谷胱甘肽过氧化物酶检测试剂盒(S0056)

谷胱甘肽过氧化物酶检测试剂盒

产品编号: S0056

产品包装:100次
选择包装

100次

说明书下载

488.00 10

价格: ¥ 488.00

产品简介
使用说明
产品图片
相关产品
相关论文
产品问答
产品编号 产品名称 产品包装 产品价格
S0056 谷胱甘肽过氧化物酶检测试剂盒 100次 488.00元

谷胱甘肽过氧化物酶检测试剂盒(NADPH法)(Cellular Glutathione Peroxidase Assay Kit with NADPH)是一种简单易行的通过紫外比色来检测细胞、组织或其它样品中谷胱甘肽过氧化物酶(Glutathione peroxidase, GPx)活性的试剂盒。
绝大部分细胞内的谷胱甘肽过氧化物酶都是含硒的,且硒为该酶的活性中心组成部分。细胞内也有很少量的不含硒的谷胱甘肽过氧化物酶存在。本试剂盒检测的是最常见的含硒的谷胱甘肽过氧化物酶。
本试剂盒的使用灵活方便,样品用量和检测时间的范围宽,样品用量可以根据样品中GPx的活力在0.1-50微升之间调整,检测时间可以根据样品中GPx的活力在5-30分钟内进行调整。
本试剂盒和总谷胱甘肽过氧化物酶检测试剂盒(S0058)配合使用,可以定量检测出样品中不含硒的谷胱甘肽过氧化物酶。
谷胱甘肽过氧化物酶可以清除活细胞内的过氧化物,在保护细胞免受自由基损伤过程中起着关键作用。细胞内的脂类容易和自由基发生反应,产生脂类过氧化物。谷胱甘肽过氧化物酶可以利用还原型谷胱甘肽(GSH)还原脂类过氧化物,从而消除自由基的毒害作用。谷胱甘肽过氧化物酶几乎在所有组织中都有分布。在一些病理状况下谷胱甘肽过氧化物酶的活力会发生明显上调或下调。
谷胱甘肽过氧化物酶可以利用还原型谷胱甘肽(GSH)催化过氧化氢以及许多有机过氧化物,产生水或有机醇。但以过氧化氢为底物进行检测会受同样可以分解过氧化氢的过氧化氢酶(Catalase)的影响,因为过氧化氢酶的酶活性会干扰谷胱甘肽过氧化物酶的测定。本试剂盒利用了一种间接测定的方法。谷胱甘肽过氧化物酶(GPx)可以催化GSH产生GSSG,而谷胱甘肽还原酶可以利用NADPH催化GSSG产生GSH,通过在A340检测NADPH的减少量就可以计算出谷胱甘肽过氧化物酶的活力水平。在上述反应中,谷胱甘肽过氧化物酶是整个反应体系的限速步骤,因此NADPH的减少量和谷胱甘肽过氧化物酶的活力线性相关。
本试剂盒利用了如下的反应原理,GPx为谷胱甘肽过氧化物酶(Glutathione peroxidase),GR为谷胱甘肽还原酶(Glutathione reductase),R-OOH为过氧化物。

谷胱甘肽过氧化物酶检测试剂盒(S0056)
谷胱甘肽过氧化物酶检测试剂盒(S0056)

本试剂盒提供的有机过氧化物试剂(t-Bu-OOH)在没有谷胱甘肽过氧化物酶存在的情况下不会和GSH产生反应,也不会被细胞内的过氧化氢酶催化而分解。因而可以较为特异地检测出谷胱甘肽过氧化物酶的活力。
由于t-Bu-OOH不能被不含硒的谷胱甘肽过氧化物酶所催化,所以本试剂盒可以比较特异地定量检测最常见的含硒的谷胱甘肽过氧化物酶。
本试剂盒可检测组织匀浆产物、细胞裂解产物等样品中谷胱甘肽过氧化物酶的活性。一个试剂盒可进行100次检测。
包装清单:

产品编号 产品名称 包装
S0056-1 样品匀浆液 100ml
S0056-2 谷胱甘肽过氧化物酶检测缓冲液 50ml
S0056-3 谷胱甘肽还原酶 100μl
S0056-4 NADPH 11.5mg
S0056-5 还原型谷胱甘肽(GSH) 10mg
S0056-6 过氧化物试剂(t-Bu-OOH) 200μl
说明书 1份

保存条件:
-20℃保存,一年有效。NADPH溶解后宜适当分装并-70℃保存,4℃可以保存一天,-20℃保存一周后NADPH会降解10%以上。GSH配制成溶液后,适当分装后-20℃保存。
注意事项:
本试剂盒检测时涉及氧化还原反应,因此所有氧化剂或还原剂都会干扰本试剂盒的测定。如果在样品中的还原剂无法避免,例如DTT、巯基乙醇等,则这些还原剂的总浓度至少低于0.1mM。0.15mM的DTT可以抑制40%的酶活力。
常用的Triton X-100、Tween-20等去垢剂都含有较高水平的过氧化物,会影响本试剂盒的测定。如果必须使用这些去垢剂,最好使用纯度较高并注明含较低过氧化物的去垢剂。
加入过氧化物试剂溶液后的第一次读数,例如0分钟时A340读值不宜低于1。如果读数低于1,说明样品中的GPx活力太高,或者样品中本身的GSSG含量太高,需要将样品适当稀释或者减少样品的用量,否则反应很快就进入平台期,无法获取正常的检测数据。样品可以立即测定,也可以-70℃冻存待以后测定。
一定要严格控制反应时的温度为25℃,否则会引起较多误差。
NADPH不太稳定,要严格按照后续说明操作,谨防失活。
本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
为了您的安全和健康,请穿实验服并戴一次性手套操作。 

