剂盒HOT

11402JP60/80

100T/1000T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100T/500T/1000T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1μg

HB210329

 

PPAR-GFP报告基因质粒(PPAR GFP Reporter Plasmid)

暂无内容

PPAR-GFP报告基因质粒(PPAR GFP Reporter Plasmid)

暂无内容

 

PPAR-GFP报告基因是金畔生物自主研发的用于检测PPAR转录活性水平为目的的报告基因。PPAR (Peroxisome proliferator-activated receptor,PPAR) 是控制环境与饮食刺激的关键调节物。其中α受体主要参与肝细胞的氧化过程。β受体则参与了脂肪细胞的分解过程,γ受体与脂肪细胞的生成过程有关。

PPAR-GFP报告基因主要应用于Peroxisome Proliferator-Activated Receptor信号通路、药物研究、相关基因的调控和功能的研究。

pGMPPAR-GFP是金畔生物改造后的哺乳动物真核表达载体,在其多克隆位点插入了多个PPAR结合位点,可以高效地检测PPAR的激活水平。由于载体采用了GFP作为报告基因,更便于后续的检测。同时,对载体中预测出的其它转录因子以外的结合位点进行了适当的突变,增加了质粒的转录因子结合特异性。另外,由于质粒体积减小,使得PPAR-GFP报告基因更易于转染。

质粒图谱

PPAR-GFP报告基因质粒(PPAR GFP Reporter Plasmid)

 

质粒元件信息

PPAR response element (PPAR)

32-103

Minimal TA promoter (pTA)

132-154

GFP reporter gene

196-915

SV40 late poly(A) signal

950-1171

SV40 early promoter

1219-1636

Synthetic neomycin phosphotransferase(Neor) coding region

1662-2455

Synthetic poly(A) signal

2481-2528

Synthetic Beta-lactamase(Ampr) coding region

3644-4503

Synthetic poly(A) signal/transcriptional pause site

4609-4762

运输与保存方法

冰袋运输。-20℃保存。有效期1年。

使用说明

pGMPPAR-GFP可以采用常规转染方法转染哺乳动物细胞。

注意事项

1)本质粒未经金畔生物允许不得用于任何商业用途,也不得移交给订货人实验室以外的任何人或单位。

2)为了您的健康,实验操作时请穿实验服和带一次性手套。

3)本产品仅作科研用途!

4)不提供该质粒序列信息。

参考文献
[1] Ciana P,et al. A novel peroxisome proliferator-activated receptor responsive element-luciferase reporter mouse reveals gender specificity of peroxisome proliferator-activated receptor activity in liver. Mol Endocrinol. 21(2):388-400(2007).

相关产品

产品名称

货号

规格

Dual Luciferase Reporter Gene Assay Kit 双荧光素酶报告基因检测试剂盒HOT

11402JP60/80

100T/1000T

Luciferase Reporter Gene Assay Kit 萤火虫荧光素酶报告基因检测试剂盒

11401JP60/76/80

100T/500T/1000T

pGM-CMV Luciferase Reporter Plasmid Positive Control pGM-CMV-Luc荧光素酶报告基因质粒阳性对照

11556JP03

1μg

Luciferase Reporter Plasmid negative control (荧光素酶报告基因质粒阴性对照)

11555JP03

1μg

pGMLR-CMV Luciferase Reporter Plasmid(pGMLR-CMV海肾荧光素酶报告基因质粒)

11558JP03

1μg

HB210329

 

PPAR-GFP报告基因质粒(PPAR GFP Reporter Plasmid)

暂无内容

PPAR-GFP报告基因质粒(PPAR GFP Reporter Plasmid)

暂无内容