使用说明:
1.样品的准备:
a.细胞样品的准备:对于贴壁细胞,由于后续用于酶活性的测定,应避免使用胰酶消化细胞。可以使用EDTA处理细胞或用细胞铲或细胞刮(FLFT021/FSCP023/FSCP029)收集细胞。细胞用PBS或生理盐水洗涤一遍。后续(a)和(b)步骤可以任选其一(优先推荐步骤(a)):
(a).可以用碧云天生产的Western及IP细胞裂解液(P0013)参考相应说明裂解细胞样品。按照每100万细胞加入100-200微升裂解液的比例进行裂解。如果出现裂解效果不佳的情况,可以把处在裂解液中的细胞样品用玻璃匀浆器在4℃或冰浴匀浆。随后4℃,12000g离心10分钟。取上清用于酶活性的测定。
(b).可以用本试剂盒中的样品匀浆液,按照每100万细胞加入100-200微升样品匀浆液的比例用玻璃匀浆器在4℃或冰浴匀浆。随后4℃,12,000g离心10分钟。取上清用于酶活性的测定。
b.组织样品的准备:动物用含有0.16mg/ml heparin的生理盐水(0.9% NaCl containing 0.16mg/ml heparin)灌流清除血液后获取组织样品。按照约每20mg组织加入200微升样品匀浆液的比例,用TissueMaster™手持式组织研磨仪(E6600)或玻璃匀浆器在4℃或冰浴匀浆。4℃,12,000g离心10分钟。取上清用于酶活性的测定。
c.红细胞裂解液的准备:用抗凝管收集血液,颠倒混匀。取至少500微升全血4℃ 2500g离心5分钟。弃上清,用冰冷的约红细胞沉淀10倍体积的样品匀浆液重悬沉淀,再同前离心,弃上清。加入约红细胞沉淀4倍体积的冰冷的Milli-Q级纯水裂解红细胞。12,000g离心5分钟,取上清。
d.上述各种样品可以用碧云天生产的BCA蛋白浓度测定试剂盒(P0009/P0010/P0010S/P0011/P0012/P0012S)测定蛋白浓度。通常可以先取含1-100微克蛋白的样品用于谷胱甘肽过氧化物酶的检测。注:对于GPx活力较高的组织样品,含1-10微克蛋白的样品可能就能满足检测需求,而对于GPx活力较低的样品例如某些细胞样品,可能需要10-100微克的蛋白量。如果发现样品中谷胱甘肽过氧化物酶的活力过高,可以用谷胱甘肽过氧化物酶检测缓冲液进行稀释。如果样品中谷胱甘肽过氧化物酶的活力过低,则需适当加大蛋白用量。准备好的样品如果当日测定,可以在冰浴保存,如果日后测定可以-70℃冻存。
2.试剂盒的准备工作:
a.62.5mM NADPH溶液的配制。在本试剂盒提供的11.5mg NADPH中加入220微升Milli-Q级纯水,溶解并混匀,即为62.5mM NADPH溶液。除立即待用部分外,其余的NADPH溶液需适当分装后-70℃保存。
b.75mM GSH溶液的配制。在本试剂盒提供的10mg GSH中加入433微升Milli-Q级纯水,溶解并混匀,即为75mM GSH溶液。除立即待用部分外,其余的GSH溶液需适当分装后-20℃保存。
c.GPx检测工作液的配制。根据待测定的样品数(含对照),按照每个检测需要40微升GPx检测工作液的体积配制适量的GPx检测工作液。配制好的GPx检测工作液仅限当日使用,且需尽量在冰浴上存放。具体配制方法参考下表。

可测定样品数(含对照) 1个样品 10个样品 20个样品
谷胱甘肽过氧化物酶检测缓冲液 35 µl 350 µl 700 µl
62.5mM NADPH 2 µl 20 µl 40 µl
75mM GSH 2 µl 20 µl 40 µl
谷胱甘肽还原酶 1 µl 10 µl 20 µl
GPx检测工作液 40 µl 400 µl 800 µl

d.30mM过氧化物试剂溶液的配制。取21.5微升过氧化物试剂(t-Bu-OOH)加入5毫升Milli-Q级纯水,混匀,即配制成30mM过氧化物试剂溶液。配制好的30mM过氧化物试剂溶液仅限当日使用,且需尽量在冰浴上存放。
e.所有试剂使用前须在水浴中或PCR仪等设备上温育到25℃。
3. 样品测定:
a.参考下表,使用96孔板,依次加入检测缓冲液、待测样品和GPx检测工作液,混匀,加入40微升GPx检测工作液后,室温孵育15分钟,以消耗掉样品中的GSSG,排除对后继检测的干扰。

空白对照 (blank) 样品 (sample)
谷胱甘肽过氧化物酶检测缓冲液 50 µl 0-50 µl
待测样品 0-50 µl
GPx检测工作液 40 µl 40 µl
总体积 90 µl 90 µl

b.每孔加入10微升30mM过氧化物试剂溶液,混匀。
c.立即使用适当的酶标仪或微量紫外分光光度计测定A340,此时记录为0分钟读值。如果仪器可以设置温度,把温度设置在25℃,否则可以通过空调调节室温到25℃,待预计仪器也达到25℃后再开始测定A340
d.连续测定5分钟或自动每隔1分钟测定一次A340。如果仪器不具备相应功能,可以手工操作,每隔1分钟记录A340值,至少连续记录5分钟,获得6个点的数据。
注1:连续测定的时间可以根据样品中GPx的活力来调整,但是需确保获得6个点的数据。对于GPx的活力较高的样品,例如肝脏等组织样品,建议测定5分钟或10分钟,对应的测定间隔时间设为1分钟和2分钟;对于GPx的活力很低的样品,例如THP-1等细胞样品,可以延长测定时间为10、15或者20分钟,对应的测定间隔时间设为2、3或4分钟。也可以连续测定20分钟,每隔1分钟测定1次,最后取呈线性的时间点前的数据用于分析。
注2:如果样品的第一次读数比如0分钟时A340读值低于1,说明样品中的GPx活力太高,或者样品中本身的GSSG含量太高,需要将样品适当稀释或者减少样品的用量。
e.测定出来的ΔA340/min最好能控制在0.01-0.2范围内。如测定出来的ΔA340/min数值过大,则可以把样品适当稀释或者减小样品的用量,如ΔA340/min数值过小,处理样品时需设法尽量浓缩样品、并适当加大样品的用量。蛋白量为12微克的THP-1细胞样品和蛋白量为4微克的小鼠肝脏样品的检测效果参考表1、表2和图1。
表1.蛋白量为12微克的THP-1细胞样品检测数据分析。

读值 0min 3min 6min 9min 12min 15min
A340 (blank) 1.75 1.63 1.57 1.50 1.42 1.35
A340 (sample) 1.53 1.34 1.21 1.07 0.94 0.81
ΔA340 (blank) 0 0.12 0.18 0.25 0.33 0.40
ΔA340 (sample) 0 0.19 0.32 0.46 0.59 0.72
ΔA340 0 0.07 0.14 0.21 0.26 0.32
ΔA340/min 0 0.023 0.023 0.023 0.0217 0.0213

表2.蛋白量为4微克的小鼠肝脏样品检测数据分析。

读值 0min 1min 2min 3min 4min 5min
A340 (blank) 1.66 1.65 1.64 1.61 1.52 1.49
A340 (sample) 1.49 1.32 1.17 0.99 0.80 0.59
ΔA340 (blank) 0 0.01 0.02 0.05 0.14 0.17
ΔA340 (sample) 0 0.17 0.32 0.50 0.69 0.90
ΔA340 0 0.16 0.30 0.45 0.55 0.73
ΔA340/min 0 0.16 0.15 0.15 0.1375 0.146

注:ΔA340 (blank) = A340 (blank) (Time 0)-A340 (blank) (Time n)
ΔA340 (sample) = A340 (sample) (Time 0)-A340 (sample) (Time n)
ΔA340 = ΔA340 (sample)-ΔA340 (blank)
ΔA340/min =ΔA340/n

谷胱甘肽过氧化物酶检测试剂盒(S0056)

图1.本试剂盒用于THP-1细胞样品和小鼠肝脏样品的检测效果图。横坐标为测定的各个时间点n,纵坐标为相应时间点ΔA340 (sample)与ΔA340 (blank)的差值即ΔA340。图A为12微克THP-1细胞样品测定15分钟的检测效果,图B为4微克小鼠肝脏样品测定5分钟的检测效果。实测数据会因实验条件、检测仪器等的不同而存在差异,图中数据仅供参考。
4.样品中谷胱甘肽过氧化物酶酶活力的计算:
a.谷胱甘肽过氧化物酶酶活力单位的定义:1个酶活力单位(1 unit)在25℃,pH8.0,在GSH、谷胱甘肽还原酶、t-Bu-OOH存在的条件下,在1分钟内可以催化1微摩尔NADPH转变成NADP+。1 U=1000 mU。
b.对于谷胱甘肽过氧化物酶溶液:1mU/ml=1nmol NADPH/min/ml=(ΔA340/min)/(εμM×L(cm))
即相当于:[检测体系中谷胱甘肽过氧化物酶活力]=(ΔA340/min)/(εμM×L(cm))=[(ΔA340 (sample)-ΔA340 (blank))/min]/ (εμM×L(cm))
[样品中谷胱甘肽过氧化物酶活力]=[检测体系中谷胱甘肽过氧化物酶活力]×[稀释倍数]/[样品中的蛋白浓度]= [(ΔA340/min)/(εμM×L(cm))]×[dil×(V(ml)/Vsample(ml))]/[样品中的蛋白浓度]
注:[检测体系中谷胱甘肽过氧化物酶活力]的单位为mU/ml,[样品中的蛋白浓度]的单位为mg/ml,所以最终[样品中谷胱甘肽过氧化物酶活力]的单位为:U/mg蛋白或mU/mg蛋白;
εμM为摩尔消光系数:NADPH在A340的摩尔消光系数为0.00622μM-1cm-1
L(cm)为测吸光度时的路径长度:100μl样品在一般的96孔中的高度约为0.276cm,如果使用不同的反应孔,请注意修改为溶液在该孔中的高度;
dil为样品的稀释倍数;
V(ml)为反应体系,本反应体系为0.1ml;
Vsample(ml)为反应体系中样品的体积,以毫升表示。
c.计算示例:样品的蛋白浓度经测定为1.2mg/ml,用样品稀释液稀释2倍后,取20微升稀释后的样品参考表1进行测定,测定时间设为15分钟。如果0分钟时的A340 (sample)=1.53,A340 (blank)=1.75,15分钟时的A340 (sample)=0.81,A340 (blank)=1.35,则ΔA340 (sample)=1.53-0.81=0.72,ΔA340 (blank)=1.75-1.35=0.40,那么:
[检测体系中谷胱甘肽过氧化物酶活力]= [ (0.72-0.40)/15]/(0.00622×0.276)=12.43mU/ml
[样品中谷胱甘肽过氧化物酶活力]= 12.43mU/ml×(2×0.1/0.02)/(1.2mg/ml)=104mU/mg(蛋白)
相关产品

产品编号 产品名称 包装
S0052 总谷胱甘肽检测试剂盒 100次
S0053 GSH和GSSG检测试剂盒 共100次
S0055 谷胱甘肽还原酶检测试剂盒 100次
S0056 谷胱甘肽过氧化物酶检测试剂盒(NADPH法) 100次
S0057 谷胱甘肽过氧化物酶检测试剂盒(DTNB法) 100次
S0058 总谷胱甘肽过氧化物酶检测试剂盒(NADPH法) 100次
S0059 总谷胱甘肽过氧化物酶检测试剂盒(DTNB法) 100次

谷胱甘肽过氧化物酶检测试剂盒(S0056)

相关产品请点击如下按钮:
活性氧相关

使用本产品的文献:

1. Pan Q, Huang K, He K, Lu F.
Effect of different selenium sources and levels on porcine circovirus type 2 replication in vitro.
J TRACE ELEM MED BIO  . 2008;22(2):143-8. (IF 3.755)

2. An R, Dong C, Lei Y, Han L, Li P, Chen J, Wang G, Shi Q, Gao C, Jiang H, Zhou W, Han J,Chu Y, Dong X.
PrP mutants with different numbers of octarepeat sequences are more susceptible to the oxidative stress.
SCI CHINA LIFE SCI . 2008 Jul;51(7):630-9. (IF 4.611)

3. Wang XZ, Liu SS, Sun Y, Wu JY, Zhou YL, Zhang JH.
Beta-cypermethrin impairs reproductive function in male mice by inducing oxidative stress.
Theriogenology . 2009 Sep 15;72(5):599-611. (IF 2.094)

4. Xiao-Long W, Chuan-Ping Y, Kai X, Ou-Jv Q.
Selenoprotein W depletion in vitro might indicate that its main function is not as an antioxidativeenzyme.
BIOCHEMISTRY-MOSCOW+ . 2010 Feb;75(2):201-7. (IF 1.978)

5. Han ZJ, Song G, Cui Y, Xia HF, Ma X.
Oxidative stress is implicated in arsenic-induced neural tube defects in chick embryos.
Int J Dev Neurosci . 2011 Nov;29(7):673-80. (IF 1.911)

6. Chen J, Xiao S, Deng Y, Du X, Yu Z.
Cloning of a novel glutathione S-transferase 3 (GST3) gene and expressionanalysis in pearl oyster,Pinctada martensii.
FISH SHELLFISH IMMUN . 2011 Dec;31(6):823-30. (IF 3.298)

7. Guo C, He Z, Wen L, Zhu L, Lu Y, Deng S, Yang Y, Wei Q, Yuan H.
Cytoprotective effect of trolox against oxidative damage and apoptosis in the NRK-52e cells induced by melamine.
Cell Biol Int . 2012 Feb;36(2):183-8. (IF 2.571)

8. Shao X, Hu Z, Hu C, Bu Q, Yan G, Deng P, Lv L, Wu D, Deng Y, Zhao J, Zhu R, Li Y, Li H,Xu Y, Yang H, Zhao Y, Cen X.
Taurine protects methamphetamine-induced developmental angiogenesis defect throughantioxidant mechanism.
TOXICOL APPL PHARM  . 2012 May 1;260(3):260-70. (IF 3.616)

9. Huang Y, Fang W, Wang Y, Yang W, Xiong B.
Transforming growth factor-β1 induces glutathione peroxidase-1 and protects from H2O2-induced cell death in colon cancer cells via the Smad2/ERK1/2/HIF-1α pathway.
Int J Mol Med . 2012 May;29(5):906-12. (IF 3.098)

10. Sun WH, Liu F, Chen Y, Zhu YC.
Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SODactivities in cardiomyocytes under ischemia/reperfusion.
BIOCHEM BIOPH RES CO . 2012 May 4;421(2):164-9. (IF 2.985)

11. Wang L, Hao J, Hu J, Pu J, Lü Z, Zhao L, Wang Q, Yu Q, Wang Y, Li G.
Protective Effects of Ginsenosides against Bisphenol A-Induced Cytotoxicity in 15P-1 Sertoli Cellsvia Extracellular Signal-Regulated Kinase 1/2 Signalling and AntioxidantMechanisms.
BASIC CLIN PHARMACOL . 2012 Jul;111(1):42-9. (IF 2.651)

12. Shi J, Yin N, Xuan LL, Yao CS, Meng AM, Hou Q.
Vam3, a derivative of resveratrol, attenuates cigarette smoke-induced autophagy.
Acta Pharmacol Sin . 2012 Jul;33(7):888-96. (IF 5.064)

13. Zheng J, Yang B, Yu Y, Chen Q, Huang T, Li D.
Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting β-cells.
COMB CHEM HIGH T SCR . 2012 Aug;15(7):542-50. (IF 1.195)

14. Zhang H, Zhai Z, Wang Y, Zhang J, Wu H, Wang Y, Li C, Li D, Lu L, Wang X, Chang J,Hou Q, Ju Z, Zhou D, Meng A.
Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice.
FREE RADICAL BIO MED . 2013 Jan;54:40-50. (IF 6.17)

15. Wu J, Ding T, Sun J.
Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus.
Neurotoxicology . 2013 Jan;34:243-53. (IF 3.105)

16. Wu J, Tu D, Yuan LY, Yuan H, Wen LX.
T-2 toxin exposure induces apoptosis in rat ovarian granulosa cells through oxidative tress.
ENVIRON TOXICOL CHEM . 2013 Apr 11;36(2):493-500. (IF 3.152)

17. Ali S, Huang Z, Li H, Bashir MH, Ren S.
Antioxidant enzyme influences germination, stress tolerance, and virulence of Isaria fumosorosea.
J BASIC MICROB . 2013 Jun;53(6):489-97. (IF 1.909)

18. Li JW, Ning N, Ma YZ, Zhang R, Tan F, Chen NH.
Claulansine F suppresses apoptosis induced by sodium nitroprusside in PC12 cells.
FREE RADICAL RES . 2013 Jul;47(6-7):488-97. (IF 2.839)

19. Yu CH, Liu ZY, Sun W, Li YJ, Zhang DS, Pan RT, Sun ZL.
Effect of Danofloxacin on Reactive Oxygen Species Production, Lipid Peroxidation and Antioxidant EnzymeActivities in Kidney Tubular Epithelial Cell Line, LLC-PK1.
BASIC CLIN PHARMACOL . 2013 Dec;113(6):377-84. (IF 2.651)

20. Lei T, Li H, Fang Z, Lin J, Wang S, Xiao L, Yang F, Liu X, Zhang J, Huang Z, Liao W.
Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress.
Neural Regen Res . 2014 Feb 1;9(3):260-7. (IF 3.171)

21. Wu T, Tang Q, Yu Z, Gao Z, Hu H, Chen W, Zheng X, Yu T.
Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice.
Int J Food Sci Nutr . 2014 May;65(3):351-9. (IF 3.483)

22. Sun H, Deng T, Fu J.
Chicken 15-kDa selenoprotein plays important antioxidative function in splenocytes.
Biol Trace Elem Res . 2014 Dec;161(3):288-96. (IF 2.639)

23. Zhang B, Peng X, Li G, Xu Y, Xia X, Wang Q.
Oxidative stress is involved in Patulin induced apoptosis in HEK293 cells.
Toxicon. 2015 Feb;94:1-7. (IF 2.201)

24. Keogh K, Waters SM, Kelly AK, Wylie AR, Kenny DA.
Effect offeed restriction and subsequent re-alimentation on hormones and genes of the somatotropic axis in cattle.
Physiol Genomics . 2015 Jul;47(7):264-73. (IF 2.749)

25. Li C, Shi L, Chen D, Ren A, Gao T, Zhao M.
Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum.
Fungal Genet Biol . 2015 Sep;82:168-80. (IF 3.071)

26. Yuan XH, Fan YY, Yang CR, Gao XR, Zhang LL, Hu Y, Wang YQ, Jun H.
Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells.
J STEROID BIOCHEM . 2016 Jan;155(Pt A):104-11. (IF 3.813)

27. Wu T, Yin J, Zhang G, Long H, Zheng X.
Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice.
Mol Nutr Food Res . 2016 Mar;60(3):687-94. (IF 5.309)

28. Wu T, Yin J, Zhang G, Long H, Zheng X.
Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-inducedobese mice.
Mol Nutr Food Res . 2016 Mar;60(3):687-94. (IF 5.309)

29. Ren H, Yang Z, Luo C, Zeng H, Li P, Kang JX, Wan JB, He C, Su H.
Enriched Endogenous Omega-3 Fatty Acids in Mice Ameliorate Parenchymal Cell Death After TraumaticBrain Injury.
Mol Neurobiol . 2016 May 11.[Epub ahead of print] (IF 4.5)

30. Zhang G, Zhu J, Zhou Y, Wei Y, Xi L, Qin H, Rao Z, Han M, Ma Y, Wu X.
Hesperidin Alleviates Oxidative Stress and Upregulates the Multidrug Resistance Protein 2 in Isoniazid andRifampicin-Induced Liver Injury in Rats.
J BIOCHEM MOL TOXIC . 2016 Jul;30(7):342-9. (IF 3.606)

31. He Z, Zhang L, Zhuo C, Jin F, Wang Y.
Apoptosis inhibition effect of Dihydromyricetin against UVA-exposed human keratinocyte cell line.
J PHOTOCH PHOTOBIO B . 2016 Aug;161:40-9. (IF 4.383)

32. Xiong Y, Shang B, Xu S, Zhao R, Gou H, Wang C.
Protective effect of Bu-zhong-yi-qi decoction, the water extract of Chinese
RENAL FAILURE . 2016 Sep;38(8):1240-8. (IF 1.985)

33. Gao W, Liang JX, Ma C, Dong JY, Yan Q.
The Protective Effect of N-Acetylcysteine on Ionizing Radiation Induced Ovarian Failure and Loss of Ovarian Reserve in Female Mouse.
Biomed Res Int . 2017;2017:4176170. (IF 2.276)

34. Zhang WY, Niu CJ, Chen BJ, Yuan L.
Antioxidant responses in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings.
Comp Biochem Physiol A Mol Integr Physiol . 2017 Feb;204:9-16.

35. Hu W, Wang H, Liu Z, Liu Y, Wang R, Luo X, Huang Y.
Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptoticpathway.
Neurosci Lett . 2017 Feb 2. pii:S0304-3940(17)30102-7. (IF 2.274)

36. Yan Y, Jiang W, Tan Y, Zou S, Zhang H, Mao F, Gong A, Qian H, Xu W.
hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury.
Mol Ther . 2017 Feb 1;25(2):465-479. (IF 8.986)

37. Zhu Z, Chen Y, Shi G, Zhang X.
Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidantdefense system.
Food Chem . 2017 Mar 15;219:179-184. (IF 6.306)

38. Zhu Z, Chen Y, Shi G, Zhang X.
Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system.
Food Chem . 2017 Mar 15;219:179-184. (IF 6.306)

39. Hu W, Wang H, Liu Z, Liu Y, Wang R, Luo X, Huang Y.
Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptotic pathway.
Neurosci Lett . 2017 Mar 6;642:107-112. (IF 2.274)

40. Liu Y, Yang H, Wen Y, Li B, Zhao Y, Xing J, Zhang M, Chen Y.
Nrf2 Inhibits Periodontal Ligament Stem Cell Apoptosis under Excessive Oxidative Stress.
Int J Mol Sci . 2017 May 17;18(5). pii: E1076. (IF 4.556)

41. Feng J,Li H,Zhang Y,Wang Q,Zhao S,Meng P,Li J
Mammalian STE20-Like Kinase 1 Deletion Alleviates Renal Ischaemia-Reperfusion Injury via Modulating Mitophagy and the AMPK-YAP Signalling Pathway.
CELL PHYSIOL BIOCHEM . 2018;51(5):2359-2376. (IF 5.5)

42. Zhang Y,Feng J,Wang Q,Zhao S,Yang S,Tian L,Meng P,Li J,Li H
Hyperglycaemia Stress-Induced Renal Injury is Caused by Extensive Mitochondrial Fragmentation, Attenuated MKP1 Signalling, and Activated JNK-CaMKII-Fis1 Biological Axis.
CELL PHYSIOL BIOCHEM . 2018;51(4):1778-1798. (IF 5.5)

43. Chen L,Yao H,Chen X,Wang Z,Xiang Y,Xia J,Liu Y,Wang Y
Ginsenoside Rg1 Decreases Oxidative Stress and Down-Regulates Akt/mTOR Signalling to Attenuate Cognitive Impairment in Mice and Senescence of Neural Stem Cells Induced by D-Galactose.
Neurochem Res . 2018 Feb;43(2):430-440. (IF 3.038)

44. Duan G, Shi M, Xie L, Xu M, Wang Y, Yan H, Zhuge Y, Zou X.
Increased Glutamine Consumption in Cisplatin-Resistant Cells Has a Negative Impact on CellGrowth.
SCI REP-UK . 2018 Mar 6;8(1):4067. (IF 3.998)

45. Zhang N,Feng H,Liao HH,Chen S,Yang Z,Deng W,Tang QZ
Myricetin attenuated LPS induced cardiac injury in vivo and in vitro.
Phytother Res . 2018 Mar;32(3):459-470. (IF 4.087)

46. Ling H,Zhu Z,Yang J,He J,Yang S,Wu D,Feng S,Liao D
Dihydromyricetin improves type 2 diabetes-induced cognitive impairment via suppressing oxidative stress and enhancing brain-derived neurotrophic factor-mediated neuroprotection in mice.
ACTA BIOCH BIOPH SIN . 2018 Mar 1;50(3):298-306. (IF 2.836)

47. Duan G,Shi M,Xie L,Xu M,Wang Y,Yan H,Zhuge Y,Zou X
Increased Glutamine Consumption in Cisplatin-Resistant Cells Has a Negative Impact on Cell Growth.
SCI REP-UK . 2018 Mar 6;8(1):4067. (IF 3.998)

48. Guo J,Xu B,Han Q,Zhou H,Xia Y,Gong C,Dai X,Li Z,Wu G
Ferroptosis: A Novel Anti-tumor Action for Cisplatin.
Cancer Res Treat . 2018 Apr;50(2):445-460. (IF 3.761)

49. Liu R,Zhang X,Ren A,Shi DK,Shi L,Zhu J,Yu HS,Zhao MW
Heat stress-induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum.
Microbiol Res . 2018 Apr;209:43-54. (IF 3.97)

50. Wu D,Han R,Deng S,Liu T,Zhang T,Xie H,Xu Y
Protective Effects of Flagellin A N/C Against Radiation-Induced NLR Pyrin Domain Containing 3 Inflammasome-Dependent Pyroptosis in Intestinal Cells.
INT J RADIAT ONCOL . 2018 May 1;101(1):107-117. (IF 5.859)

51. Chen S, Fan B.
Myricetin protects cardiomyocytes from LPS-induced injury.
Herz. 2018 May;43(3):265-274. (IF 1.033)

52. Yang Y,Xie F,Qin D,Zong C,Han F,Pu Z,Liu D,Li X,Zhang Y,Liu Y,Wang X
The orphan nuclear receptor NR4A1 attenuates oxidative stress-induced β cells apoptosis via up-regulation of glutathione peroxidase 1.
Life Sci . 2018 Jun 15;203:225-232. (IF 3.647)

53. Yanfei Cui,Shengya Yang
Overexpression of Annexin A1 Protects Against Benzo[a]pyrene‑induced Bronchial Epithelium Injury
Mol Med Rep. 2018 Jul;18(1):349-357.;doi: 10.3892/mmr.2018.8998. (IF 2.1)

54. Ma X,Hu B,Zou C,Han A,Xu Z,Zhang T,Yu W
The effects of hyperoxia liquid regulate cardiopulmonary bypass‑induced myocardial damage through the Nrf2‑ARE signaling pathway.
Mol Med Rep . 2018 Aug;18(2):2342-2348. (IF 2.1)

55. Zhu Z,Xie Q,Huang Y,Zhang S,Chen Y
Aucubin suppresses Titanium particles‑mediated apoptosis of MC3T3‑E1 cells and facilitates osteogenesis by affecting the BMP2/Smads/RunX2 signaling pathway.
Mol Med Rep . 2018 Sep;18(3):2561-2570. (IF 2.1)

56. Huang Y,Hu Z
UBIAD1 protects against oxygen-glucose deprivation/reperfusion-induced multiple subcellular organelles injury through PI3K/AKT pathway in N2A cells.
J Cell Physiol . 2018 Sep;233(9):7480-7496. (IF 5.546)

57. Jieensinue S,Zhu H,Li G,Dong K,Liang M,Li Y
Tanshinone IIA reduces SW837 colorectal cancer cell viability via the promotion of mitochondrial fission by activating JNK-Mff signaling pathways.
BMC Cell Biol . 2018 Sep 25;19(1):21. (IF 3.066)

58. Lu C,Chen X,Wang Q,Xu X,Xu B
TNFα promotes glioblastoma A172 cell mitochondrial apoptosis via augmenting mitochondrial fission and repression of MAPK-ERK-YAP signaling pathways.
ONCOTARGETS THER . 2018 Oct 18;11:7213-7227. (IF 3.337)

59. Wan J,Cui J,Wang L,Wu K,Hong X,Zou Y,Zhao S,Ke H
Excessive mitochondrial fragmentation triggered by erlotinib promotes pancreatic cancer PANC-1 cell apoptosis via activating the mROS-HtrA2/Omi pathways.
Cancer Cell Int . 2018 Oct 22;18:165. (IF 4.175)

60. Liang Y,Huang W,Zeng D,Huang X,Chan L,Mei C,Feng P,Tan CH,Chen T
Cancer-targeted design of bioresponsive prodrug with enhanced cellular uptake to achieve precise cancer therapy.
Drug Deliv . 2018 Nov;25(1):1350-1361. (IF 4.902)

61. Liu J,Xu Y,Wu Q,Ding Q,Fan W
Sirtuin‑1 protects hair follicle stem cells from TNFα-mediated inflammatory stress via activating the MAPK-ERK-Mfn2 pathway.
Life Sci . 2018 Nov 1;212:213-224. (IF 3.647)

62. Tian HP,Sun YH,He L,Yi YF,Gao X,Xu DL
Single-Stranded DNA-Binding Protein 1 Abrogates Cardiac Fibroblast Proliferation and Collagen Expression Induced by Angiotensin II.
Int Heart J . 2018 Nov 28;59(6):1398-1408. (IF 1.906)

63. Yao S,Yan W
Overexpression of Mst1 reduces gastric cancer cell viability by repressing the AMPK-Sirt3 pathway and activating mitochondrial fission.
ONCOTARGETS THER . 2018 Nov 29;11:8465-8479. (IF 3.337)

64. Zhang W,Liu K,Pei Y,Ma J,Tan J,Zhao J
Mst1 regulates non-small cell lung cancer A549 cell apoptosis by inducing mitochondrial damage via ROCK1/F‑actin pathways.
Int J Oncol . 2018 Dec;53(6):2409-2422. (IF 3.899)

65. Liu D,Xue J,Liu Y,Gu H,Wei X,Ma W,Luo W,Ma L,Jia S,Dong N,Huang J,Wang Y,Yuan Z
Inhibition of NRF2 signaling and increased reactive oxygen species during embryogenesis in a rat model of retinoic acid-induced neural tube defects.
Neurotoxicology . 2018 Dec;69:84-92. (IF 3.105)

66. Li DY,Liu WT,Wang GY,Shi XJ
Impact of combined ischemic preconditioning and remote ischemic perconditioning on ischemia-reperfusion injury after liver transplantation.
SCI REP-UK . 2018 Dec 19;8(1):17979. (IF 3.998)

67. Wang S,Li F,Qiao R,Hu X,Liao H,Chen L,Wu J,Wu H,Zhao M,Liu J,Chen R,Ma X,Kim D,Sun J,Davis TP,Chen C,Tian J,Hyeon T,Ling D
Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics.
ACS Nano . 2018 Dec 26;12(12):12380-12392. (IF 14.588)

68. Liang F,Su F,Wang X,Long S,Zheng Y,He X,Pang J,Pei Z
Xyloketal derivative C53N protects against mild traumatic brain injury in mice.
DRUG DES DEV THER. 2018 Dec 27;13:173-182. (IF 3.216)

69. He M,Xiang Z,Xu L,Duan Y,Li F,Chen J
Lipopolysaccharide induces human olfactory ensheathing glial apoptosis by promoting mitochondrial dysfunction and activating the JNK-Bnip3-Bax pathway.
CELL STRESS CHAPERON . 2019 Jan;24(1):91-104. (IF 2.892)

70. Zhang Y,Zhang J,Wu C,Guo S,Su J,Zhao W,Xing H
Higenamine protects neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury.
J Cell Biochem . 2019 Mar;120(3):3757-3764. (IF 4.237)

71. Yin H,Qi Z,Li M,Ahammed GJ,Chu X,Zhou J
Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L.
ECOTOX ENVIRON SAFE. 2019 Mar;169:911-917. (IF 4.872)

72. Zhang C,Yang Y,Liang W,Wang T,Wang S,Wang X,Wang Y,Jiang H,Feng H
Neuroprotection by urate on the mutant hSOD1-related cellular and Drosophila models of amyotrophic lateral sclerosis: Implication for GSH synthesis via activating Akt/GSK3β/Nrf2/GCLC pathways.
Brain Res Bull. 2019 Mar;146:287-301. (IF 3.37)

73. Xie Z,Zhou Y,Duan X,Yang L
Inhibitory effect of Tanshinone IIA on inverted formin-2 protects HaCaT cells against oxidative injury via regulating mitochondrial stress.
J RECEPT SIG TRANSD. 2019 Apr;39(2):134-145. (IF 1.466)

74. Quan XJ,Liang CL,Sun MZ,Zhang L,Li XL
Overexpression of steroid receptor coactivators alleviates hyperglycemia-induced endothelial cell injury in rats through activating the PI3K/Akt pathway.
Acta Pharmacol Sin . 2019 May;40(5):648-657. (IF 5.064)

75. Zhang L,Li S,Wang R,Chen C,Ma W,Cai H
Anti-tumor effect of LATS2 on liver cancer death: Role of DRP1-mediated mitochondrial division and the Wnt/β-catenin pathway.
Biomed Pharmacother. 2019 Jun;114:108825. (IF 4.545)

76. Zhang J,Sun L,Li W,Wang Y,Li X,Liu Y
Overexpression of macrophage stimulating 1 enhances the anti-tumor effects of IL-24 in esophageal cancer via inhibiting ERK-Mfn2 signaling-dependent mitophagy.
Biomed Pharmacother. 2019 Jun;114:108844. (IF 4.545)

77. Lei M,Wu X,Huang C,Qiu Z,Wang L,Zhang R,Zhang J
Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress.
APPL MICROBIOL BIOT. 2019 Jul;103(13):5379-5390. (IF 3.53)

78. Li Y,Zhang J,Liu H,Yuan J,Yin Y,Wang T,Cheng B,Sun S,Guo Z
Curcumin ameliorates glyoxylate-induced calcium oxalate deposition and renal injuries in mice.
Phytomedicine. 2019 Aug;61:152861. (IF 4.268)

79. Huang MZ,Yang YJ,Liu XW,Qin Z,Li JY
Aspirin Eugenol Ester Reduces H2O2-Induced Oxidative Stress of HUVECs via Mitochondria-Lysosome Axis.
Oxid Med Cell Longev. 2019 Sep 9;2019:8098135. (IF 5.076)

80. Wang R,Sun DG,Song G,Guan CY,Cui Y,Ma X,Xia HF
Choline, not folate, can attenuate the teratogenic effects ofdibutyl phthalate (DBP) during early chick embryo development.
ENVIRON SCI POLLUT R. 2019 Oct;26(29):29763-29779. (IF 3.056)

81. Zhang J,Zhang SD,Wang P,Guo N,Wang W,Yao LP,Yang Q,Efferth T,Jiao J,Fu YJ
Pinolenic acid ameliorates oleic acid-induced lipogenesis and oxidative stress via AMPK/SIRT1 signaling pathway in HepG2 cells.
Eur J Pharmacol. 2019 Oct 15;861:172618. (IF 3.263)

82. Gao M,Deng J,Liu F,Fan A,Wang Y,Wu H,Ding D,Kong D,Wang Z,Peer D,Zhao Y
Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy.
Biomaterials. 2019 Dec;223:119486. (IF 10.317)

83. Zhang C,Liang W,Wang H,Yang Y,Wang T,Wang S,Wang X,Wang Y,Feng H
γ-Oryzanol mitigates oxidative stress and prevents mutant SOD1-Related neurotoxicity in Drosophila and cell models of amyotrophic lateral sclerosis.
Neuropharmacology. 2019 Dec 1;160:107777. (IF 4.431)

84. Tang H,Chen D,Li C,Zheng C,Wu X,Zhang Y,Song Q,Fei W
Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells.
INT J PHARMACOL. 2019 Dec 15;572:118782. (IF 0.692)

85. Dongdong Zhang,Yujiao Liu,Ziyi Luo,Yanling Chen,Anjie Xu,Yuxing Liang,Balu Wu,Xiqin Tong,Xiaoyan Liu,Hui Shen,Li Liu,Yongchang Wei,Haibing Zhou,Yi Liu,Fuling Zhou
The novel thioredoxin reductase inhibitor A-Z2 triggers intrinsic apoptosis and shows efficacy in the treatment of acute myeloid leukemia
Free Radic Biol Med. 2020 Jan;146:275-286.;doi: 10.1016/j.freeradbiomed.2019.11.013.

86. Baocheng Zhao,Zhenjun Wang,Jiagang Han,Guanghui Wei,Bingqiang Yi,Zhulin Li
Rhizoma Paridis total saponins alleviate H2O2‑induced oxidative stress injury by upregulating the Nrf2 pathway
Mol Med Rep. 2020 Jan;21(1):220-228.;doi: 10.3892/mmr.2019.10827.

87. Xiangyuan Chen,Jie Qi,Qichao Wu,Hui Jiang,Jing Wang,Wankun Chen,Anrong Mao,Minmin Zhu
High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression
Acta Biochim Biophys Sin (Shanghai). 2020 May 26;52(5):506-516.;doi: 10.1093/abbs/gmaa023.

88. Song Zhou,Yunjing Sun,Kai Zhao,Yanzhou Gao,Jiangman Cui,Liping Qi,Lingfang Huang
miR‑21/PTEN pathway mediates the cardioprotection of geniposide against oxidized low‑density lipoprotein‑induced endothelial injury via suppressing oxidative stress and inflammatory response
Int J Mol Med. 2020 May;45(5):1305-1316.;doi: 10.3892/ijmm.2020.4520.

89. Yunhua Yu,Fei Wang,Jianjun Wang,Dongmei Zhang,Xianxian Zhao
Ketogenic diet attenuates aging-associated myocardial remodeling and dysfunction in mice
Exp Gerontol. 2020 Oct 15;140:111058.;doi: 10.1016/j.exger.2020.111058.

90. Zi-Sheng Huang,Da-Qi Xie,Li-Jun Xu,Chang-Shun Huang,Min Zheng,Yi-Jun Chen,Yin Cao
Tetramethylpyrazine Ameliorates Lipopolysaccharide-Induced Sepsis in Rats via Protecting Blood-Brain Barrier, Impairing Inflammation and Nitrous Oxide Systems
Front Pharmacol. 2020 Oct 2;11:562084.;doi: 10.3389/fphar.2020.562084.